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The syntax of type theory

When defining syntax of programming languages and type theories, many choices:

Fully-annotated syntax keeps track of all annotations

𝑡 @𝐴,𝑥 .𝐵 𝑢 ⟨𝑡,𝑢⟩𝐴,𝑥 .𝐵 𝑡 ::𝐴 𝑙 . . .

What one gets when seeing type theory as an algebraic theory

Arguably the most canonical choice

, but the syntax is unusable in practice...

Non-annotated syntax restores usability by eliding parameter annotations

𝑡 𝑢 ⟨𝑡,𝑢⟩ 𝑡 :: 𝑙 . . .

Syntax so common that many don’t realize that an omission is being made
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Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing
Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵 type Γ ⊢ 𝑡 : Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑡 𝑢 : 𝐵 [𝑢/𝑥]

How to find 𝐴 and 𝐵 if they’re not stored in syntax?

Bidirectional typing Decompose 𝑡 : 𝐴 in modes check 𝑡 ⇐ 𝐴 and infer 𝑡 ⇒ 𝐴

Allow specify flow of type information in typing rules, explain how to use them
Γ ⊢ 𝑡 ⇒

𝐶 −→∗ Π𝑥 : 𝐴.𝐵 Γ ⊢ 𝑢 ⇐

Γ ⊢ 𝑡 𝑢 ⇒
Complements unannotated syntax, locally explains how to recover annotations
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Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This work Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical
framework) supporting non-annotated syntaxes

2. For each theory, we define declarative and bidirectional type systems
3. We show, in a theory-independent fashion, their equivalence
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BiTTs: A theory-independent bidirectional type-checker
Our framework not only of theoretic interest, can also have practical applications

Implemented in the theory-independent bidirectional type-checker BiTTs

Many theories supported: flavours of MLTT, OTT, HOL (see the implementation)

Compared with other theory-independent type-checkers (Dedukti, Andromeda)
non-annotated syntax should allow for better performances

5



BiTTs: A theory-independent bidirectional type-checker
Our framework not only of theoretic interest, can also have practical applications

Implemented in the theory-independent bidirectional type-checker BiTTs

Many theories supported: flavours of MLTT, OTT, HOL (see the implementation)

Compared with other theory-independent type-checkers (Dedukti, Andromeda)
non-annotated syntax should allow for better performances

5



BiTTs: A theory-independent bidirectional type-checker
Our framework not only of theoretic interest, can also have practical applications

Implemented in the theory-independent bidirectional type-checker BiTTs

Many theories supported: flavours of MLTT, OTT, HOL (see the implementation)

Compared with other theory-independent type-checkers (Dedukti, Andromeda)
non-annotated syntax should allow for better performances

5



BiTTs: A theory-independent bidirectional type-checker
Our framework not only of theoretic interest, can also have practical applications

Implemented in the theory-independent bidirectional type-checker BiTTs

Many theories supported: flavours of MLTT, OTT, HOL (see the implementation)

Compared with other theory-independent type-checkers (Dedukti, Andromeda)
non-annotated syntax should allow for better performances 5
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The theories
A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

Sort rules A sort1 is a term𝑇 that can appear in the right of typing judgment 𝑡 : 𝑇

Used to represent the judgment forms of the theory (as in GATs, SOGATs, . . . )

Example: In MLTT, 2 judgment forms: □ type and □ : 𝐴 for a type 𝐴.

Ty sort

A : Ty

Tm(A) sort

Formally, of the form 𝑐 (Θ) sort, withΘmetavariable context representing premises.

Example in formal notation: Ty(·) sort and Tm(A : Ty) sort

1

I avoid calling them "types" to prevent a name clash with the types of the object theories
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The theories
Constructor rules In bidirectional typing, constructors support type-checking, so
missing annotations recovered from the sort given as input.

Two groups of premises: Θ1 erased and Θ2 kept in the syntax.

Sort of the rule should be a linear pattern containing metavariables of Θ1.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty

Π(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
𝑥 : Tm(A) ⊢ t : Tm(B{𝑥})

λ(𝑥 .t{𝑥}) : Tm(Π(A, 𝑥 .B{𝑥}))

Formally, constructor rules of the form 𝑐 (Θ1;Θ2) : 𝑈 P, with𝑈 P pattern on Θ1

Example in formal notation: Π(·; A : Ty, B{𝑥 : Tm(A)} : Ty) : Ty and
λ(A : Ty, B{𝑥 : Tm(A)} : Ty; t{𝑥 : Tm(A)} : Tm(B{𝑥})) : Tm(Π(A, 𝑥 .B{𝑥})).
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The theories
Destructor rules In bidirectional typing, destructors support type-inference, so
missing arguments are recovered by inferring a principal argument.

Two groups of premises: Θ1 erased and Θ2 kept in the syntax.

