1901.02213v3 [cs.DC] 16 Sep 2019

arxXiv

Superlight — A Permissionless, Light-client Only
Blockchain with Self-Contained Proofs
and BLS Signatures

Roman Blum, Thomas Bocek
Distributed Systems & Ledgers Lab
University of Applied Sciences Rapperswil
Rapperswil, Switzerland
{roman.blum, thomas.bocek} @hsr.ch

Abstract—Blockchain protocols are based on a distributed
database where stored data is guaranteed to be immutable. The
requirement that all nodes have to maintain their own local copy
of the database ensures security while consensus mechanisms
help deciding which data gets added to the database and keep
powerful adversaries from derailing the system. However, since
the database that forms the foundation of a blockchain is a
continuously growing list of blocks, scalability is an inherent
problem of this technology. Some public blockchains require up
to terabytes of storage.

In this work, we present the concept Superlight with self-
contained proofs, which is designed to improve scalability of a
public blockchain, while preserving security and decentralization.
Instead of all nodes having a local copy of the whole blockchain to
verify a transaction, nodes can derive the validity of a transaction
by only using block headers. To keep the block headers compact,
BLS signatures are used to combine signatures. We provide a
definition of SCPs and show the required steps of a client to
create a proof that is accepted by other nodes for transferring
funds. The advantage of such a light-client-only blockchain is the
lower storage requirement, while the drawback is an increased
computational complexity due to BLS signatures and perfect
Bloom filters.

I. INTRODUCTION

The increasing popularity of cryptocurrencies and smart
contract platforms has raised awareness in the academia and
industry [4]-[6]. A fundamental component of cryptocurren-
cies such as Bitcoin [[1] or Ethereum [2] is the underlying
blockchain. A blockchain is a block-structured database held
and updated independently by each node. All nodes maintain
their own copy of the blockchain. Using computational power,
cryptography and consensus protocols, miners create blocks
containing transactions and others agree on it. As a result,
transactions can be publicly, immutably and securely stored
on the blockchain, which gives the participants of the network
shared control over the evolution of data. However, the trans-
action throughput of these systems lacks behind its centralized
counterparts and before they can become a viable alternative,
blockchains must be able to scale and process transactions
at speeds way above its current capabilities, especially when
weighted against security and decentralization.

In most public blockchains that exist today, including Bit-
coin and Ethereum, the security strongly relies on miners

having a local copy of the blockchain. However, public
blockchains are known to have scalability issues because of
the maintenance of this local copy. While private blockchains
offer some advantages, such as better scalability since not
every node needs to be involved in processing transactions
or its storage, it is not publicly accessible. With the concept
of self-contained proofs (SCPs), miners in a public blockchain
do not rely on the full blockchain but instead only require the
block headers and the transaction in question to verify it.

Consider the following use case where user Alice wants to
send coins to Bob. Both Alice and Bob employ a light-client,
using a mobile and a desktop device respectively. Alice creates
a transaction and sets all properties normally involved in the
process (sender, receiver, amount, etc.). Furthermore, Alice
adds a SCP to her transaction, proving that she has indeed
sufficient coins to spend. Upon completion of the transaction,
she publishes it to the network where miner Charlie eventually
receives the transaction. Charlie does not rely on the full
blockchain history to verify the transaction of Alice. Instead,
he only needs the block headers to verify the SCP attached
to the transaction. After successful verification and inclusion
of the transaction in a block header, Bob is able to spend the
received coins from Alice by including the transaction of Alice
in the SCP of his next transaction.

We show that with the utilization of SCPs, every participant
of the network could potentially become a light client resulting
in higher scalability. Such a scalability gain comes with a
computational cost due to BLS signatures and perfect Bloom
filters. We will discuss its advantages and disadvantages. SCPs
could be applied to any blockchain, however, due to changes in
the data structure, cryptographic mechanisms, and protocols,
a hard fork is in most cases required for existing blockchains.

