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CHAPTER 6 

 

A NOVEL HYBRID NATURE INSPIRED ALGORITHM FOR 

COMPLEX OPTIMIZATION PROBLEMS 

 

It was observed from previous chapter that ABC and FPA is the best performer on majority of 

complex optimization function. However, it suffers from slow convergence rate and exploration 

capability. In order to maintain synchronization between exploration and exploitation 

mechanism for achieving global optima, this chapter presents a novel hybrid nature inspired 

algorithm. This algorithm is named ABC_DE_FP which combines evolutionary mechanisms of 

artificial bee colony algorithm, differential evolution and flower pollination algorithm. The 

proposed algorithm is assessed on thirty single objective benchmark functions of CEC2014. 

ABC_DE_FP is validated against state of art ABC variants and experimental results were 

analyzed on the basis of Wilcoxon rank sum test and convergence graphs. Analysis revealed that 

ABC_DE_FP outperform other contemporary existing algorithms on majority of the functions 

and maintains balance between exploration and exploitation.  

 

6.1. INTRODUCTION 

The in-depth fair comparative analysis of five existing contemporary nature inspired algorithms 

made in the previous chapter revealed that artificial bee colony algorithm (ABC) is the best 

algorithm on high dimension complex benchmark functions. Flower pollination algorithm attains 

next position after ABC algorithm. ABC is developed by Karaboga [145] and is an efficient 

nature inspired algorithm. It outperform genetic algorithm (GA), differential evolution (DE), 

particle swarm optimization (PSO) and evolution strategies (ES) on benchmark functions [146].  

Karaboga and Basturk [131] also proved the efficacy of ABC algorithm on various numerical 
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optimization functions against PSO, DE and Evolutionary Algorithm (EA). A survey on 

advances in ABC with its application is presented in [147]. Empirical analysis of five nature 

inspired algorithms on CEC 2014 benchmark functions is illustrated in [148]. It has been 

observed that ABC gives better solution as compared to other algorithms. Scientist and 

researchers are attracted towards ABC due to its excellent performance and simpler 

implementation. It has been applied for optimizing constraint based problems [149], training 

neural network [150], clustering problems [84], leaf-constrained minimum spanning tree [151]. 

ABC algorithm is also employed in enhancement of image contrast [152] and multilevel 

threshold on iris image[153]. Discrete ABC is applied in lot-streaming flow shop scheduling 

problem [39], solving travelling salesman problem [154] and many more.  

In spite of having good efficiency and easier implementation, ABC suffers from few 

drawbacks. As ABC algorithm is meta-heuristic and stochastic in nature, it takes long time to get 

best results. Hence, convergence speed of ABC needs improvement. The algorithm should be 

restricted from getting trapped in local optimal solutions. Regarding exploration and 

exploitation, ABC is inferior at exploitation due to its update equation for searching new solution 

[86]. Exploration, also termed as diversification, is a technique to discover promising solution on 

wide search space to find global optima. Exploitation, also termed as intensification, is a 

technique to find promising solution in neighborhood of existing solution where global optima 

may occur. These two techniques contradict each other when put into practice [88]. Hence, a 

good optimization algorithm maintains balance between these two techniques. This encouraged 

the researchers to develop modified versions of artificial bee colony algorithm. The modified 

versions are developed by researchers by either tuning or adding some parameters in algorithm 

or by hybridizing some other algorithm or concepts in different phases of existing ABC 

algorithm. The aim for all algorithms is same i.e. to improve solution quality or to accelerate 

execution or both. Zhu and Kwong [86] introduced a new version of ABC algorithm called 

guided ABC algorithm (GABC) by modifying the update equation of solution. The modified 

equation for finding new solution was formed by integrating global best solution in existing 

equation. Akay and Karaboga [81] presented a modification in typical ABC algorithm and tested 

it against real parameter optimization problems.  The changes in update equation of original 
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ABC algorithm are made by adding new parameters. The new parameters include modification 

rate (for regulating the frequency of parameter change) and scaling factor (for discovering value 

of parameter change in update equation). Hati et al. [79] proposed a new version of ABC 

algorithm by applying mutation strategy of differential evolution (DE) in employed and onlooker 

bee phase and polynomial mutation in scout bee phase. The new version of ABC algorithm is 

examined against real parameter optimization problems. Inspired by GABC, Xiang [77] 

developed a hybrid approach of modified ABC and modified DE algorithm in order to get better 

solution and convergence speed. Additionally, a new population varying scheme has been 

introduced to sustain balance among exploration and exploitation. The hybrid algorithm is 

compared against original ABC, DE and few DE variants on 20 benchmark functions.  

A novel approach of introducing simulated annealing (SA) in ABC algorithm (ABC_SN) is 

given by Chen et al. [82]. In order to improve exploitation technique of ABC algorithm, a local 

search algorithm called simulated annealing is incorporated into employed bee phase. The new 

algorithm is evaluated against GABC and ABC on six numerical optimization functions. 

Yurtkuran and Emel [75] presented an adaptive version of ABC algorithm (AABC) by 

introducing various search strategies in different phases of algorithm for enhancing exploration 

and exploitation capabilities. Probabilistic selection is applied for selecting a search rule 

(technique), and further the rule is updated by applying roulette wheel technique based on 

previous solution. AABC is scrutinized on few well known real parameter numerical 

optimization functions against various ABC variants. An ABC algorithm with multiple search 

approaches is introduced by Gao et al. [76]. Adaptive selection method is used for choosing a 

particular search strategy. In order to boost exploitation ability of an algorithm, Gaussian 

distribution is applied. The proposed algorithm depicted better performance against various ABC 

variants and selected state-of-art algorithms over 22 numerical functions of optimization. Shan et 

al. [155] offered a new hybrid approach of ABC algorithm composed of Lévy  flight distribution 

in standard ABC algorithm. To prove the efficacy of new algorithm, experiments were carried 

out on IEEE Congress on Evolutionary Computation 2013 benchmark functions and compared 

against original ABC, PSO and DE algorithms.  
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Flower pollination algorithm (FPA) is a global optimization population based algorithm 

developed by Xin-She Yang [47] in 2012. FPA has recently been used in some applications and 

few variants have been proposed by researchers. FPA is used to solve multi-objective 

optimization problems [113]. It has been also successfully applied in optimizing disc brake 

design problem [113]. Nigdeli et al. [156] also used FPA for designing structural engineering 

problems.  A review on FPA along with its application in linear as well as non linear applications 

is presented by Chiroma et al. [105]. It has been also used in optimizing various clustering 

datasets when combined with K-means clustering algorithm [115] and optimal reactive power 

dispatch problem [157]. Agarwal and Mehta [158] introduced an enhanced version of flower 

pollination algorithm and tested over clustering datasets of different domains. The algorithm 

outperformed in terms of solution quality and convergence speed. A hybrid flower pollination 

algorithm is developed to handle ill conditioned systems of linear and non linear equations [112]. 

