A SQLAlchemy like ORM implementation using python-arango as the backend library
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.


Python ORM Layer For ArangoDB

arango_orm is a python ORM layer inspired by SQLAlchemy but aimed to work with the multi-model database ArangoDB. It supports accessing both collections *and graphs using the ORM. The actual communication with the database is done *using **python-arango* (the database driver for accessing arangodb from python) and object serialization and de-serialization is handled using ***marshmallow*


pip install arango-orm

Connecting to a Database

from arango import ArangoClient
from arango_orm import Database

client = ArangoClient(protocol='http', host='localhost', port=8529)
test_db = client.db('test', username='test', password='test')

db = Database(test_db)

Working With Collections

First we need to define data models (similar to SQLAlchemy's models) to specify what data our collection(s) will contain and how to marshall it

from arango_orm import Collection
from arango_orm.fields import String, Date

class Student(Collection):

    __collection__ = 'students'
    _index = [{'type': 'hash', fields: ['name'], unique=False}]

    _key = String(required=True)  # registration number
    name = String(required=True, allow_none=False)
    dob = Date()

Create Collection in the Database


Drop a Collection


Check if a collection exists


Add Records

from datetime import date
s = Student(name='test', _key='12312', dob=date(year=2016, month=9, day=12))
print(s._id)  # students/12312

Get Total Records in the Collection


Get Record By Key

s = db.query(Student).by_key('12312')

Update a Record

s = db.query(Student).by_key('12312')
s.name = 'Anonymous'

Delete a Record

s = db.query(Student).by_key('12312')

Get All Records in a Collection

students = db.query(Student).all()

Get First Record Matching the Query

first_student = db.query(Student).first()

Filter Records

Using bind parameters (recommended)

records = db.query(Student).filter("name==@name", name='Anonymous').all()

Using plain condition strings (not safe in case of unsanitized user supplied input)

records = db.query(Student).filter("name=='Anonymous'").all()

Filter Using OR

# Get all documents where student name starts with A or B
records = db.query(Student).filter(
            "LIKE(rec.name, 'A%')", prepend_rec_name=False).filter(
            "LIKE(rec.name, 'B%')", prepend_rec_name=False, _or=True).all()

Filter, Sort and Limit

# Last 5 students with names starting with A
records = db.query(Student).filter(
            "LIKE(rec.name, 'A%')", prepend_rec_name=False).sort("name DESC").limit(5).all()

# Query students with pagination (limit&offset)
page_num, per_page = 2, 10
page = db.query(Student).sort("name DESC").limit(per_page, start_from=(page_num - 1) * per_page)

Update Multiple Records

db.query(Student).filter("name==@name", name='Anonymous').update(name='Mr. Anonymous')

Delete Multiple Records

db.query(Student).filter("LIKE(rec.name, 'test%')", prepend_rec_name=False).delete()

Delete All Records


Query Using AQL

db.add(Student(name='test1', _key='12345', dob=date(year=2016, month=9, day=12)))
db.add(Student(name='test2', _key='22346', dob=date(year=2015, month=9, day=12)))

students = [Student._load(s) for s in db.aql.execute("FOR st IN students RETURN st")]

Reference Fields

Reference fields allow linking documents from another collection class within a collection instance. These are similar in functionality to SQLAlchemy's relationship function.

from arango import ArangoClient
from arango_orm.database import Database

from arango_orm.fields import String
from arango_orm import Collection, Relation, Graph, GraphConnection
from arango_orm.references import relationship, graph_relationship

class Person(Collection):

    __collection__ = 'persons'

    _index = [{'type': 'hash', 'unique': False, 'fields': ['name']}]
    _allow_extra_fields = False  # prevent extra properties from saving into DB

    _key = String(required=True)
    name = String(required=True, allow_none=False)

    cars = relationship(__name__ + ".Car", '_key', target_field='owner_key')

    def __str__(self):
        return "<Person(" + self.name + ")>"

class Car(Collection):

    __collection__ = 'cars'
    _allow_extra_fields = True

    make = String(required=True)
    model = String(required=True)
    year = Integer(required=True)
    owner_key = String()

    owner = relationship(Person, 'owner_key', cache=False)

    def __str__(self):
        return "<Car({} - {} - {})>".format(self.make, self.model, self.year)

client = ArangoClient(username='test', password='test')
db = Database(client.db('test'))

p = Person(_key='kashif', name='Kashif Iftikhar')
p2 = Person(_key='azeen', name='Azeen Kashif')

c1 = Car(make='Honda', model='Civic', year=1984, owner_key='kashif')

c2 = Car(make='Mitsubishi', model='Lancer', year=2005, owner_key='kashif')

c3 = Car(make='Acme', model='Toy Racer', year=2016, owner_key='azeen')



Working With Graphs

Working with graphs involves creating collection classes and optionally Edge/Relation classes. Users can use the built-in Relation class for specifying relations but if relations need to contain extra attributes then it's required to create a sub-class of Relation class. Graph functionality is explain below with the help of a university graph example containing students, teachers, subjects and the areas where students and teachers reside in.

