
Velisphere SDK Tutorial #2
The entire code for this tutorial can be found on
https://github.com/thomeudt/VelisphereClientSDK/tree/master/DemoRaspberryPiSensor

How to build a multi-sensor device using a RaspberryPI and Phidgets

In this tutorial, we will create a multi-sensor
device that connects to Velisphere allowing to
track and analyze sensor data. In a later tutorial,
we will expand on this setup by adding a relay
than can be controlled via Velisphere rules. But
let's concentrate on building the sensor device
first.

I. What you need

1. Skills

You should be reasonably familiar with the JAVA programming language and the
Eclipse IDE.

You will find this tutorial easier to follow if you have already managed to get a
Raspberry Pi setup, including installing a Linux operating system on the SD card.
Some basic Linux skills are helpful, too.

2. Hardware

1x Raspberry Pi, while either version 1 or version 2 should work, we have
tested this tutorial with version 2 only

The RaspberryPi needs to have internet connectivity!

1x Phidgets Interface Kit 8/8/8
1x Phidgets Light Sensor
1x Phidgets Touch Sensor
1x Phidgets Pressure Sensor
1x Phidgets Rotary Dial
1x Powered USB 2.0 hub (sufficient to provide power for both the Raspberry Pi

and the Interface Kit. The USB ports on the Raspberry Pi do not provide
sufficient power for the interface kit!

https://github.com/thomeudt/VelisphereClientSDK/tree/master/DemoRaspberryPiSensor

3x USB cables, one each connecting the Raspberry PI and the interface kit
with the USB hub for power supply, and one connecting the interface kit
with the Raspberry Pi for connectivity.

Please refer to the manuals provided for the Raspberry Pi, your USB hub,
and the interface kit to determine which type of USB cable will be required.

3. Software

On your Developer Machine (PC, Mac, etc.):

- Eclipse Standard IDE for you to build the JAVA client application that will
 then be deployed to the Raspberry Pi. The tutorial has been written for
 Eclipse “Luna” (Version 4.4), but other recent releases such as Mars or

Kepler will also work. There might be slight differences to the UI though,
therefore the tutorial might not be 100% accurate for these releases.

- Eclipse requires a supported Java Runtime Environment (JRE). Please refer
to the Eclipse documentation for further details.

On the Raspberry Pi:

- Your Raspberry Pi should be running a Linux distribution. I am using
ArchLinux as it currently is the only distribution that supports Docker on
Raspberry Pi and I need this for other purposes.

If you prefer Raspbian or Ubuntu, stick with those, they should work
equally well for the purposes of this tutorial.

- A working Java Runtime Environment, Oracle Java and OpenJDK will both
do the job. Java 7 is tested, newer versions should also work.

If not already installed, on Ubuntu/Debian systems, you may install
OpenJDK using the following command:

sudo apt-get install openjdk-8-jre

For other distributions, please refer to the respective documentation.

II. Physical Setup

Getting the Raspberry Pi to work with the Phidgets Interface Kit and the connected
sensors, a bit of pre-work is required. I recommend that you follow the free tutorial
provided here:

http://www.instructables.com/id/Getting-Started-with-Phidgets-on-the-Raspberry-Pi/?
ALLSTEPS

Make sure you connect the four sensors to the analog ports on your Phidgets
Interface Kit, as we will be using these four ports later in the tutorial.
The assignments used in this tutorial are as follows:

Rotary Dial: Port 1
Pressur Sensor: Port 5
Light: Port 6
Touch: Port 7

III. Writing the Client Application in Java

1. On your developer machine, launch the Eclipse IDE. When asked, you can choose
either to create a new workspace for your project, or use an existing one.