And a principal argument x : 𝑇 P, with 𝑇 a pattern on Θ1.

A : Ty 𝑥 : Tm(A) ⊢ B : Ty t : Tm(Π(A, 𝑥 .B{𝑥})) u : Tm(A)

@(t, u) : Tm(B{t})

Formally, of the form 𝑑 (Θ1; x : 𝑇 P; Θ2) : 𝑈 , with 𝑇 a pattern on Θ1
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The theories
Rewrite rules Define the definitional equality (aka conversion) ≡ of the theory.

@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}

In general, of the form 𝑑 (𝑐 (tP1 ), tP2 ) ↦−→ 𝑟 with (metas(tP1 ) ∩metas(tP2 ) = ∅).

Condition: no two left-hand sides unify.

Therefore, rewrite systems are orthogonal, hence confluent by construction!

Full example Theory T_Π.

Ty(·) sort Tm(A : Ty) sort Π(·; A : Ty, B{𝑥 : Tm(A)} : Ty) : Ty
λ(A : Ty, B{𝑥 : Tm(A)} : Ty; t{𝑥 : Tm(A)} : Tm(B{𝑥})) : Tm(Π(A, 𝑥 .B{𝑥}))
@(A : Ty, B{𝑥 : Tm(A)} : Ty; t : Tm(Π(A, 𝑥 .B{𝑥})); u : Tm(A)) : Tm(B{u})
@(λ(𝑥 .t{𝑥}), u) ↦−→ t{u}
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Declarative type system

Each theory T defines a declarative type system, with main judgment Θ; Γ ⊢ 𝑡 : 𝑇

Main typing rules instantiate the schematic rules of T:

(for @(A : Ty, B{𝑥 : Tm(A)} : Ty; t : Tm(Π(A, 𝑥 .B{𝑥})); u : Tm(A)) : Tm(B{u}) ∈ T_Π)

Reading bottom-up, requires guessing 𝐴 and 𝐵

Properties of the declarative system Weakening, substitution property, sorts
are well-typed, subject reduction, etc (see the paper)
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Bidirectional typing system



Matching modulo rewriting
In bidirectional typing, we need matching modulo to recover missing arguments.

Γ ⊢ 𝑡 ⇒ 𝑈 ...

Γ ⊢ @(𝑡,𝑢) ⇒

If @(𝑡,𝑢) is well-typed (in the declarative system), for some 𝐴, 𝐵 we have

𝑈 ≡ Tm(Π(A, 𝑥 .B{𝑥})) [𝐴/A, 𝑥 .𝐵/B]

but how to recover 𝐴 and 𝐵 from𝑈 ?

SolutionWe define an algorithmic2 matching judgment 𝑇 P ≺ 𝑈 { v

We have 𝑇 P [v] ≡ 𝑈 iff 𝑇 P ≺ 𝑈 { v′ for some v′ ≡ v

2

Decidable when𝑈 is normalizing
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Bidirectional syntax
Not all unannotated terms can be algorithmically typed

?

Γ ⊢ λ(𝑥 .𝑡) ⇒ ?
...

Γ ⊢ @(λ(𝑥 .𝑡), 𝑢) ⇒ ?

Bidirectional system defined over inferrable and checkable terms

Tmi ∋ 𝑡 i, 𝑢 i ::= 𝑥 | 𝑑 (𝑡 i, tc) | 𝑡 c :: 𝑇 c

Tmc ∋ 𝑡 c, 𝑢c ::= 𝑐 (tc) | 𝑡 i

MSubc ∋ tc,uc ::= 𝜖 | tc, ®𝑥 .𝑡 c

When destructormeets a constructor, we need an ascription, in the style ofMcBride:

@(λ(𝑥 .𝑡 c) :: 𝑇 c, 𝑢c)
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Bidirectional type system

Each T defines a bidirectional system. Main judgments: Γ ⊢ 𝑡 c ⇐ 𝑇 and Γ ⊢ 𝑡 i ⇒ 𝑇

The main typing rules instantiate the schematic rules of T: Reading bottom-up, no
more need to guess 𝐴 and 𝐵!
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Dest
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Correctness with respect to declarative typing

Suppose underlying theory T is valid.

Soundness If Γ ⊢ and Γ ⊢ 𝑡 i ⇒ 𝑇 then Γ ⊢ ⌜𝑡 i⌝ : 𝑇 .
If Γ ⊢ 𝑇 sort and Γ ⊢ 𝑡 c ⇐ 𝑇 then Γ ⊢ ⌜𝑡 c⌝ : 𝑇 .