The remainder of this paper is organized as follows. Sec-
tion [[I] presents related work. Underlying assumptions, system
settings, and definitions are presented in Section before
presenting the design of self-contained proofs in Section
Conclusions are presented in Sectionand, finally, Section
presents future work directions.

II. BACKGROUND AND RELATED WORK

The necessity of a future-proof scalability solution is an
inevitable challenge for Bitcoin, Ethereum and every other
blockchain-based consensus protocol. There are numerous
groups using different approaches to find a solution, most
notable off-chain state channels [8]], [9]], sharding [6], [11],
and plasma [[10].

In off-chain state channels, to open a channel, a transaction
needs to be sent on-chain, while subsequent transactions are
sent peer-to-peer and off-chain. To close a state channel, or in
case of a dispute, an on-chain transaction has to be sent. The
block size increases for a on-chain transaction.

Like state channels, Plasma introduces a technique for
conducting off-chain transactions while relying on the security
of its underlying blockchain. A blockchain facilitating Plasma
is hierarchically arranged in a way that many smaller chains
can be created on top of the main one resulting in a tree-like
structure. These smaller chains are also referred to as child
chains. Basically, each child chain is a customizable smart
contract serving different needs, coexisting and operating inde-
pendently from others. The communication between the child
chains and the main chain is secured by fraud proofs, where
each child chain has its own mechanisms for validating blocks
and fraud-proof implementations. The fraud-proofs ensure that
in case of an adversary, the participants of the child chain can
protect their funds and exit the child chain [21]]. In general,
lowering the per-node storage requirements is necessary to
increase scalability. For example, [23] proposes a technique
based on erasure coding which ensures that any block of the
chain can be easily rebuild from a small number of such nodes.

In our approach every transaction is on-chain, however, the
transaction will only the block size by 32 bytes if local states
are used. Since the block size only slightly increases, sharding
of storage space is less important. Sharding approaches where
bandwidth is sharded as well, however, can increase scalability.
Sharding is a pattern [[12]] in distributed software systems and
commonly utilized in distributed databases. In these database
systems, a shard is a horizontal partition, where each shard is
stored on a separate database server instance holding its own
distinct subset of data. In blockchain, a shard is a distinct
subset of users, e.g., distinguished by their addresses. Self-
contained proofs as part of a sharding concept have been first
introduced in [[7|] and builds the foundation of this work. While
the SCP in [[7] uses Merkle roots and Merkle proofs, in this
paper, we store each transaction hash in the block header
instead of the Merkle root. This simplifies the protocol, but
results in an overhead of 32bytes per transaction instead of a
fixed Merkle root of 32 bytes for all transactions.

The Superlight concept with an overhead of 32 bytes per
transaction for a 256-bit hash function works for local state,
meaning, that state is only known by its senders and receivers
and must be presented in a self-contained format when using
for further transactions. Global state can be stored as well, but
since each storage overhead results in cost, local state should
be preferred where possible. The possibility for local state

depends on the use-case.

III. SYSTEM SETTING, ASSUMPTIONS, AND DEFINITIONS

Before presenting the design of self-contained proofs, first
the system settings and underlying assumptions are presented.

Entities. The entities in our assumption are of two kinds,
that is,

o miners who maintain the longest blockchain, validate
transactions with self-contained proofs, append new
blocks on top of the longest chain, and broadcast them
as soon as they are discovered, and

e nodes who use the network, calculate self-contained
proofs, send and receive transactions, and validate blocks.

Type of Blockchain. Although SCPs work for account-
based as well as unspent transaction output (UTXO)-based
blockchains, we assume that our system is based on an
account-based blockchain where funds can be transferred from
a single account to another. Smart contracts are supported as
well, and requires an initial state to be globally available. An
account can be controlled by the owner of the private key
and is identified by an address. Although our prototype is
implemented in the Bazo blockchain, which is a proof-of-
stake (PoS) blockchain, we do not rely on a specific consensus
protocol such as PoW or PoS. Further consensus mechanisms
are presented in [22].