Hezam et al. [73] introduced a hybrid algorithm of FPA with tabu search for solving 

unconstrained optimization problems. The analysis of results revealed that proposed hybrid 

algorithm gives better solutions and stability on ten benchmark functions. For globally 

optimizing constrained optimization problems, Raouf et al. [110] came up with a hybrid 

approach of FPA and PSO. The algorithm has been examined on seven test problems. 

Although various techniques and number of variants have been proposed, there exists no 

algorithm that finds exact solution to all kinds of optimization problems. Rather there is no such 

algorithm that maintains perfect synchronization between exploration and exploitation. In view 

of obtaining better stability, solution quality and convergence speed, a new hybrid approach of 

ABC algorithm is introduced in this chapter. The hybrid algorithm modifies standard ABC 

algorithm by incorporating flower pollination algorithm in onlooker bee phase and differential 

evolution in employed and onlooker bee phases. The algorithm is tested on simple and complex 

CEC 2014 [137] benchmark functions.  

Subsequent sections are organized as follows: section 6.2 discusses standard optimization 

algorithms. Section 6.3 elaborates proposed algorithm. Experimental setup and results is shown 

in section 6.4. Section 6.5 is dedicated to the analysis of results and section 6.6 concludes the 

chapter. 
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6.2. OVERVIEW OF ABC, FPA AND DE ALGORITHMS 

Description of ABC and FPA is defined in previous chapter of section 5.2.1 and 5.2.5 

respectively. 

 Differential Evolution (DE) is a strong evolutionary algorithm developed by Storn and 

Price [46], [159] in 1997. Yang and Deb [160] improved the search efficiency of DE by 

combining it with two stage eagle strategy. It has been successfully applied in various 

application domains. Coletta et. al. used DE to optimize the combination of classifier and cluster 

ensembles[161]. DE has excellent convergence speed and has also been integrated with various 

algorithms to obtain better results [162], [163]. There are number of schemes developed for 

executing algorithm [46], but DE/rand/1 is the most widely applied scheme and same has been 

used in this work. DE algorithm uses three phases in sequence: mutation, crossover and 

selection. Like other evolutionary algorithm DE also initializes the candidate solution in 

population randomly and then enters into following three phases: 

a. Mutation 

In this phase, mutant vector vi is computed using each target vector xi (candidate solution) as 

shown in Equation 6.1. 

vi = xa + F. (xb − xc)     (6.1) 

Where i=1,2,…FS (FS is the number of food sources), and a, b and c  are randomly chosen 

(integer) index of individuals in the population which are different from each other.  F is scaling 

factor between [0, 2]. 

b. Crossover 

A new vector uij named trial vector is generated from mutant vector 𝑣𝑖𝑗  and target vector 

𝑥𝑖𝑗  as given in Equation 6.2. 

𝑢𝑖𝑗 = {
𝑣𝑖𝑗 ,  𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑟 𝑜𝑟 𝑗 == 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖𝑗 ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6.2) 

Where j=1, 2….D and jrand is index selected randomly from 1 to D in order to ensure that trial 
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vector get at least one parameter from mutant vector. Cr is the crossover probability to regulate 

the parameter of mutant vector in trial vector. 

c. Selection 

 For optimization problem, target vector for next generation is selected by applying 

greedy selection between trial vector and target vector on the basis of fitness value of objective 

function. In case of minimization type of problem, the vector is selected according to the lower 

fitness value of trial vector or target vector of corresponding population index.  

 

6.3.   HYBRID ABC_DE_FP ALGORITHM  

In order to maintain balance between exploration and exploitation in ABC algorithm, a new 

hybrid nature inspired algorithm named ABC_DE_FP is developed. The algorithm amalgamates 

FPA and DE evolutionary operators in ABC algorithm. In ABC_DE_FP, ABC algorithm is the 

base algorithm. Initially scout bees search for random food sources. In employed bee phase, food 

sources are exploited by evolutionary strategies of DE algorithm. While in onlooker bee phase, 

exploration is performed through global pollination of FPA while exploitation is done through 

evolutionary strategies of DE algorithm. The onlooker bees act as pollinators in flower 

pollination and pollination is global in nature as shown in figure 6.1. Food source in artificial bee 

colony algorithm is flower.  Onlooker bee determines the flower with maximum nectar amount. 

Hence objective of hybrid algorithm is same as that of ABC. In literature it is established that 

these algorithms give considerable performance individually. Therefore, it is expected that 

combining two techniques with DE may enhance solution quality and convergence speed for 

achieving best solution as DE helps in escalating the exploitation process of an algorithm.  

 As shown in Figure 6.1, in hybrid ABC algorithm, food sources in the population are 

initialized randomly within the bounds already defined in objective function. In the employed 

bee phase, original ABC uses Equation 6.3 to search for local solution in the neighborhood of 

existing candidate solution.  

Xij(new) =  Xij  + Φij(Xij  − Xkj)     (6.3) 
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Where 𝑋𝑖𝑗 is the ith solution/food source of population at jth index, k is randomly chosen solution 

from present population other than i. Φij is a uniformly distributed random real number in the 

range [-1, 1].  

 
Figure 6.1: Pictorial representation of ABC_DE_FP algorithm 

  

In literature this step of finding new solution cannot assure of achieving better results[82]. 

Hence, it slows down the convergence speed. Moreover, even if a better solution is found then 

algorithm might be caught in local optima. Thus, to overcome the drawbacks of poor solution 

quality and slow execution time, mutation strategy of DE (given in Equation 6.1) is inculcated in 

place of local search strategy (Equation 6.3) of employed and onlooker bee phase as shown in 

Figure 6.1. After finding mutant solution, trial solution is generated using crossover strategy of 

DE (defined in Equation 6.2). The probability of attaining better food source increases by 

applying greedy selection criteria over fitness values of trial and previous solution. This might 

improve the exploitation process (local search) of ABC algorithm as using mutant solution and 

crossover rate may helps to improve execution time of algorithm. Additionally, to maintain 

synchronization between exploration and exploitation, global pollination mechanism of FPA is 

incorporated into onlooker bee phase (shown in Equation 6.4).  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + L (𝑥𝑖
𝑡  −  𝑔∗)     (6.4) 
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Where  𝑥𝑖
𝑡 is ith solution of tth generation, 𝑔∗ is the current best solution at present generation and 

L represents Lévy  flight distribution [47] [138] portraying potency of pollination. Onlooker bee 

phase plays an important role in exploration as well as exploitation in original ABC algorithm. 

The steps of FPA integrated into onlooker bee phase of ABC algorithm is shown in Algorithm 

6.1.  

