1 Issue Introduction

This document aims to investigate a “bug” in Weaver Metafont. Basically we
have the piece of code:

(4, 3) .. (2, 3) .. {-2, -1}(3, 3)
If we run Knuth’s METAFONT, then this is evaluated as:

(4, 3)

. controls (11.22821, -0.42822) and (-5.22821, -0.42822)
(2, 3

. controls (2.60104, 3.28506) and (3.59143, 3.29572)
{-2, -1}(3, 3)

But when running Weaver Metafont, the result is:

4, 3)

. controls (16.487888, -2.922737) and (-10.487888, -2.922737)
(2, 3

. controls (2.601037, 3.285059) and (3.591435 3.295718)
{-2, -1}(3, 3

While both produce very similar results in the third and fouth pair of control
points, the first and second pair are clearly very different.
If we plot both results together, we get:

Weaver Metafont draw a path below the baseline, but Knuth’s METAFONT
draw the path above the baseline.

Our objective here is try to discover what should be the correct value and
if possible, why both versions do not agree with the result. For this, we will
interpret the path code manually and step-to-step following the METAFONT
Book instruction.

First the code must be placed in the following format (METAFONT Book,
pag 131):



zo{wo} .. tensionag and B1 .. {w1}z1{w1} .. tensiona; and Bz .. {wz}z2
(etc.) zn—1{wn_1} .. tensiona,_1 and G, .. {w, }z,.

Now, following from METAFONT Book pag 130:

g% Special abbreviations are also allowed, so that the long forms of basic path

joins can usually be avoided: ‘..’ by itself stands for ‘.. tensionlandl ..,

H

,and ‘.. controlsu ..” stands for

while ‘.. tension a . .” stands for ‘.. tensionewand a ..
‘.. controlsuandwu ..".

This paragraph tell us that the original code:

(4, 3) .. (2, 3) .. {-2, -13(3, 3
Is interpreted as:

(4, 3) .. tension 1 and 1 .. (2, 3) .. tension 1 and 1 .. {-2, -1}(3, 3)
Therefore, we have:

z0 .. tension a0 and bl .. zl .. tension al and b2 .. {w2}z2

What we are missing is the direction specifiers w0 and wi.
How should we fill the wO direction specifier is written in METAFONT Book
pag 130:

@ Now let’s consider the rules by which empty direction specifiers can inherit

specifications from their environment. An empty direction specifier at the
beginning or end of a path, or just next to the ‘&’ operator, is effectively replaced by
‘{eurl 1}’. This rule should be interpreted properly with respect to cyclic paths, which
have no beginning or end; for example, ‘zy .. z1& 2z, .. z3 .. cycle’ is equivalent to
‘zo .. z1{curl 1}&{curl 1}z .. 2z .. cycle'.

Therefore, our path is:

(4, 3){curl 1} .. tension 1 and 1 .. (2, 3) .. tension 1 and 1 .. {-2, -1}(3, 3)

Only direction specifiers around point (2, 3) is missing. And for this, META-
FONT Book shows us how to compute it on page 130 to 131:

@@ After the previous three rules have been applied, we might still be left with

cases in which there are points surrounded on both sides by empty direction
specifiers. METAFONT must choose appropriate directions at such points, and it does
so by applying the following algorithm due to John Hobby [Discrete and Computational
Geometry 1 (1986), 123-140]: Given a sequence

zg{do} .. tensionapand 8; .. z .. tension oy and 33 .. 22
{etc.) zn—1 .. tensiona,—1 and By, .. {dn}zn

for which interior directions need to be determined, we will regard the z's as if they
were complex numbers. Let [y = |zx — zx—1| be the distance from z;_; to zx, and let
Y = arg((zi4+1— 2k )/ (zk — zk—1)) be the turning angle at zx. We wish to find direction
vectors wy, Wy, ..., Wy 50 that the given sequence can effectively be replaced by

zo{wo} .. tensionap and By .. {wi}tzi{wr} .. tensiona; and Bz .. {wa}za
{etc.) z,_1{w,_1} .. tensione,_y and 3, .. {w,}z,.

The previous “three rules” mentioned is the rule that we used to place a
curl 1 and two other rules not relevant for our situation.



The paragraph above introduce for us two values: I; and ls:

h=1(23)=(4,3) =[(=2,0)] = V(-2)* =2

l2=1(3,3) = (2,3)| = [(1,0)| =1

It also introduces the value:

o= () =era (~3+05) =7

A funcao arg de um numero negativo sem parte complexa é simplesmente
igual a 7.

More instructions from METAFONT Book, page 131:

Since only the directions of the w’s are significant, not the magnitudes, it suffices to

determine the angles 8, = arg(wy /(2k41 — 2x)). For convenience, we also let ¢ =
arg((z& — zk—1)/wk ), so that

0}; + O,l,, + "'-.J'I’A: = 1. (*)

Therefore, we know that:

e (525) = ()~ ()

01 = arg (z;ilm) =arg ((33)11}—1(23)) = arg(wy)

¢ Z9 — 21 1 2+1, / ( 1)+
= ar = ar = ar — = =1 | = arctan{——
2 g Wa g -2 -9 g 5 9 2 i

As we do not know the values for wy and wi, but only for ws that was
specified directly, we were able to compute only ¢s.