Transactions fulfill the purpose of sending units of
blockchain value (e.g. coins or tokens) from one address to
another. A transaction contains at least both addresses of the
sender and receiver and a signature that proves the origin
of the transaction and a signature that proves the receiver
has received this transaction. In this paper, we distinguish
between sending a transaction, which refers to the process
of subtracting a particular amount of coins from the sender,
and receiving a transaction, which refers to the process of
adding a particular amount of coins fo the receiver. If a new
address is identified in a transaction, the block header stores
these new addresses. Creating new addresses needs a fee as
this increases the size of the block header. For comparison, the
current number of addresses/accounts in Ethereum is around
54 million [20]]. A TX is identified by its hash.

Bloom filters. Each block header contains a Bloom filter.
A Bloom filter is a space-efficient data structure that provides
a fast way to check the existence of an element in a set and
returns true or false as a result, defined by the false-positive
probability of a Bloom filter [[15]]. However, as the number of
elements increases, the probability of returning false-positives
increases, i.e., a Bloom filter can claim that an object is
member of a set when it is not. Bloom filters never give false-
negatives. In our assumption, a Bloom filter of a block header
can be queried with an address a and returns true if the block
header contains any transaction where a is either sender or
receiver of a transaction. Since all addresses are in the block
header and known beforehand, a perfect Bloom filter can be
constructed by increasing the length until no collision occurs
with addresses not involved in a transaction. The downside of
finding a perfect Bloom filter is computational complexity.

Merkle trees are a fundamental component of blockchains
allowing a secure and efficient way to verify large data struc-
tures [[16]]. Every block header contains a Merkle root obtained
from a Merkle tree. A Merkle tree creates a single value (the
Merkle root) that proves the integrity of all transactions by
hashing correspondent nodes together and climbing up the
tree until the root hash is obtained. As long as the root hash
is publicly known and trusted, it is possible for anyone to
use a Merkle proof to verify the position and integrity of a
transaction within a block header, since it is computationally
infeasible to guess a transaction hash that results in a particular
root.

Typically, each leaf of a Merkle tree represents a single
transaction. The number of leaves equals the number of
transactions n in a block header where the height of the Merkle
tree equals loga(n). A self-contained proof consists of zero or
more Merkle proofs provided by the sender of the transaction.

BLS Signatures [18] can efficiently aggregate signatures.
This signature scheme uses curve pairing to combine signa-
tures from multiple senders for multiple messages into one
single signature. The aggregation can be done on the miner and
can be verified by anyone. However, BLS signature verification
is more computational intensive than regular signatures. In
fact, as shown in [24], BLS without optimization is about
a magnitude slower than ECDSA when it comes to signature
verification.

For given public and private key pk and sk, a signature s is
created with sign(sk, m) = s, where m is the message. Verifi-
cation is done with the following scheme verify(pk,m,s) =
[true/ false], which is e(g, s) = e(pk, H(m)), where g is a
generator, e is a bilinear pairing, and H the hash function.
With BLS signature aggregation, anyone can aggregate the
following triples (pk;,m;,s;) to squ. In order to verify, one
needs to check e(g, s) = e(pk;, H(m;))an [19].

IV. DESIGN

A. Self-Contained Proofs

A self-contained proof (SCP) consists of one or more trans-
actions and one or more Merkle proofs, where each Merkle
proof proves the existence of a transaction in a particular
block header. An SCP without a Merkle proof requires a block
header to include all transaction hashes. A SCP with Merkle
proof is more space efficient but requires that the Merkle tree
is known in advance.

We define a self-contained proof and its calculation as fol-
lows. A Merkle proof for block header b contains a transaction
hash ¢, where ¢ is the hash of the transaction we want to
provide its existences in b, and a set of intermediate hashes
M required to build a Merkle tree, where m € M and
M = {my,...,my,}. We can iteratively hash these values

together to calculate the Merkle root, i.e.,

hy = hash(t,m1),
hg = hash(hl, mg),

hyp, = hash(hyp—1,m,),

where h,, is the computed Merkle root. As a last step, let
rooty, = MerkleRoot(b) be the Merkle root of block header
b. The validator compares h,, with the Merkle root root; to
determine if the Merkle proof is valid or not, i.e.,

e if h, = rooty, the proof is valid and algorithm proceeds
to verify the next proof, or

e if h, # rooty, the proof is invalid and the algorithm
stops.