Algorithm 6.1: Steps of  FPA in ABC_DE_FP 

1. if rand>p 

2.       L is the step size determined by Lévy  distribution 

3.       Perform global pollination (global search) using Equation 6.4 

4.  else 

5.       Perform exploitation (local search) with mutation strategy of DE using Equation 6.1 

6. end if 

 

ABC_DE_FP algorithm is depicted through flowchart shown in Figure 6.2 and Algorithm 6.2. In 

onlooker bee phase, the balance between exploitation (local pollination) and exploration (global 

pollination) is maintained using a switch probability p. Global pollination i.e. exploring global 

optima in FPA is performed by using Lévy distribution (Equation 6.4). This helps in modeling 

the direction of search. Due to switch probability p, either local or global mutant solution is 

obtained. Thereafter, same steps of crossover and greedy selection are applied as defined in 

employed bee phase. For each flower, if no better solution is obtained from employed and 

onlooker bee phase, a counter is incremented for each phase. If the counter reaches a limit, 

algorithm enters into scout bee phase. Scout bee finds the new flowers (solution) randomly using 

Equation 6.5.  

𝑋𝑖𝑗 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑈𝐵𝑗 − 𝐿𝐵𝑗)     (6.5) 

Where i=1… FS and j=1….D, where FS is the number of food sources and D is dimension 

parameter of optimization problem. UB and LB are upper and lower bound already defined for a 

given problem. The cycle of three phases continues unless predefined numbers of fitness 

function evaluations are achieved. Input parameters of algorithm are: maximum fitness function 

evaluations (MaxFES), food source (FS), dimension of FS (D), Limit, switch probability (p), 

crossover rate (Cr) and scale factor (F). 
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Algorithm 6.2: ABC_DE_FP 

1. Initialize the given parameters MaxFes, D, FS, p, F and Cr. 

2. Determine the initial target solution randomly within LB and UB using Equation 6.5. 

3. Compute fitness from initialized food source using Equation 6.5.  

4. For N_iter =1: MaxFES 

5.       For each food source(FS)      

6.             Compute the mutant solution using mutant strategy of DE as given in Equation 6.1.  

7.             Compute the trial solution using crossover strategy of DE using Equation 6.2.  

8.             Determine the fitness of trial solution.  

9.             Apply greedy approach to find best solution using fitness of trial and previous target solution.   

10.             If solution improves, update the population with better food source else increment counter of scout by 1.  

11.       End for loop  

12.       Determine the probability ‘pr’ using fitness value of corresponding FS. 

13.       For each ‘i’ food source(FS)  

14.  if (rand<pr(i))     

15.   if rand<p 

16.                   Apply global pollination using Equation 6.4 

17.            else  

18.                     Apply mutant strategy of DE using Equation 6.1.  

19.   Compute the trail solution using crossover strategy of DE using Equation 6.2  

20.  Determine the fitness of trail solution. 

21.      Apply greedy approach to find best solution using fitness of trail and previous target solution  

22.  if solution improves,  

23.              Update the population with better food source else increment counter of scout by 1.  

24.  End if   

25. End for loop  

26. Memorize the global minima from updated population  

27. If scout counter exceeds limit  

28.       Determine the new solution i.e. explore new food source using Equation 6.5 

29.       Compute the fitness of explored solution  

30. End if 

31.   The algorithm again enters employed bee phase until termination condition is achieved. 

32. End while    
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Figure 6.2: Flowchart of ABC_DE_FP Algorithm 



117 
 

6.4. EXPERIMENTAL STUDY AND RESULTS 

6.4.1. Experimental Setup  

The efficacy of proposed hybrid algorithm is initially tested on simple benchmark 

functions [75] and then on complex and hybrid benchmark functions described by CEC2014 

[137].  All algorithm are implemented in Matlab R2013a version with 64 bit Windows7 

operating system, Intel Core i5 processor with 16.0GB RAM. Algorithms employ certain 

parameters that are used to regulate their behaviors. List of parameter along with the values used 

in implementation are shown in Table 6.1. In ABC algorithm and its variants, the value of limit 

[146] is defined on basis of food source (FS) and dimension (D) given below in Equation 6.6. 

𝐿𝑖𝑚𝑖𝑡 = 𝐹𝑆 ∗ 𝐷     (6.6) 

Population size is taken as recommend in [76], [164]. The value of switch probability p is 

suggested in [78]. Moreover, value of Cr [78] is analyzed over 0.2 to 0.9 and the best value is 

found to be 0.7. Scaling factor F is taken as mutation ratio and is generated randomly. It is 

uniformly distributed array of number between 0.2 and 0.8. ABC algorithm parameter limit are 

recommended in [79]. The best values of alpha, beta and T of simulated annealing are defined in 

[82]. 

 

Table 6.1: Parameter Setting 

Algorithms Parameters Values 

Common Parameter Population Size (n) 40 

FPA and ABC_FP, ABC_DE_FP p 0.7 

ABC_DE, ABC_DE_FP 
Cr 0.7 

Mutation Ratio [0.2,0.8] 

ABC_SN 

Beta  0.9 

Alpha 5E-7 

T 100 

 

Meticulous experiments are performed to evaluate the performance of presented algorithm. The 

efficacy of presented ABC_DE_FP is evaluated with respect to contemporary ABC variants on 

following functions: 
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  Simple benchmark test functions 

  CEC2014 benchmark functions. Further performance is analyzed through: 

o Wilcoxon Rank Sum Test Analysis 

o Convergence Graphs 

 

6.4.2.  Comparison of ABC_DE_FP Algorithm with respect to ABC Variants on Simple 

Test Functions 

 In this experiment presented hybrid algorithm is compared with other ABC variants i.e. 

guided ABC (GABC) [86], improved ABC (IABC) [165] and adaptive ABC (AABC) [75]. The 

formulation of test functions used in this experiment  are shown in Table 6.2 [75].  

 

 

 

Hybrid ABC_DE_FP is executed on test functions (defined in Table 6.2) and compared with 

various ABC variants on same input parameter values given in [75]. Table 6.3 shows the best, 

mean, median, worst and standard deviation of 30 runs on 10 benchmark test functions. 
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Table 6.3: Best, median, worst, mean and standard deviation fitness values of 30 runs at 100 dimensions 

 
Algorithm Best Median Worst Mean S.D. 