2. When Eclipse is started up, create a new project

FILE > NEW > JAVA PROJECT

In the dialog box, enter

PiDemo

in the PROJECT NAME field, leave all other options in their default settings and
hit FINISH. The new project PiDemo should now show up in the package explorer
on the left side of your Eclipse window.

http://www.instructables.com/id/Getting-Started-with-Phidgets-on-the-Raspberry-Pi/?ALLSTEPS
http://www.instructables.com/id/Getting-Started-with-Phidgets-on-the-Raspberry-Pi/?ALLSTEPS

3. We now need to create the default Velisphere configuration file, which we will
later use to store information required to authenticate your RaspberryPi in the
Velisphere network as well as to validate messages your RaspberryPi will receive
from the network.

To do so, right-click on the newly create “PiDemo” project and select NEW > FILE
in the context menu.

4. In the new file dialog, please enter the following file name in the field “File name:”

velisphere_config.xml

and hit the FINISH button.

5. An empty file velisphere_config.xml will be created and opened on the
right hand side of the screen.

6. Copy the following XML snippet into the newly created file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM
"http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>This file contains Velisphere authentication
information. Do not overwrite!</comment>
<entry key="Secret Key"></entry>
<entry key="Endpoint ID"></entry>
<entry key="Endpoint Class ID">33492b88-3626-416c-
86c3-90221a849da2</entry>
<entry key="isProvisioned">false</entry>
</properties>

and hit the SAVE (floppy disk) button in Eclipse.

7. Let's have a look at this file. In essence, it is an XML file that specifies four different
keys:

Secret Key

The secret key that your Raspberry Pi will use for checking the authenticity of an
incoming message (i.e. to verify whether the message has truly been sent by the
Velisphere system) and which will also be used to allow the Velisphere system to
check whether it was truly your device that sent an outgoing message.

The principle used by Velisphere is based on the HMAC (Keyed hash message

authentication code) concept:
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

The secret key will be provided by the Velisphere server during the provisioning
process and automatically be stored in the configuration file.

Endpoint ID

The endpoint ID is a unique identifier that identifies your Raspberry Pi, it will also
be assigned by the Velisphere server during provisioning.

Endpoint Class ID

The endpoint class ID defines which kind of endpoint your RaspberryPI is, so that
the system has a clear description of the capabilities of this device.

Think of it as follows (Germans like car analogies):

Endpoint Class > “Raspberry Pi with Phidgets”
> Car Analogy: “2016 Volkswagen Passat Sedan SE”

Endpoint > “Thorsten's Raspberry Pi with Phidgets”
> Car Analogy: “VIN WVWZZZZZxyz123456”

Within the Velisphere System, multiple endpoints of the same endpoint class can
exist. Any given endpoint is, in other words, the implementation of an endpoint
class. The endpoint class describes the characteristics, the “properties” of and
endpoint.

For this reason, the endpoint class ID needs to be provided to Velisphere when
sending the provisioning request and therefore needs to be provided via the XML
file before sending the provisioning request.

The endpoint class for this tutorial is

33492b88-3626-416c-86c3-90221a849da2

IsProvisioned Flag

Before provisioning a device for the first time (or re-provisioning a device that was
previously provisioned), the isProvisioned-Flag needs to be set to “false”. We will
later read this flag to determine on startup whether to send a provisioning request
or continue with regular boot.

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

8. Next, we need to download the Velisphere Software Development Kit JAR file and
add it to the JAVA build bath of our newly created repository.

To download the file, go to

https://github.com/thomeudt/VelisphereClientSDK/releases

Under the “Downloads” section, you will find a file called VelisphereMilkSDK.jar
(In case you wonder about the dairy content – all Velisphere components are
codenamed around products you need to produce chai late, and milk certainly
qualifies for that…)

9. Switch back to Eclipse and make a right click on you newly created project
“PiDemo”, select Build Path > and Configure Build Path… .

10. Select the Libraries tab and click on Add external JARs… on the right side of
the dialog box

11. In the JAR selection dialog box, navigate to the location in which you stored the
downloaded VelisphereMilkSDK.jar. Select this file and click OK. The JAR selection
dialog closes, then hit OK again to close the Java Build Path dialog.

We can now use routines from the SDK JAR file to build our client, which saves a
lot of time.

