Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.rst

Python ORM Layer For ArangoDB

arango_orm is a python ORM layer inspired by SQLAlchemy but aimed to work with the multi-model database ArangoDB. It supports accessing both collections and graphs using the ORM. The actual communication with the database is done using python-arango (the database driver for accessing arangodb from python) and object serialization and de-serialization is handled using marshmallow.

Installation:

pip install arango-orm

Connecting to a Database

from arango import ArangoClient
from arango_orm import Database

client = ArangoClient(hosts='http://localhost:8529')
test_db = client.db('test', username='test', password='test')

db = Database(test_db)

Using a Connection Pool

Note: This is deprecated since python arango version 5.0. Since now the base library supports the hosts parameter. This will be removed in future versions. Users should instead use the pool in ArangoClient like:

client = ArangoClient(
  hosts=['http://host1:8529', 'http://host2:8529'],
  host_resolver='roundrobin'
)

Connection pools allow using multiple connections for accessing the database. Though these can be used on a single machine setup, they are more useful to use with arango clusters.

Connection pools support the same methods and properties that the Database class does. So they can be used interchangeably with Database.

from arango import ArangoClient
from arango_orm import ConnectionPool

client1 = ArangoClient(protocol='http', host='localhost', port=8529)
client2 = ArangoClient(protocol='http', host='127.0.0.1', port=8529)

db = ConnectionPool([client1, client2], 'test', 'test', 'test')

Working With Collections

First we need to define data models (similar to SQLAlchemy's models) to specify what data our collection(s) will contain and how to marshal it

from arango_orm import Collection
from arango_orm.fields import String, Date

class Student(Collection):

    __collection__ = 'students'
    _index = [{'type': 'hash', fields: ['name'], unique=False}]

    _key = String(required=True)  # registration number
    name = String(required=True, allow_none=False)
    dob = Date()

Create Collection in the Database

db.create_collection(Student)

Drop a Collection

db.drop_collection(Student)

Check if a collection exists

db.has_collection(Student)
db.has_collection('students')

Add Records

from datetime import date
s = Student(name='test', _key='12312', dob=date(year=2016, month=9, day=12))
db.add(s)
print(s._id)  # students/12312

Get Total Records in the Collection

db.query(Student).count()

Get Record By Key

s = db.query(Student).by_key('12312')

Update a Record

s = db.query(Student).by_key('12312')
s.name = 'Anonymous'
db.update(s)

Delete a Record

s = db.query(Student).by_key('12312')
db.delete(s)

Get All Records in a Collection

students = db.query(Student).all()

Get First Record Matching the Query

first_student = db.query(Student).first()

Filter Records

Using bind parameters (recommended)

records = db.query(Student).filter("name==@name", name='Anonymous').all()

Using plain condition strings (not safe in case of unsanitized user supplied input)

records = db.query(Student).filter("name=='Anonymous'").all()

Filter Using OR

# Get all documents where student name starts with A or B
records = db.query(Student).filter(
            "LIKE(rec.name, 'A%')", prepend_rec_name=False).filter(
            "LIKE(rec.name, 'B%')", prepend_rec_name=False, _or=True).all()

Filter, Sort and Limit

# Last 5 students with names starting with A
records = db.query(Student).filter(
            "LIKE(rec.name, 'A%')", prepend_rec_name=False).sort("name DESC").limit(5).all()

# Query students with pagination (limit&offset)
page_num, per_page = 2, 10
page = db.query(Student).sort("name DESC").limit(per_page, start_from=(page_num - 1) * per_page)

Fetch Only Some Fields

c = db.query(Student).limit(2).returns('_key', 'name').first()

Update Multiple Records

db.query(Student).filter("name==@name", name='Anonymous').update(name='Mr. Anonymous')

Delete Multiple Records

db.query(Student).filter("LIKE(rec.name, 'test%')", prepend_rec_name=False).delete()

Delete All Records

db.query(Student).delete()

Bulk Create Records

s1 = Student(name='test1', _key='12345', dob=date(year=2016, month=9, day=12))
s2 = Student(name='test2', _key='22346', dob=date(year=2015, month=9, day=12)
car1 = Car(make="Honda", model="Fiat", year=2010)
car2 = Car(make="Honda", model="Skoda", year=2015)

db.bulk_add(entity_list=[p_ref_10, p_ref_11, car1, car2])