F1 ABC 5.51E+01 1.91E+02 1.35E+02 1.26E+02 3.55E+01 

 
GABC 6.17E+01 1.97E+02 1.44E+02 1.35E+02 2.96E+01 

 
IABC 8.06E+01 2.05E+02 1.32E+02 1.32E+02 2.81E+01 

 
AABC 6.22E+01 1.88E+02 1.10E+02 1.15E+02 3.14E+01 

 
ABC_DE_FP 2.33E+01 1.56E+02 2.10E+02 1.55E+02 4.53E+01 

F2 ABC 2.769E−07 1.558E−06 6.007E−07 6.968E−07 3.246E−07 

 
GABC 2.779E−12 7.685E−12 4.268E−12 4.557E−12 1.182E−12 

 
IABC 4.414E−13 9.921E−13 6.173E−13 6.206E−13 1.028E−13 

 
AABC 1.714E−13 2.105E−13 1.892E−13 1.895E−13 9.253E−15 

 
ABC_DE_FP 1.39E-13 1.71E-13 2.21E-13 1.71E-13 1.82E-14 

F3 ABC 1.119E−10 2.30E+00 8.559E−03 3.971E−01 5.807E−01 

 
GABC 4.547E−13 3.201E−10 4.150E−12 2.372E−11 5.972E−11 

 
IABC 4.547E−13 3.411E−12 1.023E−12 1.114E−12 5.861E−13 

 
AABC 3.411E−13 7.958E−13 5.684E−13 5.343E−13 1.162E−13 

 
ABC_DE_FP 6.23E-14 4.55E-13 1.11E-12 4.47E-13 2.49E-13 

F4 ABC 1.721E−14 4.139E−11 2.275E−13 3.540E−12 9.267E−12 

 
GABC 1.443E−15 2.136E−08 2.998E−15 7.734E−10 3.898E−09 

 
IABC 1.887E−15 4.451E−07 3.442E−15 1.484E−08 8.127E−08 

 
AABC 9.992E−16 1.991E−10 2.276E−15 6.674E−12 3.635E−11 

 
ABC_DE_FP 1.89E-15 6.66E-10 2.65E-06 2.16E-07 6.17E-07 

F5 ABC 1.033E−04 2.421E−04 1.677E−04 1.638E−04 4.978E−05 

 
GABC 1.137E−13 2.274E−13 1.847E−13 1.791E−13 5.022E−14 

 
IABC 8.527E−14 2.274E−13 1.421E−13 1.478E−13 4.403E−14 

 
AABC 5.684E−14 1.137E−13 1.137E−13 9.095E−14 2.935E−14 

 
ABC_DE_FP 1.99E-14 1.14E-13 1.71E-13 9.31E-14 3.72E-14 

F6 ABC −4.118E+04 −4.005E+04 −4.059E+04 −4.059E+04 2.61E+05 

 
GABC −4.190E+04 −4.115E+04 −4.166E+04 −4.163E+04 1.53E+05 

 
IABC −4.190E+04 −4.178E+04 −4.190E+04 −4.188E+04 4.39E+04 

 
AABC −4.190E+04 −4.190E+04 −4.190E+04 −4.190E+04 6.021E−06 

 
ABC_DE_FP -4.19E+04 -4.19E+04 -4.17E+04 -4.19E+04 6.86E+01 

F7 ABC −4.500E+02 −4.500E+02 −4.500E+02 −4.500E+02 1.812E−13 

 
GABC −4.500E+02 −4.500E+02 −4.500E+02 −4.500E+02 8.527E−14 

 
IABC −4.500E+02 −4.500E+02 −4.500E+02 −4.500E+02 4.903E−14 

 
AABC −4.500E+02 −4.500E+02 −4.500E+02 −4.500E+02 2.820E−02 

 
ABC_DE_FP -4.50E+02 -4.50E+02 -4.50E+02 -4.50E+02 2.31E-13 

F8 ABC 1.24E+05 1.69E+05 1.84E+05 1.61E+05 2.43E+04 

 
GABC 1.47E+05 1.54E+05 1.78E+05 1.60E+05 1.15E+04 

 
IABC 1.88E+05 1.90E+05 2.04E+05 1.95E+05 7.92E+03 

 
AABC 1.33E+05 1.46E+05 1.78E+05 1.52E+05 1.88E+04 

 
ABC_DE_FP 1.13E+05 1.47E+05 1.64E+05 1.44E+05 1.38E+04 
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F9 ABC 3.94E+02 3.95E+02 3.97E+02 3.95E+02 1.39E+00 

 
GABC 2.92E+02 3.97E+02 4.87E+02 4.14E+02 4.12E+01 

 
IABC 3.93E+02 3.98E+02 4.61E+02 4.10E+02 2.86E+01 

 
AABC 3.90E+02 3.92E+02 4.00E+02 3.03E+02 3.88E+00 

 
ABC_DE_FP 3.92E+02 4.38E+02 5.31E+02 4.38E+02 3.35E+01 

F10 ABC −3.290E+02 −3.280E+02 −3.270E+02 −3.279E+02 7.213E−01 

 
GABC −3.300E+02 −3.300E+02 −3.300E+02 −3.300E+02 7.204E−07 

 
IABC −3.300E+02 −3.300E+02 −3.300E+02 −3.300E+02 5.684E−14 

 
AABC −3.300E+02 −3.300E+02 −3.300E+02 −3.300E+02 0.00E+00 

 
ABC_DE_FP -3.30E+02 -3.30E+02 -3.30E+02 -3.30E+02 0.00E+00 

 

 Bold values represent the minimum (best) value attained by respective algorithm. It can 

be observed from Table 6.3 that ABC_DE_FP performs better than ABC, GABC, IABC and 

AABC algorithms for majority of the test functions. Since AABC perform better than ABC, 

GABC and IABC, so comparative analysis of presented algorithm is made against AABC. For 

F1 (Rosenbrock) function, best value of ABC_DE_FP improves by 63% though mean value lags 

by 35% approximately. The ratio of improvement is relatively high for ABC_DE_FP. For F2 and 

F3 functions i.e. Ackley and Rastrigin functions, improvement in presented algorithm is by 

18.6% and 82% respectively at best value. While at mean value enhancement is by 10% and 

16.3% with respect to AABC. On F4 (Griewank) function ABC_DE_FP does not give 

considerable results.   

 At F5 function i.e. Weierstarss function, ABC_DE_FP improves by 65% on best value 

although it lags by 2.3% only on mean value. For F6 (Schwefel 2.26), F7 (Shifted Sphere) and 

F10 (Shifted Rastrigin), ABC_DE_FP depicts comparable performance to AABC. For F8 

(Shifted Schwefel 1.2), mean value improves by 5% and its best value promotes by 15%. 

However, on function F9 (Shifted Rosenbrock), the best value is provided by GABC while 

ABC_DE_FP and AABC exhibit similar performance. On F10 function, algorithms give same 

fitness value.  