12. In order to be able to read data from sensors connected to the Phidgets interface
kit, we also need to add the Phidgets Java library file to our build path. Download
the respective file phidget21.jar from the phidget web site and add it in the same
was as you added VelisphereMilkSDK.jar (steps 9-11)

13. Velisphere provides you with functionality to track location data of your devices
and perform further analysis on this data. As the Raspberry Pi does not include a
GPS receiver for precise location data, we will approximate the device position
based on its IP address, using GeoLite provided by MaxMind.

The required library geoip-api-1.2.15.jar can be downloaded from
www.maxmind.com, and needs to be added to the build path following again steps
9-11.

14. Next, we will create a new Java package in which we will store the code that we
are about to create. For the purpose of this tutorial, we are using the following
package name, but you are certainly free to use whatever name you like (we
suggest you stick to Java naming conventions):

http://www.maxmind.com/
https://github.com/thomeudt/VelisphereClientSDK/releases

com.velisphere.demo.rpiSensors

15. Right click again on the “PiDemo” project and select New > and Package.

16. In the New Java Package dialog box, leave the default setting for the source folder
(should be PiDemo/src) and enter the package name as above:

com.velisphere.demo.rpiSensors

17. Within the newly created package, which will show up in the Eclipse Package
Explorer after expanding the src folder, we need to create four Java classes that
contain all of the code we need.

Three classes are the basic requirements for any Velisphere client
implementation, but are always to be adapted specifically for the endpoint we are
developing for.

In our case these are:

- PiSensorsMain.java
Main class that will handle startup:

- PiEventListener.java

An implementation of the com.velisphere.milk.interfaces.EventListener
 which is used to respond to incoming messages

- PreDeployment.java

A class to trigger initial deployment of the device:

In addition, we will use two classes that provide additional functionality:

- PhidgetMonitoringEngine.java
A class that will listen to sensor value changes on the Interface kit and

 sends them, via AMQP, to the Velisphere message broker.

In order to create these classes, please repeat the following steps for each class,
using the respective class name:

- Right click on the package com.velisphere.demo.rpiSensors you created in
step 16, and select NEW > CLASS

- In the New Java Class dialog box, enter the name of the class you are creating
(see above), without the “.java” extension. Leave all other options in their
default settings.

- Hit the FINISH button to create the class

18. After having created all four empty classes, it is time to create the code. We will

start with the most simple class, the pre-deployment class, PreDeployment. In
Eclipse file explorer, double click on the class, which will open the (mostly) empty
class:

package com.velisphere.demo.rpiSensors;
public class PreDeployment {
}

19. Add the following code to the PreDeployment class:

package com.velisphere.demo.rpiSensors;

import com.velisphere.milk.restClient.ProvisioningClient;

public class PreDeployment {

public static void initiateDeployment()
{

System.setProperty("jsse.enableSNIExtension", "false");
String provisioningID = ProvisioningClient.macProvisioning();
System.out.println("[IN] Provisioning request successfully
submitted.");
System.out.println("[IN] Go to www.velisphere.com, log in with
your user name and start the provisioning wizard to
complete.");
System.out.println("[IN] Your Device ID is: " +
provisioningID);

}

}

This class calls the ProvisioningClient.macProvisioning static method that
comes with the Velisphere Client SDK. This class files a provisioning request with
Velisphere, using the MAC address of the network interface as the unique
identifier.

There are other methods available for filing provisioning requests using the
ProvisioningClient class, we will discuss these in later tutorials.

Calling the MAC provisioning method returns a string value that is the MAC
address of the device, we print them to the console so that the user can use this
identifier to finalize the provisioning, using the provisioning wizard provided by
velisphere.com

Hit the “save” button in Eclipse to save your code.