Bulk Update Records

p_ref1 = db.query(Person).by_key("12312")
p_ref2 = db.query(Person).by_key("12345")
p_ref1.name = "Bruce"
p_ref2.name = "Eliza"
db.bulk_update(entity_list=[p_ref1, p_ref2])

Query Using AQL

db.add(Student(name='test1', _key='12345', dob=date(year=2016, month=9, day=12)))
db.add(Student(name='test2', _key='22346', dob=date(year=2015, month=9, day=12)))

students = [Student._load(s) for s in db.aql.execute("FOR st IN students RETURN st")]

Reference Fields

Reference fields allow linking documents from another collection class within a collection instance. These are similar in functionality to SQLAlchemy's relationship function.

from arango import ArangoClient
from arango_orm.database import Database

from arango_orm.fields import String
from arango_orm import Collection, Relation, Graph, GraphConnection
from arango_orm.references import relationship, graph_relationship


class Person(Collection):

    __collection__ = 'persons'

    _index = [{'type': 'hash', 'unique': False, 'fields': ['name']}]
    _allow_extra_fields = False  # prevent extra properties from saving into DB

    _key = String(required=True)
    name = String(required=True, allow_none=False)

    cars = relationship(__name__ + ".Car", '_key', target_field='owner_key')

    def __str__(self):
        return "<Person(" + self.name + ")>"


class Car(Collection):

    __collection__ = 'cars'
    _allow_extra_fields = True

    make = String(required=True)
    model = String(required=True)
    year = Integer(required=True)
    owner_key = String()

    owner = relationship(Person, 'owner_key', cache=False)

    def __str__(self):
        return "<Car({} - {} - {})>".format(self.make, self.model, self.year)

client = ArangoClient(username='test', password='test')
db = Database(client.db('test'))

p = Person(_key='kashif', name='Kashif Iftikhar')
db.add(p)
p2 = Person(_key='azeen', name='Azeen Kashif')
db.add(p2)

c1 = Car(make='Honda', model='Civic', year=1984, owner_key='kashif')
db.add(c1)

c2 = Car(make='Mitsubishi', model='Lancer', year=2005, owner_key='kashif')
db.add(c2)

c3 = Car(make='Acme', model='Toy Racer', year=2016, owner_key='azeen')
db.add(c3)

print(c1.owner)
print(c1.owner.name)
print(c2.owner.name)
print(c3.owner.name)

print(p.cars)
print(p.cars[0].make)
print(p2.cars)

Working With Graphs

Working with graphs involves creating collection classes and optionally Edge/Relation classes. Users can use the built-in Relation class for specifying relations but if relations need to contain extra attributes then it's required to create a sub-class of Relation class. Graph functionality is explain below with the help of a university graph example containing students, teachers, subjects and the areas where students and teachers reside in.

First we create some collections and relationships

from arango_orm.fields import String, Date, Integer, Boolean
from arango_orm import Collection, Relation, Graph, GraphConnection


class Student(Collection):

    __collection__ = 'students'

    _key = String(required=True)  # registration number
    name = String(required=True, allow_none=False)
    age = Integer()

    def __str__(self):
        return "<Student({})>".format(self.name)


class Teacher(Collection):

    __collection__ = 'teachers'

    _key = String(required=True)  # employee id
    name = String(required=True)

    def __str__(self):
        return "<Teacher({})>".format(self.name)


class Subject(Collection):

    __collection__ = 'subjects'

    _key = String(required=True)  # subject code
    name = String(required=True)
    credit_hours = Integer()
    has_labs = Boolean(missing=True)

    def __str__(self):
        return "<Subject({})>".format(self.name)


class Area(Collection):

    __collection__ = 'areas'

    _key = String(required=True)  # area name


class SpecializesIn(Relation):

    __collection__ = 'specializes_in'

    _key = String(required=True)
    expertise_level = String(required=True, options=["expert", "medium", "basic"])

    def __str__(self):
        return "<SpecializesIn(_key={}, expertise_level={}, _from={}, _to={})>".format(
            self._key, self.expertise_level, self._from, self._to)

Next we sub-class the Graph class to specify the relationships between the various collections

class UniversityGraph(Graph):

    __graph__ = 'university_graph'

    graph_connections = [
        # Using general Relation class for relationship
        GraphConnection(Student, Relation("studies"), Subject),
        GraphConnection(Teacher, Relation("teaches"), Subject),