Overall, presented algorithm ABC_DE_FP depicts either better or comparable 

performance with respect to best existing variant of ABC in most of the benchmark test 

problems. Since these optimization functions were simple; next experiment evaluates the 

efficiency of ABC_DE_FP on complex problems. 
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6.4.3. Performance Evaluation of ABC_DE_FP Algorithm on CEC2014 Benchmark 

Functions 

In order to assess the efficacy of presented hybrid algorithm over complex optimization 

problems, it is compared with original artificial bee colony algorithm (ABC), flower pollination 

algorithm (FPA), hybrid of ABC and FPA (ABC_FP), ABC and DE (ABC_DE) [77] and ABC 

and simulated annealing (ABC_SN) [82]. ABC_FP algorithm has been developed by us to make 

comparison. The proposed hybrid ABC algorithm and its variants are evaluated on the 30 single 

objective complex optimization functions obtained from problem definition of CEC 2014 [137]. 

Maximum function evaluations (MaxFes) are treated as terminating criteria and taken as 

10000*D, where D is dimension of problem. Each algorithm is executed 30 times independently 

with 10,000*D fitness function evaluations in each run. Results are recorded in the form of 

minimum fitness value and thereafter error is computed from bias of each function [137]. 

Performance is assessed on the basis of best, worst, mean, median and standard deviation of 30 

error values (runs) on each function. To statistically determine the difference in algorithms, 

wilcoxon rank sum test analysis is performed. Computational complexity of algorithms is 

analyzed through convergence graphs. The function error values at each run are recorded after 

(0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)*MaxFes. At each iteration 

point, mean of 30 run is calculated for every function.  

The mean of error values for ABC_DE_FP, ABC, FPA, ABC_FP, ABC_DE and 

ABC_SN algorithms on 30 independent runs at 10, 30, 50 and 100 dimensions are shown in 

Table 6.4, Table 6.5, Table 6.6 and Table 6.7 respectively.  With respect to nature inspired 

algorithms on benchmark functions, order of magnitude signifies the accuracy of algorithm. Data 

of tables are shown with two decimal places. Acceptable tolerance of optimal value of zero is 

1.00E-02.  Also, best mean error values are highlighted for each function. 
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Table 6.4: Mean error values of algorithms over 30 runs for 10D 

 

D=10 

Function No. ABC_DE_FP ABC FPA ABC_FP ABC_DE ABC_SN 

1 2.04E+05 2.97E+05 0.00E+00 2.88E+05 4.21E+05 1.03E+06 

2 1.13E+02 1.35E+02 0.00E+00 3.32E+01 3.86E+02 3.99E+05 

3 2.01E+02 3.81E+02 0.00E+00 2.47E+02 5.30E+02 2.21E+03 

4 1.22E+00 2.50E-01 1.18E+01 8.00E-02 4.28E+00 7.95E+00 

5 1.62E+01 1.88E+01 2.02E+01 1.66E+01 1.93E+01 2.02E+01 

6 2.10E+00 2.15E+00 2.90E+00 2.32E+00 2.38E+00 1.28E+00 

7 0.00E+00 0.00E+00 7.00E-02 1.00E-02 2.00E-02 7.00E-02 

8 0.00E+00 0.00E+00 9.16E+00 0.00E+00 5.00E-02 3.10E-01 

9 4.19E+00 8.21E+00 1.31E+01 7.62E+00 7.00E+00 1.29E+01 

10 8.00E-02 1.10E-01 2.38E+02 1.00E-01 1.55E+00 1.97E+01 

11 1.58E+02 2.54E+02 6.68E+02 2.40E+02 4.27E+02 5.47E+02 

12 1.40E-01 2.60E-01 3.90E-01 1.40E-01 4.60E-01 5.80E-01 

13 1.20E-01 1.30E-01 2.50E-01 1.20E-01 1.60E-01 1.90E-01 

14 2.10E-01 1.50E-01 1.80E-01 1.50E-01 2.30E-01 1.60E-01 

15 7.20E-01 9.40E-01 1.22E+00 8.30E-01 1.25E+00 2.34E+00 

16 2.12E+00 2.23E+00 2.90E+00 2.14E+00 2.54E+00 3.17E+00 

17 1.18E+05 2.38E+05 7.02E+01 2.06E+05 1.62E+05 7.66E+04 

18 9.90E+02 8.41E+02 5.35E+00 1.81E+02 4.70E+03 9.58E+02 

19 3.10E-01 4.50E-01 1.90E+00 5.30E-01 4.20E-01 1.28E+00 

20 2.03E+02 4.06E+02 6.95E+00 7.82E+01 1.40E+03 2.76E+02 

21 4.65E+03 1.84E+04 1.10E+01 8.32E+03 2.00E+04 1.33E+04 

22 5.20E-01 2.12E+00 2.41E+01 1.54E+00 1.42E+00 7.07E+00 

23 3.29E+02 2.58E+02 3.29E+02 2.52E+02 3.29E+02 3.19E+02 

24 1.14E+02 1.20E+02 1.19E+02 1.21E+02 1.17E+02 1.23E+02 

25 1.29E+02 1.40E+02 1.30E+02 1.44E+02 1.45E+02 1.70E+02 

26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 

27 1.85E+02 3.64E+01 8.12E+01 8.31E+01 6.32E+01 2.90E+02 

28 3.67E+02 3.67E+02 4.15E+02 3.77E+02 3.70E+02 3.75E+02 

29 3.25E+02 3.24E+02 2.47E+02 2.56E+02 6.88E+02 3.49E+02 

30 5.99E+02 6.57E+02 5.27E+02 5.99E+02 7.31E+02 6.59E+02 
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Table 6.5: Mean error values of algorithms over 30 runs for 30D 

 