First we create some collections and relationships

from arango_orm.fields import String, Date, Integer, Boolean
from arango_orm import Collection, Relation, Graph, GraphConnection

class Student(Collection):

    __collection__ = 'students'

    _key = String(required=True)  # registration number
    name = String(required=True, allow_none=False)
    age = Integer()

    def __str__(self):
        return "<Student({})>".format(self.name)

class Teacher(Collection):

    __collection__ = 'teachers'

    _key = String(required=True)  # employee id
    name = String(required=True)

    def __str__(self):
        return "<Teacher({})>".format(self.name)

class Subject(Collection):

    __collection__ = 'subjects'

    _key = String(required=True)  # subject code
    name = String(required=True)
    credit_hours = Integer()
    has_labs = Boolean(missing=True)

    def __str__(self):
        return "<Subject({})>".format(self.name)

class Area(Collection):

    __collection__ = 'areas'

    _key = String(required=True)  # area name

class SpecializesIn(Relation):

    __collection__ = 'specializes_in'

    _key = String(required=True)
    expertise_level = String(required=True, options=["expert", "medium", "basic"])

    def __str__(self):
        return "<SpecializesIn(_key={}, expertise_level={}, _from={}, _to={})>".format(
            self._key, self.expertise_level, self._from, self._to)

Next we sub-class the Graph class to specify the relationships between the various collections

class UniversityGraph(Graph):

    __graph__ = 'university_graph'

    graph_connections = [
        # Using general Relation class for relationship
        GraphConnection(Student, Relation("studies"), Subject),
        GraphConnection(Teacher, Relation("teaches"), Subject),

        # Using specific classes for vertex and edges
        GraphConnection(Teacher, SpecializesIn, Subject),
        GraphConnection([Teacher, Student], Relation("resides_in"), Area)

Now it's time to create the graph. Note that we don't need to create the collections individually, creating the graph will create all collections that it contains

from arango import ArangoClient
from arango_orm.database import Database

client = ArangoClient(username='test', password='test')
test_db = client.db('test')

db = Database(test_db)

uni_graph = UniversityGraph(connection=db)

Now the graph and all it's collections have been created, we can verify their existence:

[c['name'] for c in db.collections()]

Now let's insert some data into our graph:

students_data = [
    Student(_key='S1001', name='John Wayne', age=30),
    Student(_key='S1002', name='Lilly Parker', age=22),
    Student(_key='S1003', name='Cassandra Nix', age=25),
    Student(_key='S1004', name='Peter Parker', age=20)

teachers_data = [
    Teacher(_key='T001', name='Bruce Wayne'),
    Teacher(_key='T002', name='Barry Allen'),
    Teacher(_key='T003', name='Amanda Waller')

subjects_data = [
    Subject(_key='ITP101', name='Introduction to Programming', credit_hours=4, has_labs=True),
    Subject(_key='CS102', name='Computer History', credit_hours=3, has_labs=False),
    Subject(_key='CSOOP02', name='Object Oriented Programming', credit_hours=3, has_labs=True),

areas_data = [

for s in students_data:

for t in teachers_data:

for s in subjects_data:

for a in areas_data:

Next let's add some relations, we can add relations by manually adding the relation/edge record into the edge collection, like:

db.add(SpecializesIn(_from="teachers/T001", _to="subjects/ITP101", expertise_level="medium"))

Or we can use the graph object's relation method to generate a relation document from given objects:

gotham = db.query(Area).by_key("Gotham")
metropolis = db.query(Area).by_key("Metropolis")
star_city = db.query(Area).by_key("StarCity")

john_wayne = db.query(Student).by_key("S1001")
lilly_parker = db.query(Student).by_key("S1002")
cassandra_nix = db.query(Student).by_key("S1003")
peter_parker = db.query(Student).by_key("S1004")

intro_to_prog = db.query(Subject).by_key("ITP101")
comp_history = db.query(Subject).by_key("CS102")
oop = db.query(Subject).by_key("CSOOP02")

barry_allen = db.query(Teacher).by_key("T002")
bruce_wayne = db.query(Teacher).by_key("T001")
amanda_waller = db.query(Teacher).by_key("T003")

db.add(uni_graph.relation(peter_parker, Relation("studies"), oop))
db.add(uni_graph.relation(peter_parker, Relation("studies"), intro_to_prog))
db.add(uni_graph.relation(john_wayne, Relation("studies"), oop))
db.add(uni_graph.relation(john_wayne, Relation("studies"), comp_history))
db.add(uni_graph.relation(lilly_parker, Relation("studies"), intro_to_prog))
db.add(uni_graph.relation(lilly_parker, Relation("studies"), comp_history))
db.add(uni_graph.relation(cassandra_nix, Relation("studies"), oop))
db.add(uni_graph.relation(cassandra_nix, Relation("studies"), intro_to_prog))

db.add(uni_graph.relation(barry_allen, SpecializesIn(expertise_level="expert"), oop))
db.add(uni_graph.relation(barry_allen, SpecializesIn(expertise_level="expert"), intro_to_prog))
db.add(uni_graph.relation(bruce_wayne, SpecializesIn(expertise_level="medium"), oop))
db.add(uni_graph.relation(bruce_wayne, SpecializesIn(expertise_level="expert"), comp_history))
db.add(uni_graph.relation(amanda_waller, SpecializesIn(expertise_level="basic"), intro_to_prog))
db.add(uni_graph.relation(amanda_waller, SpecializesIn(expertise_level="medium"), comp_history))