B. Block Header

In order to verify the correctness of an SCP, the following
information need to be present in the block header:

o New addresses found in transactions for the current block
header. If a node has all block headers, it knows all
addresses in the blockchain.

e Perfect Bloom filter of sender and receiver address of
involved transactions in that block header.

o BLS signatures from all senders and receivers of involved
transactions in that block header to verify that a sender
or receiver was involved.

e Merkle root or transaction hashes.

Every new address found in transactions for the current
block header will be stored in the block header. It is important
for a miner to know all past addresses for the creation of a
perfect Bloom filter, as it needs to check that no false-positives
occur. The alternative to using a perfect Bloom filter is to store
all the addresses involved in transactions for the current block
in the block header.

Since the block header contains a Bloom filter, two attack
scenarios need to be considered: a) the sender or receiver
address is not part of the Bloom filter although a transaction
was broadcasted, and b) the Bloom filter suggests that a
sender or receiver is part of the Bloom filter without issuing
a transaction. While a) is non-critical, as the transaction can
be included in the next block header by another miner, b) is
critical. A rogue miner could set all bits to true and creating
a Bloom filter suggesting a sender or receiver is part of the
Bloom filter. In that case, every sender and receiver needs
to show an SCP for this block header, which does not exist.
Thus, a single miner can effectively deactivate all accounts. In
order to prevent creating a wrong Bloom filter, BLS signatures
are used. Thus, each sender and receiver need to create such a
signature, which will be aggregated by the miner. If the Bloom
filter indicates a presence of an address, but the BLS signature
is invalid, the whole block header is invalid. Such an invalid
block header can be checked and rejected by any participant,
as the list of all addresses is known to all the participants.

C. Blocks with Aggregated Transactions

SCPs work well when there is only one transaction per user
and per block header if the Merke root is used. However,
an adversarial user could create a fraudulent proof if there is
more than one transaction sent by the same address in a single
block header. Example [4.1] demonstrates how this potential
vulnerability could be exploited.

Example 4.1: Consider a Merkle tree as shown in Figure [I]
Assume that transactions 77 and 7, were sent by the same
user, i.e., the user as spent coins in two different transactions.
Querying the Bloom filter for this block header returns true,
however, it does not return the number of transactions that are
contained within the Merkle tree. The adversarial user could
create a valid Merkle proof with values {717, 75, Hy}, without
the mention of T}.

L

Fig. 1: A Bloom filter returns true for any number > 1
that a set contains. This vulnerability can be exploited with
fraudulent Merkle proofs.

Per-block transaction aggregation mitigates the problem
shown in Example Let b be a new (empty) block header,
t be a transaction of the transaction pool 7" and M be the
set of transactions being added to b, with M C T. A miner
creates one transaction bucket, short TxBucket, for each
unique address, resulting in n buckets, where n < len(M)
and X7, len(TxBucket;) = len(M).

For the next step, the transaction bucket data structure is
introduced. A Tz Bucket consists of the following properties:

e Address: The address of a unique sender or receiver
within a block header.

« Relative Balance: The sum of all transaction amounts,
i.e., RelativeBalance = Zlie:nl(TmBuCkEt) amount(Tz).
Note that this value can be positive or negative.

e Merkle Root: The Merkle root is obtained from the
Merkle tree constructed from all transactions where the
address of the sender equals to the bucket’s address.

As a result, querying the Bloom filter for this block header
returns frue if a TxBucket equals to the queried address.
Fraudulent proofs are mitigated, because transactions of the
same sender (address) are aggregated into a TxBucket. A
user has to provide all the transactions within a bucket in order
for others to generate the relative balance and the Merkle root
for the bucket parameters.