D=30 

Function No. ABC_DE_FP ABC FPA ABC_FP ABC_DE ABC_SN 

1 9.25E+06 1.13E+07 2.95E+05 2.91E+06 1.83E+07 3.23E+07 

2 1.63E+03 4.31E+02 2.49E+05 1.11E+02 3.56E+04 5.11E+07 

3 6.89E+02 9.29E+02 5.18E+02 6.33E+02 2.66E+03 4.60E+03 

4 4.86E+01 2.37E+01 9.06E+01 3.46E+01 6.39E+01 1.41E+02 

5 2.00E+01 2.04E+01 2.08E+01 2.00E+01 2.04E+01 2.06E+01 

6 1.46E+01 1.53E+01 2.11E+01 1.53E+01 1.46E+01 1.47E+01 

7 0.00E+00 0.00E+00 1.90E-01 0.00E+00 2.00E-02 6.90E-01 

8 0.00E+00 0.00E+00 6.93E+01 0.00E+00 1.30E-01 2.30E+00 

9 4.58E+01 8.55E+01 1.13E+02 9.48E+01 4.67E+01 9.87E+01 

10 4.50E-01 1.73E+00 2.29E+03 4.70E-01 3.65E+00 4.16E+01 

11 1.83E+03 2.22E+03 3.60E+03 2.02E+03 2.47E+03 3.93E+03 

12 1.50E-01 4.10E-01 1.08E+00 1.50E-01 5.10E-01 1.01E+00 

13 2.20E-01 2.40E-01 5.30E-01 2.30E-01 2.80E-01 4.00E-01 

14 2.60E-01 2.00E-01 2.70E-01 1.90E-01 2.70E-01 1.90E-01 

15 5.12E+00 1.08E+01 3.30E+01 7.71E+00 7.62E+00 1.98E+01 

16 9.54E+00 1.06E+01 1.22E+01 9.77E+00 1.02E+01 1.19E+01 

17 3.87E+06 3.26E+06 1.30E+03 1.61E+06 4.40E+06 3.45E+06 

18 1.66E+03 2.29E+03 2.93E+02 3.17E+02 3.23E+03 1.17E+05 

19 7.03E+00 7.13E+00 1.13E+01 7.04E+00 8.00E+00 1.12E+01 

20 7.58E+03 5.73E+03 2.13E+02 8.57E+03 7.87E+03 1.27E+04 

21 3.59E+05 4.52E+05 6.74E+02 2.03E+05 7.72E+05 1.01E+06 

22 2.64E+02 1.06E+02 2.39E+02 2.99E+02 4.02E+02 3.12E+02 

23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 3.16E+02 3.17E+02 

24 2.23E+02 2.27E+02 2.34E+02 2.28E+02 2.27E+02 2.26E+02 

25 2.04E+02 2.08E+02 2.05E+02 2.08E+02 2.10E+02 2.08E+02 

26 1.04E+02 1.00E+02 1.04E+02 1.00E+02 1.01E+02 1.00E+02 

27 4.12E+02 4.10E+02 4.96E+02 4.06E+02 4.24E+02 5.96E+02 

28 8.56E+02 9.67E+02 1.33E+03 1.02E+03 8.40E+02 9.30E+02 

29 1.41E+03 1.11E+03 7.77E+06 9.30E+02 1.80E+03 2.28E+03 

30 3.40E+03 4.08E+03 3.98E+03 2.10E+03 5.90E+03 1.88E+04 
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Table 6.6: Mean error values of algorithms over 30 runs for 50D 

 

D=50 

Func. ABC_DE_FP ABC FPA ABC_FP ABC_DE ABC_SN 

1 1.27E+07 1.94E+07 2.66E+06 6.44E+06 2.53E+07 4.84E+07 

2 2.61E+03 1.35E+03 6.48E+06 6.09E+02 8.09E+03 2.69E+08 

3 7.90E+03 8.50E+03 9.48E+03 8.60E+03 1.00E+04 2.18E+04 

4 3.83E+01 4.84E+01 1.78E+02 6.97E+01 8.21E+01 1.94E+02 

5 2.00E+01 2.05E+01 2.11E+01 2.00E+01 2.05E+01 2.08E+01 

6 2.53E+01 3.34E+01 4.47E+01 3.18E+01 3.01E+01 2.68E+01 

7 0.00E+00 0.00E+00 9.40E-01 0.00E+00 7.00E-02 1.53E+00 

8 0.00E+00 0.00E+00 1.52E+02 0.00E+00 6.60E-01 5.37E+00 

9 1.02E+02 2.02E+02 2.72E+02 2.10E+02 1.03E+02 2.30E+02 

10 8.90E-01 4.92E+00 4.53E+03 1.25E+00 2.31E+01 1.11E+02 

11 4.02E+03 4.92E+03 6.67E+03 4.54E+03 4.66E+03 7.95E+03 

12 1.20E-01 5.00E-01 1.52E+00 1.40E-01 5.20E-01 1.21E+00 

13 2.90E-01 3.40E-01 6.50E-01 3.20E-01 3.00E-01 4.90E-01 

14 1.80E-01 2.50E-01 3.30E-01 2.40E-01 2.90E-01 2.00E-01 

15 1.22E+01 2.71E+01 1.02E+02 1.86E+01 1.56E+01 5.03E+01 

16 1.75E+01 1.94E+01 2.16E+01 1.82E+01 1.83E+01 2.12E+01 

17 4.61E+06 8.67E+06 3.36E+04 2.35E+06 1.09E+07 8.67E+06 

18 1.43E+03 4.35E+03 1.93E+03 1.44E+03 2.03E+03 9.54E+05 

19 2.29E+01 1.75E+01 4.73E+01 1.77E+01 2.66E+01 4.11E+01 

20 3.40E+04 2.12E+04 1.52E+03 3.38E+04 2.74E+04 4.13E+04 

21 2.47E+06 3.90E+06 9.68E+03 1.66E+06 5.29E+06 5.92E+06 

22 7.45E+02 1.06E+02 8.68E+02 7.80E+02 1.01E+03 9.21E+02 

23 3.44E+02 3.44E+02 3.44E+02 3.44E+02 3.49E+02 3.64E+02 

24 2.55E+02 2.58E+02 2.91E+02 2.58E+02 2.67E+02 2.59E+02 

25 2.11E+02 2.16E+02 2.12E+02 2.14E+02 2.18E+02 2.19E+02 

26 1.00E+02 1.00E+02 1.20E+02 1.00E+02 1.01E+02 1.01E+02 

27 1.12E+03 5.18E+02 1.40E+03 1.06E+03 1.07E+03 1.36E+03 

28 1.20E+03 1.75E+03 2.53E+03 1.97E+03 1.29E+03 1.37E+03 

29 1.50E+03 1.68E+03 9.33E+07 1.57E+03 1.24E+04 1.75E+04 

30 1.13E+04 1.12E+04 2.09E+04 1.01E+04 1.22E+04 1.32E+04 
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Table 6.7: Mean error values of algorithms over 30 runs for 100D 

 