20. Next, we will create the code for the PiEventListener class. It will have to look as
follows:

package com.velisphere.demo.rpiSensors;

import java.util.HashMap;

import com.velisphere.milk.amqpClient.AmqpClient;
import com.velisphere.milk.configuration.ConfigData;
import com.velisphere.milk.interfaces.EventListener;

public class PiEventListener implements EventListener {

@Override
public void requestIsAlive(AmqpClient amqpClient) {

System.out.println(" [IN] IsAlive Requested...");

HashMap<String, String> messageHash = new HashMap<String,
String>();

messageHash.put("setState", "REACHABLE");

try {
amqpClient.sendHashTable(messageHash, ConfigData.epid,

"CTL");
} catch (Exception e) {

// TODO Do something meaningful for error handling
e.printStackTrace();

}

}

@Override
public void requestAllProperties(AmqpClient amqpClient) {

System.out
.println(" [IN] AllProperties requested and

discarded as not supported by PiSensor");

}

@Override
public void newInboundMessage(AmqpClient amqpClient, String message)

{

System.out.println(" [IN] New Inbound Message, but no action
implemented yet by PiSensor");

}

}

As already mentioned, this class implements the EventListener interface of the
SDK, which takes care of responding to incoming messages.

The interface describes three methods we need to implement:

requestIsAlive
This method is triggered when the client receives a request asking if it is stil “alive”,
similar to the PING command you might be familiar with. We respond with setting
the state of the endpoint as “reachable”

requestAllProperties
This method is triggered when the client receives a request asking it to submit the
current values of all sensors. We disregard this for the time being and leave the
implementation for the next tutorial.

NewInboundMessage
This method is called when a new inbound message (other than the two above) is
received. It provides the JSON message as a parameter so that the endpoint can
be programmed to respond to it. We disregard this for the time being and leave
the implementation for the next tutorial.

Please note the @Override annotation for each of these method, indicating
that the method implements the abstract method inherited from the
EventListener interface.

21. Next, we will create the code for the PhidgetMonitoringEngine class. This is the
class that reads data from the sensors connected to the interface kit and submits
data to Velisphere on change of a sensor value.

This is the most complex class of our project and requires the import of several
classes from the phidget and velisphere SDK libraries, as well as several other
libraries provided with the JRE.

package com.velisphere.demo.rpiSensors;

import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.HashMap;
import com.maxmind.geoip.Location;
import com.maxmind.geoip.LookupService;
import com.maxmind.geoip.regionName;
import com.phidgets.InterfaceKitPhidget;
import com.phidgets.Phidget;
import com.phidgets.PhidgetException;
import com.phidgets.event.AttachEvent;
import com.phidgets.event.AttachListener;
import com.phidgets.event.DetachEvent;
import com.phidgets.event.DetachListener;
import com.phidgets.event.ErrorEvent;
import com.phidgets.event.ErrorListener;
import com.phidgets.event.InputChangeEvent;

import com.phidgets.event.InputChangeListener;
import com.phidgets.event.OutputChangeEvent;
import com.phidgets.event.OutputChangeListener;
import com.phidgets.event.SensorChangeEvent;
import com.phidgets.event.SensorChangeListener;
import com.velisphere.milk.amqpClient.AmqpClient;
import com.velisphere.milk.configuration.ConfigData;

public class PhidgetMonitoringEngine {

private static final String touchSensorID = "f3b93c91-dee0-4609-
ac1c-100dd00e060a";
private static final String lightSensorID = "67f6edfa-3413-41a7-

ab16-e9ed72136696";
private static final String pressureSensorID = "72d3bbef-1f8e-4d8c-

a838-ea119ef98592";
private static final String dialKnobID = "ac4bd814-3a65-42f8-b5ad-

75e71e63640b";
private static final String locationID = "24c1ea6d-c2c5-420d-9743-

f718e221e07d";

private AmqpClient amqpClient;

public PhidgetMonitoringEngine(AmqpClient amqpClient)
{

this.amqpClient = amqpClient;
}

public void startMonitoring() throws PhidgetException, IOException
{

System.out.println(Phidget.getLibraryVersion());
final InterfaceKitPhidget ik = new InterfaceKitPhidget();
ik.addAttachListener(new AttachListener() {

public void attached(AttachEvent ae) {
System.out.println("attachment of " + ae);