Annotability If Γ ⊢ 𝑡 : 𝑇 then for some 𝑢c with ⌜𝑢c⌝ = 𝑡 we have Γ ⊢ 𝑢c ⇐ 𝑇

Decidability If T normalizing, then inference is decidable for inferable terms, and
checking is decidable for checkable terms.
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More examples



Dependent sums

Extends T_Π with

A : Ty 𝑥 : Tm(A) ⊢ B : Ty

Σ(A, 𝑥 .B{𝑥}) : Ty

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t : Tm(A) u : Tm(B{t})

pair(t, u) : Tm(Σ(A, 𝑥 .B{𝑥}))

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t : Tm(Σ(A, 𝑥 .B{𝑥}))

proj1(t) : Tm(A)

A : Ty 𝑥 : Tm(A) ⊢ B : Ty
t : Tm(Σ(A, 𝑥 .B{𝑥}))

proj2(t) : Tm(B{proj1(t)})

proj1(pair(t, u)) ↦−→ t proj2(pair(t, u)) ↦−→ u
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Lists
Extends T_Π with

A : Ty

List(A) : Ty

A : Ty

nil : Tm(List(A))

A : Ty x : Tm(A)
l : Tm(List(A))

cons(x, l) : Tm(List(A))

A : Ty l : Tm(List(A)) 𝑥 : Tm(List(A)) ⊢ P : Ty pnil : Tm(P{nil})
𝑥 : Tm(A), 𝑦 : Tm(List(A)), 𝑧 : Tm(P{𝑦}) ⊢ pcons : Tm(P{cons(𝑥,𝑦)})

ListRec(l, 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧.pcons{𝑥,𝑦, 𝑧}) : Tm(P{l})

ListRec(nil, 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧.pcons{𝑥,𝑦, 𝑧}) ↦−→ pnil

ListRec(cons(x, l), 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧.pcons{𝑥,𝑦, 𝑧}) ↦−→
pcons{x, l, ListRec(l;𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧.pcons{𝑥,𝑦, 𝑧})}
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Equality

Extends T_Π with
A : Ty a : Tm(A) b : Tm(A)

Eq(A, a, b) : Ty

A : Ty a : Tm(A)

b ↦→ a : Tm(A)

refl : Tm(Eq(A, a, a))

A : Ty a : Tm(A) b : Tm(A) t : Eq(A, a, b)
𝑥 : Tm(A), 𝑦 : Tm(Eq(A, a, 𝑥)) ⊢ P : Ty p : Tm(P{a, refl})

J(t, 𝑥𝑦.P{𝑥,𝑦}, p) : Tm(P{b, t})

J(refl, 𝑥𝑦.P{𝑥,𝑦}, p) ↦−→ p

Definition of constructor rules needs to be modified to account for indexed types
(see the paper)
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Vectors
Extends T_Π with

A : Ty n : Tm(Nat)

Vec(A, n) : Ty

A : Ty
n ↦→ 0 : Tm(Nat)

nil : Tm(Vec(A, n))

A : Ty m : Tm(Nat) x : Tm(A)
l : Tm(Vec(A, m)) n ↦→ S(m) : Tm(Nat)

cons(m, x, l) : Tm(Vec(A, n))

A : Ty n : Tm(Nat) l : Tm(Vec(A, n))
𝑥 : Tm(Nat), 𝑦 : Tm(Vec(A, 𝑥)) ⊢ P : Ty pnil : Tm(P{0, nil})

𝑥 : Tm(Nat), 𝑦 : Tm(A), 𝑧 : Tm(Vec(A, 𝑥)),𝑤 : Tm(P{𝑥, 𝑧}) ⊢ pcons : Tm(P{S(𝑥), cons(𝑥,𝑦, 𝑧)})

VecRec(l, 𝑥𝑦.P{𝑥,𝑦}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) : Tm(P{n, l})

VecRec(nil, 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) ↦−→ pnil

VecRec(cons(n, x, l), 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤}) ↦−→
pcons{n, x, l,VecRec(l, 𝑥 .P{𝑥}, pnil, 𝑥𝑦𝑧𝑤.pcons{𝑥,𝑦, 𝑧,𝑤})}
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Other examples

In the implementation, you can also find:

• Higher-order logic
• Tarksi-style universes, with cumulativity (lifts ↑)
• (Weak) Coquand-style universes, with cumulativity and
universe polymorphism

• Flavous of Observational Type Theory

19
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Conclusion
We have given a generic account of bidirectional typing for a class of type theories

Bidirectional system implemented in a prototype, available at

https://github.com/thiagofelicissimo/BiTTs

Future work

1. Test implementation with real proof libraries, compare with Dedukti
2. Type-directed equalities ([-rules, proof irrelevance), generically?

Alternatively, treat conversion with a black-box approach
3. More abstract declarative type system (fully-annotated syntax, typed

equality, fully-quotiented terms)?
Generic bidirectional elaboration for a class of SOGATs?
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Thank you for your attention!
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