        # Using specific classes for vertex and edges
        GraphConnection(Teacher, SpecializesIn, Subject),
        GraphConnection([Teacher, Student], Relation("resides_in"), Area)
    ]

Now it's time to create the graph. Note that we don't need to create the collections individually, creating the graph will create all collections that it contains

from arango import ArangoClient
from arango_orm.database import Database

client = ArangoClient(username='test', password='test')
test_db = client.db('test')

db = Database(test_db)

uni_graph = UniversityGraph(connection=db)
db.create_graph(uni_graph)

Now the graph and all it's collections have been created, we can verify their existence:

[c['name'] for c in db.collections()]
db.graphs()

Now let's insert some data into our graph:

students_data = [
    Student(_key='S1001', name='John Wayne', age=30),
    Student(_key='S1002', name='Lilly Parker', age=22),
    Student(_key='S1003', name='Cassandra Nix', age=25),
    Student(_key='S1004', name='Peter Parker', age=20)
]

teachers_data = [
    Teacher(_key='T001', name='Bruce Wayne'),
    Teacher(_key='T002', name='Barry Allen'),
    Teacher(_key='T003', name='Amanda Waller')
]

subjects_data = [
    Subject(_key='ITP101', name='Introduction to Programming', credit_hours=4, has_labs=True),
    Subject(_key='CS102', name='Computer History', credit_hours=3, has_labs=False),
    Subject(_key='CSOOP02', name='Object Oriented Programming', credit_hours=3, has_labs=True),
]

areas_data = [
    Area(_key="Gotham"),
    Area(_key="Metropolis"),
    Area(_key="StarCity")
]

for s in students_data:
    db.add(s)

for t in teachers_data:
    db.add(t)

for s in subjects_data:
    db.add(s)

for a in areas_data:
    db.add(a)

Next let's add some relations, we can add relations by manually adding the relation/edge record into the edge collection, like:

db.add(SpecializesIn(_from="teachers/T001", _to="subjects/ITP101", expertise_level="medium"))

Or we can use the graph object's relation method to generate a relation document from given objects:

gotham = db.query(Area).by_key("Gotham")
metropolis = db.query(Area).by_key("Metropolis")
star_city = db.query(Area).by_key("StarCity")

john_wayne = db.query(Student).by_key("S1001")
lilly_parker = db.query(Student).by_key("S1002")
cassandra_nix = db.query(Student).by_key("S1003")
peter_parker = db.query(Student).by_key("S1004")

intro_to_prog = db.query(Subject).by_key("ITP101")
comp_history = db.query(Subject).by_key("CS102")
oop = db.query(Subject).by_key("CSOOP02")

barry_allen = db.query(Teacher).by_key("T002")
bruce_wayne = db.query(Teacher).by_key("T001")
amanda_waller = db.query(Teacher).by_key("T003")

db.add(uni_graph.relation(peter_parker, Relation("studies"), oop))
db.add(uni_graph.relation(peter_parker, Relation("studies"), intro_to_prog))
db.add(uni_graph.relation(john_wayne, Relation("studies"), oop))
db.add(uni_graph.relation(john_wayne, Relation("studies"), comp_history))
db.add(uni_graph.relation(lilly_parker, Relation("studies"), intro_to_prog))
db.add(uni_graph.relation(lilly_parker, Relation("studies"), comp_history))
db.add(uni_graph.relation(cassandra_nix, Relation("studies"), oop))
db.add(uni_graph.relation(cassandra_nix, Relation("studies"), intro_to_prog))

db.add(uni_graph.relation(barry_allen, SpecializesIn(expertise_level="expert"), oop))
db.add(uni_graph.relation(barry_allen, SpecializesIn(expertise_level="expert"), intro_to_prog))
db.add(uni_graph.relation(bruce_wayne, SpecializesIn(expertise_level="medium"), oop))
db.add(uni_graph.relation(bruce_wayne, SpecializesIn(expertise_level="expert"), comp_history))
db.add(uni_graph.relation(amanda_waller, SpecializesIn(expertise_level="basic"), intro_to_prog))
db.add(uni_graph.relation(amanda_waller, SpecializesIn(expertise_level="medium"), comp_history))