}
});
ik.addDetachListener(new DetachListener() {

public void detached(DetachEvent ae) {
System.out.println("detachment of " + ae);

}
});
ik.addErrorListener(new ErrorListener() {

public void error(ErrorEvent ee) {
System.out.println("error event for " + ee);

}
});
ik.addInputChangeListener(new InputChangeListener() {

public void inputChanged(InputChangeEvent oe) {
System.out.println(oe);

}
});
ik.addOutputChangeListener(new OutputChangeListener() {

public void outputChanged(OutputChangeEvent oe) {
System.out.println(oe);

}
});
ik.addSensorChangeListener(new SensorChangeListener() {

public void sensorChanged(SensorChangeEvent se) {
System.out.println(se);
System.out.println("[IN] Value change triggered on

Sensor "+se.getIndex() +". New Value:" + se.getValue());

try {
// send to controller

HashMap<String, String> messageHash = new
HashMap<String, String>();

// Sensor Data

messageHash.put(touchSensorID,
String.valueOf(ik.getSensorValue(6)));

messageHash.put(lightSensorID,
String.valueOf(ik.getSensorValue(7)));

messageHash.put(pressureSensorID,
String.valueOf(ik.getSensorValue(5)));

messageHash.put(dialKnobID,
String.valueOf(ik.getSensorValue(1)));

// Geo Location

File dbfile = new File("GeoLiteCity.dat");
LookupService lookupService = new

LookupService(dbfile, LookupService.GEOIP_MEMORY_CACHE);

URL whatismyip = new
URL("http://checkip.amazonaws.com");

BufferedReader in = new BufferedReader(new
InputStreamReader(

 whatismyip.openStream()));

String ip = in.readLine(); //you get the IP
as a String

Location location =
lookupService.getLocation(ip);

// Populate region. Note that regionName is
a MaxMind class, not an instance variable

if (location != null) {
 location.region =

regionName.regionNameByCode(location.countryCode, location.region);
}

messageHash.put(locationID, "{" +
String.valueOf(location.latitude) + "}" +

"[" +
String.valueOf(location.longitude) + "]");

// Send out

System.out.println("Message Hash Sent to
Controller: " + messageHash);

amqpClient.sendHashTable(messageHash,
ConfigData.epid, "REG");

} catch (Exception e) {
// TODO Do something meaningful for error

handling
e.printStackTrace();

}
}

});
ik.openAny();
System.out.println("waiting for InterfaceKit attachment...");
ik.waitForAttachment();
System.out.println(ik.getDeviceName());
System.in.read();
ik.close();
System.out.println(" ok");

}
}

22. Let's look at some aspects in more detail.

At the beginning of this class, we are defining several constants that contain the
property id of the sensors of our device. Every sensor and every actor of each
endpoint class carry their own ID.

private static final String touchSensorID = "f3b93c91-dee0-4609-ac1c-
100dd00e060a";
private static final String lightSensorID = "67f6edfa-3413-41a7-ab16-
e9ed72136696";
private static final String pressureSensorID = "72d3bbef-1f8e-4d8c-
a838-ea119ef98592";
private static final String dialKnobID = "ac4bd814-3a65-42f8-b5ad-
75e71e63640b";
private static final String locationID = "24c1ea6d-c2c5-420d-9743-
f718e221e07d";

The id codes can be found in the endpoint class catalog available on
velisphere.com.

We then declare an instance variable for the amqpClient class imported from the
velisphereSDK.

private AmqpClient amqpClient;

This variable is declared in the following constructor by injecting it as a

dependency for later use.

public PhidgetMonitoringEngine(AmqpClient amqpClient)
{

this.amqpClient = amqpClient;
}

The following code is largely specific to ready sensor values from the phidget
interface kit, which we will not elaborate on in this tutorial.

Where things become interesting again is the code which packages our sensor
data up in the standard Velisphere JSON format and sends it off to the message
broker.