D=100 

Func. ABC_DE_FP ABC FPA ABC_FP ABC_DE ABC_SN 

1 3.03E+07 1.73E+08 4.83E+07 3.04E+07 1.33E+08 7.84E+08 

2 1.94E+04 5.19E+04 3.99E+08 5.44E+04 1.81E+06 1.65E+10 

3 2.41E+04 3.59E+04 2.43E+04 3.54E+04 3.31E+04 3.19E+05 

4 1.63E+02 2.45E+02 4.87E+02 1.64E+02 1.99E+02 1.41E+03 

5 2.00E+01 2.10E+01 2.13E+01 2.00E+01 2.08E+01 2.13E+01 

6 8.37E+01 1.06E+02 1.08E+02 9.09E+01 8.43E+01 7.61E+01 

7 0.00E+00 1.11E+00 3.85E+00 0.00E+00 4.00E-02 6.26E+01 

8 1.58E-1 8.37E+01 4.42E+02 4.90E-01 4.61E+00 7.65E+01 

9 4.04E+02 9.94E+02 6.82E+02 8.06E+02 4.07E+02 8.60E+02 

10 2.49E+00 1.63E+03 1.07E+04 3.00E+00 8.40E+01 2.01E+03 

11 1.13E+04 1.66E+04 1.45E+04 1.31E+04 1.29E+04 2.67E+04 

12 2.90E-01 1.37E+00 2.35E+00 3.00E-01 8.90E-01 3.46E+00 

13 5.10E-01 1.26E+00 6.40E-01 5.20E-01 5.10E-01 1.05E+00 

14 3.50E-01 1.33E+01 3.50E-01 1.64E+00 4.00E-01 6.10E-01 

15 4.36E+01 6.35E+02 4.16E+02 6.35E+01 5.45E+01 1.79E+05 

16 3.49E+01 4.47E+01 4.52E+01 3.52E+01 4.21E+01 4.72E+01 

17 1.27E+05 8.05E+07 4.46E+05 6.52E+06 5.33E+07 1.65E+08 

18 2.30E+03 3.62E+06 3.35E+03 2.36E+03 3.20E+03 1.80E+09 

19 7.53E+01 1.14E+02 1.39E+02 7.57E+01 1.01E+02 1.69E+02 

20 1.50E+04 1.69E+05 2.25E+04 1.50E+05 1.46E+05 3.52E+06 

21 2.66E+05 5.05E+07 2.95E+05 4.30E+06 2.47E+07 1.26E+08 

22 2.00E+03 3.85E+03 2.02E+03 2.49E+03 3.31E+03 5.08E+03 

23 3.48E+02 3.60E+02 3.51E+02 3.49E+02 3.60E+02 6.43E+02 

24 3.54E+02 3.56E+02 4.45E+02 3.60E+02 3.72E+02 3.58E+02 

25 2.41E+02 2.71E+02 2.42E+02 2.47E+02 2.59E+02 3.27E+02 

26 2.02E+02 2.05E+02 1.89E+02 1.97E+02 2.02E+02 1.10E+02 

27 2.36E+03 2.59E+03 3.28E+03 2.16E+03 2.37E+03 3.18E+03 

28 3.08E+03 8.66E+03 6.77E+03 7.26E+03 2.78E+03 3.23E+03 

29 4.35E+03 1.08E+04 4.20E+08 4.41E+03 6.39E+04 3.64E+06 

30 1.41E+04 1.84E+05 2.30E+04 1.56E+04 1.16E+05 7.14E+05 

 

 

It can be observed from Table 6.4 and Table 6.5 that ABC_DE_FP give comparable 

performance to other algorithms on small dimension functions (10 and 30 dimensions). However 

at high dimensions such as 50 dimensions (Table 6.6), ABC_DE_FP gives better performance on 

majority of the functions. At 100 dimensions given in Table 6.7, presented algorithm 
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outperforms all other algorithms. Hence, ABC_DE_FP efficacy enhances and is scalable to 

dimensions. These results are established through statistical analysis and convergence behavior 

of algorithms described in subsequent section. 

6.5. ANALYSIS OF RESULTS 

6.5.1. Wilcoxon Rank Sum Test Analysis 

Mean error value of ABC_DE_FP algorithm is statistically compared with other algorithms 

through Wilcoxon rank sum test analysis. This statistical test analysis determines the significant 

difference in error values of presented versus contemporary algorithms. Wilcoxon rank sum test 

shown in Table 6.8 recapitulate the experimental results of every algorithm on 10, 30, 50 and 

100 dimensions. For 100 dimensions, out of total 30 (CEC2014) benchmark functions, 

ABC_DE_FP performs better than ABC for 17 functions while ABC performs better for 9 

functions. For rest of the 4 functions, there is no significant difference. 

 

Table 6.8: Wilcoxon Rank Sum Test Analysis 

Vs. ABC_DE_FP  
100D 50D 30D 10D 

ABC better(+) 9 9 7 4 

 
worse(−) 17 16 14 14 

 
no sig diff(≈) 4 5 9 12 

FPA better(+) 7 5 7 13 

 
worse(−) 20 20 20 15 

 
no sig diff(≈) 3 5 3 2 

ABC_FP better(+) 10 17 18 9 

 
worse(−) 16 9 7 8 

 
no sig diff(≈) 4 4 5 13 

ABC_DE better(+) 6 2 1 1 

 
worse(−) 16 16 16 22 

 
no sig diff(≈) 8 12 13 7 

ABC_SN better(+) 5 3 5 4 

 
worse(−) 24 24 25 23 

 
no sig diff(≈) 1 3 0 3 
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Similarly ABC_DE_FP performs better for 20 functions than FPA and worse for 7 functions 

only. Correspondingly all the results of Table 6.8 can be analyzed. It can be noticed that for the 

majority of functions, presented algorithm ABC_DE_FP performs better than all its defined 

variants. ABC_DE_FP wins over our own variant ABC_FP at higher dimension (100D) though it 

is inferior at 10, 30 and 50 dimensions. Hence ABC_DE_FP overshadow ABC_FP (own variant) 

as well as all the other contemporary algorithms on the majority of benchmark functions. 

6.5.2. Computational Complexity Analysis (Convergence Behavior) 

Performance of presented hybrid algorithm (ABC_DE_FP) with respect to competitive 

algorithms is exhibited in the form of convergence graphs for 100 dimensions. Computational 

complexity of algorithms over the mean error value attained on fixed number of iterations is 

analyzed in subsections. 

6.5.2.1. Unimodal Functions 

Convergence graph representing the behavior of algorithms on unimodal functions is 

shown in Figure 6.3 to 6.5. It can be observed that minimum error is achieved by ABC_DE_FP 

as compared to other algorithms. For F1 function, rate of convergence for all competitor 

algorithms is nearly same. However, presented algorithm reaches its minima at 2.00E+05 

iterations. In F2 function, ABC_DE_FP exhibit rapid pace of convergence and obtain its global 

minima at 6.00E+05 iterations. ABC portrays non uniform convergence speed and comparable 

performance to ABC_DE_FP at 2.00E+05 iterations. This is due to the lack of suitable balance 

among exploration and exploitation techniques. In presented algorithm, this drawback is 

overcome by integrating FPA and DE. Thus, ABC_DE_FP depicts uniform convergence speed 

while attaining global minima. In F3 function, though algorithm depicts nearly same 

convergence rate yet ABC_DE_FP achieve minimum error value.  
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Figure 6.3: Convergence Graph of algorithms for F1  Figure 6.4: Convergence Graph of algorithms for F2 

  

 

    Figure 6.5: Convergence Graph of algorithms for F3 

 

6.5.2.2. Simple Multimodal Functions 

 

 Convergence graphs of presented ABC_DE_FP with its competitive algorithms for 

simple multimodal functions are shown in Figure 6.6 to 6.18. Algorithms do not depict any rate 

of change in the convergence speed for functions F5, F6, F9, F11, F13 and F16. However, 

minimum error value is shown by ABC_DE_FP. This is due to the fact that once a minimum 

value is achieved; algorithm is not able to exploit more promising regions of search space. For 

functions F4, F7, F12 and F15, ABC_DE_FP depicts uniform convergence speed i.e. shape of 

curve is almost rectangular hyperbola. Over the iterations algorithm performance gets stagnate, 

however global minimum is first achieved by ABC_DE_FP. On F14 function, ABC_DE_FP 

reaches its minima at 2.00E+04 iterations and shows no change in rate of convergence 

afterwards. For the functions F8 and F10, ABC and ABC_DE_FP depicts irregular and zig zag 

behavior over the iterations. This behavior shows that algorithm’s convergence rate is dependent 
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on function’s property. Overall analysis concludes that ABC_DE_FP is the first one to achieve 

minimum error value on simple multimodal functions. 