D. Client-Side Proof Calculation

With a Merkle root, a user is only able to create a self-
contained proof if it can provide a Merkle proof for each trans-

Fig. 2: A block’s Merkle root is built from a Merkle tree,
where each leaf represents a unique sender or receiver address,
with each leaf containing another Merkle tree, where each leaf
represents a transaction.

action it was involved in. That means it needs an interactive
protocol with the sender, receiver, and miner. It is important
that sender and receiver know about all these transactions,
where they are involved, as these transactions are part of the
SCP and without it, access to assets is not possible. A user
needs to keep track of all transactions where the sender or the
receiver of the transaction equals to the user’s address. The
client software of the blockchain must be adapted to these
requirements. Since the receiver needs to sign the message
as well, it needs a communication channel to the sender. An
always-on client simplifies this, but is not strictly required.
The following steps describe the mechanism.

A client software, when connected to the network, receives
all block headers. Upon receiving a block header, the algorithm
processes as follows:

1) Check if the block header has already been processed.
If yes, stop the algorithm, otherwise continue.

2) Check the validity of the block header: Get a list of
all involved address by using the Bloom filter and the
list of known addresses. For each match, check the BLS
signature if the both sender and receiver have agreed on
the transaction. If verification is successful, broadcast the
block header to the network, if not, stop the algorithm.

3) Save the hash of the block header to confirm that the
block header has been processed.

Creating a transaction with a valid SCP works as follows:

1) Create a new transaction and set the required proper-
ties, e.g. sender and receiver (including its signatures),
amount, fee, etc.

2) Sender and receiver need to create a BLS signature based
on a unique but deterministic message. If Merkle root
is used, then the message can be the Merkle root, if
transaction hashes are used, then the message can be the
transaction hash from the transaction where the sender
and receiver was involved. With transaction hashes in

the blockheader, communication complexit is lower as,
with a Merkle root, before a signature is provided, both
sender and receiver needs to be sure that they have
a valid Merkle proof for the upcoming block header.
Thus, block header creation needs two phases: 1st phase,
gathering transactions; and 2nd phase with a fixed set
of transactions, gathering BLS signatures from senders
and receivers, which requires an interactive protocol.

3) Set the array of Merkle proofs in the transaction.

4) Publish the transaction to the network.

E. Interactive Protocol

Creating a transaction with a Merkle root requires an in-
teractive protocol between the sender, receiver, and the miner.
The miner needs to suggest a set of transactions that will be
included in a block header and proposes Merkle tree to all
its senders and receivers. The Merkle proof reduces the size
in the block header, but requires the miner to be part in the
interactive protocol. As with 3 parties involved, spam attacks
become possible, where a miner suggests a block with a set of
transactions. If the sender pays the fees in the 1st phase, the
recipient can refuse to sign this proposed block and the sender
lose its fees. In the 2nd phase, the recipient can refure to sign,
and the miner can be spammed with many transactions that
may not be included in the block, but need to be processed.

Thus, both phases need to be onchain and the interactive
protocol requires to first store all transaction hashes into the
block header, which allows that only sender and recipient
needs to agree on a transaction. The 2nd phase could be part
of transaction and block aggregation.

FE. Proof Verification by Miners

When miners try to create a block header, they pick trans-
actions from the transaction pool that they want to be added
in the next block header. They may include any transaction
they want to form a tree of transactions, which later is hashed
into the Merkle root and referenced in the block’s header. It
is important that for a block header to be accepted by the
network it needs to contain only valid transactions. It’s crucial
that miners follow certain rules [13] in order to maintain
consistency across the network.

To create a perfect Bloom filter, the miner uses the picked
transactions and sets the length of the Bloom filter to a certain
size. Once the Bloom filter is filled with sending and receiving
addresses, the miner checks all the other addresses for a match.
If any of the other addresses match, the Bloom filter needs to
be enlarged and the process starts over. Once a perfect Bloom
filter is constructed the BLS signatures need to be aggregated
by the miner. These BLS signatures need to be provided by
the senders and receivers of transactions that are part of the
block header, which prevents that a rogue miner can deactivate
accounts by setting all bits in the Bloom filter to true.