The good thing Is, you don't have to worry about most of this, as we can use a
single method of the amqpClient to take care of this. In our case, it's the
following line:

amqpClient.sendHashTable(messageHash, ConfigData.epid, "REG");

messageHash in this case is a variable of the type HashMap that we have declared
earlier:

HashMap<String, String> messageHash = new HashMap<String, String>();

A HashMap is a Java structure that takes stores key/value pairs. This is exactly
what we need, as we need to store a sensor value (the value) that is assigned to a
property (the key) of our endpoint.

To add these keys and values to the HashMap, we use the following line:

messageHash.put(touchSensorID, String.valueOf(ik.getSensorValue(6)));
messageHash.put(lightSensorID, String.valueOf(ik.getSensorValue(7)));
messageHash.put(pressureSensorID,
String.valueOf(ik.getSensorValue(5)));
messageHash.put(dialKnobID, String.valueOf(ik.getSensorValue(1)));

What follows are several lines of code to obtain the geolocation from GeoLite.
Specific to VeliSphere is again this line:

messageHash.put(locationID, "{" + String.valueOf(location.latitude) +
"}" +

"[" +
String.valueOf(location.longitude) + "]");

Here we are putting the geolocation obtained from GeoLite into our HashMap.
Please note that the format for submitting geolocations to Velisphere is a string
structured as follows:

{latitude in degree}[longitude in degree]

When we have added the value of the four sensors and the geolocation from
GeoLite, we are ready to send our key/value hashmap to Velisphere, using the
following call already mentioned above:
amqpClient.sendHashTable(messageHash, ConfigData.epid, "REG");

The more generic way to describe this is

amqpClient.sendHashTable(HashMap, EndpointID, MessageType);

The EndpointID is loaded from the velisphere_config.xml file introduced in step
4, and can be accessed using the static variable ConfigData.epid provided by the
SDK.

The message type we are using is “REG”, for regular message.

That's it – what follows is just a bunch of error handling code which you probably
want to turn into somehting more meaningful later on.

Let's finally build our main class PiSensorsMain.

package com.velisphere.demo.rpiSensors;

import java.io.IOException;
import com.phidgets.PhidgetException;
import com.velisphere.milk.amqpClient.AmqpClient;
import com.velisphere.milk.configuration.ConfigFileAccess;
import com.velisphere.milk.configuration.Provisioner;

public class PiSensorsMain {

public static void main(String[] args) throws IOException {

System.out
.println("

--
------------------------");

System.out
.println(" VELISPHERE DEMO: RaspberryPI Sensor

Device using Phidgets");
System.out.println(" (C) 2015 Thorsten Meudt");
System.out

.println(" Licensed under the GPLv2 license,
http://www.gnu.org/licenses/old-licenses/gpl-2.0.de.html");

System.out

.println(" Learn more about the VeliSphere IoT
System at www.connectedthingslab.com");

System.out
.println("

--
------------------------");

System.out.println(" ");

// Load Configuration Data

ConfigFileAccess.loadParamChangesAsXML();

// Check if device is already deployed. If not, trigger pre-
deployment

// cycle

System.out
.println(" [IN] Calling provisioner to determine

if device is flagged as provisioned.");

if (Provisioner.isProvisioned() == false)
PreDeployment.initiateDeployment();

else
regularStartup();

}

public static void regularStartup() {

// Activate Event Responders

PiEventListener eventListener = new PiEventListener();

// Start Server and activate listener

AmqpClient amqpClient = new AmqpClient(eventListener);
amqpClient.startClient();
PhidgetMonitoringEngine engine = new

PhidgetMonitoringEngine(amqpClient);
try {

engine.startMonitoring();
} catch (PhidgetException e) {

// TODO Do something meaningful for error handling
e.printStackTrace();

} catch (IOException e) {
// TODO Do something meaningful for error handling
e.printStackTrace();

}

}

}

This class consists of two static methods, main which is called when the Java
executable is started, and regularStartup, which is called by main.

Looking at the main method first, the first step is to load the configuration data
from the velisphere_config.xml file.