But we know that the
following equation must be true:

b+ o1 +¢1=0
The next equation is given by METAFONT Book:

Hobby's paper introduces the notion of “mock curvature” according to which the fol-
lowing equations should hold at interior points:

Bl (gl (Or—1 + ¢x) — 30x) = il (B, Ok + dir1) — 30). ()

We have a single interior point. For us, the formula is:

BRI (g M (Bo + ¢1) — 3¢1) = o315 (By (61 + ) — 361)



As the tension for us is equal 1, then oy = 1 = a9 = 2 = 1:

171 (60 + 61) — 301) = 15 (01 + ¢2) — 361)
Asli=2and [, = 1:

5 (00 +61) = 361) = (61 + 62) — 30)
Expanding, we have:

1 1 3
SO+ = — g =6 30
500+ 501 — 501 =01+ d2 — 30,

Which is equal:

1
590 —¢1 = ¢ — 20,

Next rule from METAFONT Book:
We also need to consider boundary conditions. If dy is an explicit direction vector wyg
we know flp; otherwise dp is ‘curlg’ and we set up the equation

a%(ﬁ’fl((ﬂg + (.'51) - 30(]) — ’}"gﬁ%(l’.’tn_l(gn + (:I)l) - 3(:51) (***)

Indeed, dj is curl 1. Therefore, 79 = 1. As our tension is 1 for all values,
al = 51 =1:

(B0 + ¢1) — 360 = (Oo + ¢1) — 3¢
Which yields::

0o = ¢1
Recalling, all our formulas are:
1
590 — ¢1 = P2 — 264
0 +¢1+11 =0
bo = ¢1
Yr=m
1
P2 = arctan(fi) + 7

We can remove the unknowns ¢o and 11, as we know their values:
1 1
590 —¢1 = arctan(—i) + 7 —26;

01 +¢1+7=0
0o = ¢1



As 0y = ¢1, we can replace ¢1 by 6p:

1
—0y — 0y = arctan

2

91+90+7T:0

The first formula now can be rewritten:

1
(—5) +7 =26

1 1
—590 = arctcm(—i) + 7 —26;

0, +0+7=0

Finally, from the second formula, we can replace 6; by —0y — 7:

1 1
—590 = arctan(—g) +7—2(—6y —m)

1
—500 = arctan(

1

2)+7r+290+27r

1
7290 = arctan(fi) + 3r

Which reveals the value for 6y:

g2 (1
o = 5arcan 3

6
— =7

5

We know that the negative of this value, minus pi is 6;:

We also know that 6y = ¢q:

2 1
o1 = —5arctan <—2>

6
— =7

5

Which was the last unknown value. We can write again all their values.

Computed by Weaver Metafont
b0 | —Zarctan (—%) — Sx [ -3.5844521407 | -3.584452
01 | Zarctan (—3) + im [ 04428594871 | 0.442859
ZEE: 3.1415926536 | 3.141593
¢1 | —Zarctan (—%) — 8w | -3.5844521407 | -3.584452
g2 | arctan (=) + = 2.6779450446 | 2.677945

And the final rule to finally compute the control points:




@ ‘Whew —these rules have determined the directions at all points. To com-

plete the job of path specification, we need merely explain how to change a
segment like ‘zp{wo} .. tensionaand @ .. {w;}z ' into a segment of the form ‘z ..
controlsuwandv .. z17; i.e., we finally want to know METAFONT’s magic recipe for
choosing the control points v and v. If # = arg(wo/(z1—20)) and ¢ = arg((z1 —20) /w1),
the control points are

u =z +e*(z1 — 2)f(6, ¢)/0, v=2z1—e Pz — 20) [($,0)/8,
where f(#,¢) is another formula due to John Hobby:

2+ /2 (sin@ — 4 sin ¢)(sin ¢ — % sin 6)(cos @ — cos @)

f6.6)= 3(1+ 2(v5—1)cosf+ 1(3 - /5)cosg)

In the first segment, we have: 6y = ¢;. Therefore: (cosby — cospi) = 0.
Computing f(y, ¢1) becomes simpler as we can ignore most of the numerator
from f(0y, ¢1). Therefore, the first control point is:

7—a'r‘ctan( %)7g7r( 2)2
31+ 3(Vh— l)cos(—garctan (-3)-Sm)+ 33— V/5)cos( (—2arctan (—3) — &m))
And the second is:

(4+3i)+

e—i(—%arctan(—%)—%ﬂ)(_2)2
3(1+ %(\/5 —1)cos(—Z2arctan (—3) — &m) + (3 — \/g)cos(—éarctan (-3) - ¢m))

We can write the following part of the computation as k;:

(2+3i)—

6

2 1
ky = cos(—garctan <—§> — gw)

Let’s write as ko the other computation involving arctan(x):

2 1
ko = (—garctan (—§> — gﬂ')

Now our control points can be simplified as:

“m (4430 + et*2(—2)2
30+ 505 - Dk + 36 - VOk)
v = 1) — €_ik2(_2)2
= (2+ 3) 3(1+ (v — ki + 13— VB)k1)
And:
4430 e
B et e
—4e=the
v=(2+3i) —

3+ (B8 - Dk + (3 - 20k
We can compute k1 with arbitrary precision using bc program:

[=p}



k1=c(-0.4*a(-0.5)-1.2%pi)
When aiming for 10 decimal places, we have:

k1 = —0.9035299975

The value ks can be computed with:

pi=3.14159265358979323846264338327950288
k2=(-0.4%a(-0.5)-1.2*(pi))

When aiming with 10 decimal places, we have:

ko = —3.5844521407

Having k; and ks, we can compute ks such that u = kze’*? with:
-4/ (3+(3*sqrt (5)/2-1.5) *k1+(4.5-3*sqrt (5) /2) *k1)
Finally, we have:

u = (4+ 3i) — 13.8212221351¢ >-7814521407

v = (24 3i) + 13.8212221351 ¢ 5844521407

But this gives us values:

u = 16.4878888 — 2.9227371¢

v = —10.4878888 + 8.9227371%

This agrees with Weaver Metafont values. And shows that Knuth’s META-
FONT produces an error of approximately 35% for both u and v.