db.add(uni_graph.relation(bruce_wayne, Relation("teaches"), oop))
db.add(uni_graph.relation(barry_allen, Relation("teaches"), intro_to_prog))
db.add(uni_graph.relation(amanda_waller, Relation("teaches"), comp_history))

db.add(uni_graph.relation(bruce_wayne, Relation("resides_in"), gotham))
db.add(uni_graph.relation(barry_allen, Relation("resides_in"), star_city))
db.add(uni_graph.relation(amanda_waller, Relation("resides_in"), metropolis))
db.add(uni_graph.relation(john_wayne, Relation("resides_in"), gotham))
db.add(uni_graph.relation(lilly_parker, Relation("resides_in"), metropolis))
db.add(uni_graph.relation(cassandra_nix, Relation("resides_in"), star_city))
db.add(uni_graph.relation(peter_parker, Relation("resides_in"), metropolis))

With our graph populated with some sample data, let's explore the ways we can work with the graph.

Expanding Documents

We can expand any Collection (not Relation) object to access the data that is linked to it. We can sepcify which links ('inbound', 'outbound', 'any') to expand and the depth to which those should be expanded to. Let's see all immediate connections that Bruce Wayne has in our graph:

bruce = db.query(Teacher).by_key("T001")
uni_graph.expand(bruce, depth=1, direction='any')

Graph expansion on an object adds a _relations dictionary that contains all the relations for the object according to the expansion criteria:

bruce._relations

Returns:

{
'resides_in': [<Relation(_key=4205290, _from=teachers/T001, _to=areas/Gotham)>],
'specializes_in': [<SpecializesIn(_key=4205114, expertise_level=medium, _from=teachers/T001, _to=subjects/ITP101)>,
 <SpecializesIn(_key=4205271, expertise_level=expert, _from=teachers/T001, _to=subjects/CS102)>,
 <SpecializesIn(_key=4205268, expertise_level=medium, _from=teachers/T001, _to=subjects/CSOOP02)>],
'teaches': [<Relation(_key=4205280, _from=teachers/T001, _to=subjects/CSOOP02)>]
}

We can use _from and _to of a relation object to access the id's for both sides of the link. We also have _object_from and _object_to to access the objects on both sides, for example:

bruce._relations['resides_in'][0]._object_from.name
# 'Bruce Wayne'

bruce._relations['resides_in'][0]._object_to._key
# 'Gotham'

There is also a special attribute called _next that allows accessing the other side of the relationship irrespective of the relationship direction. For example, for outbound relationships the _object_from contains the source object while for inbound_relationships _object_to contains the source object. But if we're only interested in traversal of the graph then it's more useful at times to access the other side of the relationship w.r.t the current object irrespective of it's direction:

bruce._relations['resides_in'][0]._next._key
# 'Gotham'

Let's expand the bruce object to 2 levels and see _next in more action:

uni_graph.expand(bruce, depth=2)

# All relations of the area where bruce resides in
bruce._relations['resides_in'][0]._object_to._relations
# -> {'resides_in': [<Relation(_key=4205300, _from=students/S1001, _to=areas/Gotham)>]}

# Name of the student that resides in the same area as bruce
bruce._relations['resides_in'][0]._object_to._relations['resides_in'][0]._object_from.name
# 'John Wayne'

# The same action using _next without worrying about direction
bruce._relations['resides_in'][0]._next._relations['resides_in'][0]._next.name
# 'John Wayne'

# Get names of all people that reside in the same area and Bruce Wayne
[p._next.name for p in bruce._relations['resides_in'][0]._next._relations['resides_in']]
# ['John Wayne']

Graph Traversal Using AQL

The graph module also supports traversals using AQL, the results are converted to objects and have the same structure as graph.expand method:

obj = uni_graph.aql("FOR v, e, p IN 1..2 INBOUND 'areas/Gotham' GRAPH 'university_graph' RETURN p")
print(obj._key)
# Gotham

gotham_residents = [rel._next.name for rel in obj._relations['resides_in']]
print(gotham_residents)
# ['Bruce Wayne', 'John Wayne']

For Developers

Running the Test Cases

`bash ARANGO_HOSTS="http://127.0.0.1:8529" ARANGO_USERNAME=root ARANGO_PASSWORD=toor ARANGO_DATABASE=test_db pytest tests `

About

A SQLAlchemy like ORM implementation using python-arango as the backend library

Resources

License

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  
You can’t perform that action at this time.