   
   Figure 6.6: Convergence Graph of algorithms for F4 Figure 6.7: Convergence Graph of algorithms for F5  

 

Figure 6.8: Convergence Graph of algorithms for F6  Figure 6.9: Convergence Graph of algorithms for F7 

 

   

Figure 6.10: Convergence Graph of algorithms for F8             Figure 6.11: Convergence Graph of algorithms for F9 
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Figure 6.12: Convergence Graph of algorithms for F10         Figure 6.13: Convergence Graph of algorithms for F11 

   

Figure 6.14: Convergence Graph of algorithms for F12         Figure 6.15: Convergence Graph of algorithms for F13 

             

Figure 6.16: Convergence Graph of algorithms for F14         Figure 6.17: Convergence Graph of algorithms for F15 
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Figure 6.18: Convergence Graph of algorithms for F16 

 

6.5.2.3. Hybrid Functions 

 

 Hybrid functions are composed of various subcomponents, each consisting of different 

basic functions including unimodal or multimodal functions. Convergence rate of various 

algorithms along with presented algorithm is shown in Figure 6.19 to 6.24. On functions F17 and 

F21, all algorithms show similar performance at initial stage. After 3.00E+04 iterations, 

ABC_DE_FP reduces the error value over the iterations while other algorithms stagnate and 

show no improvement in performance. Hence ABC_DE_FP depicts better convergence speed. 

This is due to the improvement in exploitation process of presented algorithm. For F18 and F19 

functions, ABC_DE_FP attains minimum error value and shows good rate of convergence. This 

improvement is because of integrating FPA into ABC algorithm. For this reason ABC_FP (our 

variant) coincides with ABC_DE_FP and hence exhibit approximately similar performance. In 

case of F20 and F22 functions, ABC_DE_FP depicts minimum error value though algorithms 

show approximately same convergence rate over the iterations. 
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Figure 6.19: Convergence Graph of algorithms for F17         Figure 6.20: Convergence Graph of algorithms for F18 

 

    

Figure 6.21: Convergence Graph of algorithms for F19         Figure 6.22: Convergence Graph of algorithms for F20 

         

   

Figure 6.23: Convergence Graph of algorithms for F21         Figure 6.24: Convergence Graph of algorithms for F22 
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6.5.2.4. Composition Functions 

 

The composition functions defined in problem definition of CEC 2014 [137] is composed of 

various sub components. Each component uses different basic functions that can be unimodal or 

multimodal or hybrid. Hence these functions are more complicated than hybrid functions. 

ABC_DE_FP shows minimum error value for functions F23, F24, F25, F26, F27 and F28 as 

given in Figure 6.25 to 6.32. The algorithm’s convergence rate becomes constant after achieving 

global minima in approximately 1.00E+05 iterations. The functions are so complex that 

algorithm’s ability of exploring the complete search space deteriorates. On functions F29 and 

F30, ABC and ABC_DE_FP improves its global minima over the iterations. The performance 

curve is near to rectangular hyperbola. However, the efficacy of ABC_DE_FP is better as 

compared to other algorithms. 

    
  Figure 6.25: Convergence Graph of algorithms for F23    Figure 6.26: Convergence Graph of algorithms for F24  

   
Figure 6.27: Convergence Graph of algorithms for F25         Figure 6.28: Convergence Graph of algorithms for F26     
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Figure 6.29: Convergence Graph of algorithms for F27         Figure 6.30: Convergence Graph of algorithms for F28 

 

     

Figure 6.31: Convergence Graph of algorithms for F29        Figure 6.32: Convergence Graph of algorithms for F30 

 

Discussion 

 The experiments are performed to assess the efficacy of ABC_DE_FP for simple as well 

as complex optimization problems. Results substantiate that for simple problems, presented 

algorithm either performs better or similar to the best existing ABC variant. On an average 

though mean value of ABC_DE_FP lags by 1% but its best value improves by 49%.  Analysis 

over complex problems of CEC2014 establishes that ABC_DE_FP performs significantly better 

than ABC, FPA, ABC_FPA, ABC_DE and ABC_SN. The statistical significance of the results is 

established through Wilcoxon Rank Sum test. Convergence graphs portrays that the convergence 

speed of presented algorithm in attaining global optima is faster than existing algorithms. Thus, 

from these studies it can be inferred that, presented algorithm is more suitable to composite and 
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hybrid (according to CEC2014) type of problems where global minimum value is difficult to 

achieve. 

 

6.6.  CONCLUSION  

This chapter presents an improved hybrid version of artificial bee colony algorithm 

(ABC_DE_FP) in terms of exploitation and convergence speed. The presented algorithm is the 

combination of artificial bee colony algorithm (ABC), flower pollination algorithm and 

differential evolution. In order to exhibit the efficacy of presented algorithm, it is tested on 

simple benchmark function against contemporary ABC variants.  The algorithm provides 

improvement in terms of best value attained. Another study is conducted on four sets of 

benchmark function obtained from CEC2014 problem definition at 10, 30, 50 and 100 

dimensions. The presented algorithm is tested against ABC, FPA and various ABC variants. It 

has been observed that ABC_DE_FP performance improves with increase in dimensions.  

Wilcoxon rank sum test established the statistical significance of obtained results. Convergence 

rate of algorithms are analyzed via convergence graphs. The results illustrated that performance 

of ABC_DE_FP is effectively and competitively better though its convergence behavior is 

dependent on function’s property. Overall, ABC_DE_FP algorithm is more suitable for complex 

optimization problems.  

 Since ABC_DE_FP is scalable with dimensions hence in the next chapter binary version 

ABC_DE_FP is applied for clustering high dimensional data. High dimensional clustering is 

performed through subspace clustering. Thus, a hybrid algorithm of subspace clustering and 

binary ABC_DE_FP is developed named S_FAD algorithm and assessed on high dimensional 

real datasets. 

 

 

 

 