db.add(uni_graph.relation(bruce_wayne, Relation("teaches"), oop))
db.add(uni_graph.relation(barry_allen, Relation("teaches"), intro_to_prog))
db.add(uni_graph.relation(amanda_waller, Relation("teaches"), comp_history))

db.add(uni_graph.relation(bruce_wayne, Relation("resides_in"), gotham))
db.add(uni_graph.relation(barry_allen, Relation("resides_in"), star_city))
db.add(uni_graph.relation(amanda_waller, Relation("resides_in"), metropolis))
db.add(uni_graph.relation(john_wayne, Relation("resides_in"), gotham))
db.add(uni_graph.relation(lilly_parker, Relation("resides_in"), metropolis))
db.add(uni_graph.relation(cassandra_nix, Relation("resides_in"), star_city))
db.add(uni_graph.relation(peter_parker, Relation("resides_in"), metropolis))

With our graph populated with some sample data, let's explore the ways we can work with the graph.

Expanding Documents

We can expand any Collection (not Relation) object to access the data that is linked to it. We can sepcify which links ('inbound', 'outbound', 'any') to expand and the depth to which those should be expanded to. Let's see all immediate connections that Bruce Wayne has in our graph:

bruce = db.query(Teacher).by_key("T001")
uni_graph.expand(bruce, depth=1, direction='any')

Graph expansion on an object adds a _relations dictionary that contains all the relations for the object according to the expansion criteria:



'resides_in': [<Relation(_key=4205290, _from=teachers/T001, _to=areas/Gotham)>],
'specializes_in': [<SpecializesIn(_key=4205114, expertise_level=medium, _from=teachers/T001, _to=subjects/ITP101)>,
 <SpecializesIn(_key=4205271, expertise_level=expert, _from=teachers/T001, _to=subjects/CS102)>,
 <SpecializesIn(_key=4205268, expertise_level=medium, _from=teachers/T001, _to=subjects/CSOOP02)>],
'teaches': [<Relation(_key=4205280, _from=teachers/T001, _to=subjects/CSOOP02)>]

We can use _from and _to of a relation object to access the id's for both sides of the link. We also have _object_from and _object_to to access the objects on both sides, for example:

# 'Bruce Wayne'

# 'Gotham'

There is also a special attribute called _next that allows accessing the other side of the relationship irrespective of the relationship direction. For example, for outbound relationships the _object_from contains the source object while for inbound_relationships _object_to contains the source object. But if we're only interested in traversal of the graph then it's more useful at times to access the other side of the relationship w.r.t the current object irrespective of it's direction:

# 'Gotham'

Let's expand the bruce object to 2 levels and see _next in more action:

uni_graph.expand(bruce, depth=2)

# All relations of the area where bruce resides in
# -> {'resides_in': [<Relation(_key=4205300, _from=students/S1001, _to=areas/Gotham)>]}

# Name of the student that resides in the same area as bruce
# 'John Wayne'

# The same action using _next without worrying about direction
# 'John Wayne'

# Get names of all people that reside in the same area and Bruce Wayne
[p._next.name for p in bruce._relations['resides_in'][0]._next._relations['resides_in']]
# ['John Wayne']

Graph Traversal Using AQL

The graph module also supports traversals using AQL, the results are converted to objects and have the same structure as graph.expand method:

obj = uni_graph.aql("FOR v, e, p IN 1..2 INBOUND 'areas/Gotham' GRAPH 'university_graph' RETURN p")
# Gotham

gotham_residents = [rel._next.name for rel in obj._relations['resides_in']]
# ['Bruce Wayne', 'John Wayne']


Version 0.4

  • Database.has_collection method.
  • Examples and README updated to use ArangoClient correctly for the 4.x version.
  • Fixed #10 - Collections now raise SerializationError instead of RuntimeError when loading or dumping data to the db fails.

Version 0.3.1

  • Query.first() and Query.one() methods implementation to return the first record that matches the query

Version 0.3

  • Schema fields are now be defined inside the main model class instead of a nested _Schema child class
  • Allow extra fields not present in the schema to be present in collections without any validation or type conversion
  • Load and dump extra fields only if _allow_extra_fields is set to True for the collection class
  • Bound db to model object. If an object has interacted with the db then it's _db attribute points to the database
  • Collections now have _pre_process and _post_process methods that get called before and after data loading into the collection respectively
  • Database.create_all method creates all collections, relations, graphs (with their edge definitions) that are passed onto it as a list.
  • Database.update_graph creates collections, relations, edge definitions and drops or replaces edge definitions if they have changed. Does not drop any collection or relation.

Version 0.2

  • Support for creating indices by defining _index attribute in model definition

Version 0.2.1

  • Graph creation also supports creating indices from collection class _index attribute
  • Support for passing collection create options as supported by python-arango database.create_collection method to database.create_colltion method