ConfigFileAccess.loadParamChangesAsXML();

Next, we do a simple if/then/else to determine whether the device needs to be
provisioned first, or whether this step has already been completed and regular
startup can commence:

if (Provisioner.isProvisioned() == false)
PreDeployment.initiateDeployment();

else
regularStartup();

That's all.

Now look at the regularStartup method:

First we instantiate an EventListener from (using the class in the SDK).

PiEventListener eventListener = new PiEventListener();

Next we instantiate an amqpClient in which we inject our eventListener and start
the amqpClient.

AmqpClient amqpClient = new AmqpClient(eventListener);
amqpClient.startClient();

We finally start the PhidgetMonitoringEngine we built in step 21 by calling

PhidgetMonitoringEngine engine = new
PhidgetMonitoringEngine(amqpClient);

engine.startMonitoring();

It is important that you do this after creating the amqpClient, as you need to inject
the amqpClient as a dependency.

23. Our code is complete! We now need to create a runnable configuration so that
we can run it as a stand alone application on our raspberry pi.

To do so, open the RUN menu in the Eclipse main menu bar and select RUN
CONFIGURATIONS…

24. In the following dialog, click select Java Application in the list on the left, make a

right click on it and click NEW in the context menu.

25. A new run configuration is created. On the right side of the dialog, we need to give
a name to our configuration, we call it PiDemoConfig. Leave all other values at
their defaults and hit APPLY and then CLOSE.

26. All that is left to do is to export everything into an executable JAR file. To do this,
make a final right click on your project PiDemo and click EXPORT.

27. Expand the Java folder and select Runnable JAR file and hit the NEXT button
28. In the “Runnable JAR file export” dialog, select the runnable configuration we just

created (“PiDemoConfig – PiDemo”) in the “Launch Configurations” dropdown
list.

29. Select a path to which you want to export your file in “Export Destination”. On my
computer, I chose “/home/thorsten/Documents/tutorials/PiDemo.jar”, but you
are free to chose any path you like. However you need to be able to locate this file
later on on your computer.

30. Make sure you select “Extract required libraries into generated JAR” under “Library
handling”.

31. Hit FINISH

32. If a warning about referenced libraries shows up, confirm with OK.

33. Download the GeoLite city database binary from here

http://dev.maxmind.com/geoip/legacy/geolite/

and extract the contained GeoLiteCity.dat file to a temporary location.

34. Now, copy the following files into a directory on your RaspberryPI:

- the created JAR file
- velisphere_config.xml
- GeoLiteCity.dat

You probably will use a tool like WinSCP when using a Windows machine, but I
assume you are familiar with how to get a file copied to the RaspberryPi.

IV. Starting the client

Now it's time to start your client for the first time and provision it with Velisphere.

http://dev.maxmind.com/geoip/legacy/geolite/

1. Make a ssh connection to your RaspberryPi. How you do this depends on the OS
you are using on your developer machine (for instance using PUTTY if you're on
windows, or the SSH command on Linux or MacOS).

2. Navigate to the directory where you stored your files in step 33 and enter the
following command to start your client:

java -jar ./PiDemo.jar

Note that if you used a different file name in step III/29, you will have to use this
filename here instead of PiDemo.jar

3. If everything goes well (it is important that your RaspberryPi has a working
internet connection), the client will execute the PreDeployment routine and return
a DeviceID – the MAC address of your Pi.

4. Go to www.velisphere.com, log in with your user account and click on “Deployment
Wizard” on the right side of the screen.

5. Enter the DeviceID returned in step 2 and the captcha word and hit the SEARCH
button

6. Velisphere should find your device in an unassigned state. In this screen, click on
CLAIM OWNERSHIP to complete the provisioning process and add the newly
created device to your inventory by giving it a name, like “My First Velisphere
Client”.

7. Go back to your SSH connection to the RaspberryPi and start our client:

java -jar ./PiDemo.jar

As the device is now fully provisioned, the client will connect with the message
broker and start sending sensor values to VeliSphere. You can follow this on your
screen as the client currently is fairly verbose, providing a lot of debug
information.

Congratulations!

http://www.velisphere.com/