A transaction must provide a valid self-contained proof. A
definition of the proof verification algorithm is provided below.

Let b be the variable that holds the current block header,
where height h is the height of b. Furthermore, let ¢ be the

index in the set of Merkle proofs M, where m € M and
1 <i <len(M). Let T be the set of transactions T' proved
by the Merkle proofs M, with len(M) = len(T'). Let ¢ be the
accumulated, computed balance of coins during verification.
Lastly, let a be the sender’s address of the transaction x
containing the self-contained proof.

1) Get the most recent block header, check its validity and
set it to b, set h = height(b) and check the Bloom filter
if it returns true for a. If no, set h <~ h — 1 and repeat
step. If yes, continue.

2) Get the Merkle proof m; at index ¢ and check if
height(m;) = h. If no, stop algorithm because M does
not contain a proof and deems the SCP invalid. If yes,
continue.

3) If Merkle root is used, calculate the Merkle root r;
using my; and ¢;. If r; # MerkleRoot(b), stop algorithm
because the Merkle proof is invalid. If transaction hashes
in the header are used, check if hash of z is included,
otherwise stop. If the Merkle root matches or the trans-
action hash is included and the receiver in ¢; equals a,
set ¢ < ¢ + amount(t;). If the Merkle root matches
or the transaction hash is included and the sender in ¢;
equals a, set ¢ «— ¢ — amount(t;). Continue.

4) Check BLS signature based on public keys from sender
and receiver involved in transactions in this block. If
successful, continue.

5) Set h<—h—1landi< ¢+ 1. If h >0, go to step 1.

6) Check if the desired amount of z is less or equal the
computed balance, i.e., check if amount(z) < c. If yes,
the self-contained proof is valid, otherwise invalid.

The algorithm determines for every block header, starting
from the most recent back to the genesis block header, if the
Bloom filter returns true for the sender of the transaction. In
case the Bloom filter returns true, the algorithm looks up the
Merkle proof for this block header, compares the calculated
Merkle root with the block’s Merkle root, and checks the BLS
signature. By repeating these steps, the algorithm concludes
the computed balance of the sender and verifies if it is greater
or equal than the amount spent in the transaction.

G. Local and Global State

In Superlight, state is differentiated between local and global
state. A simple transaction between two parties only involves
local state, because the value exchanged is only of interest
to them. However, global state comes into play with smart
contracts. The global state of smart contracts must be known
to every participant of the network, e.g., what value a certain
variable of the smart contract is set to.

For this reason, global state changes are stored in the
block using Merkle Patricia trees (MPTs) [[17]. Whenever a
smart contract changes, the difference between the last and
current state is stored in the MPT. In order to reduce the
size of continuously-growing block, state is aggregated. State
aggregation is a way of keeping the size of the ledger small,
that is, users only store state not older than a predefined
number of blocks, denoted as aggregation length.

H. Smart Contract Language with Local and Global State

Lazo is a compiled and contract-oriented programming lan-
guage for the Bazo Blockchain. The goals of the language are
to be simple, expressive and secure in writing reliable and solid
smart contracts. Lazo is similar to Solidity. It borrows and
adapts good concepts from Solidity while avoiding features
that have led to complexity and unreliable code. Lazo source
code will be compiled to Bazo Intermediate Language (IL).
Bazo IL consists of Opcodes that run on the stack-based Bazo
Virtual Machine (VM). [25]]

A ”Simple Contract” program written in Lazo:

version 1.0

contract SimpleContract{

[Local]

Map<address , int> payments
[Global]

int totalAmount

[Payable]

[Pre: msg.coins > 0]

function void pay() {
payments [msg.sender] += msg.coins
}

}

Lazo is a statically typed language, uses the nominal typing
system, has no type inferences, does not support implicit type
conversions, is turing-complete at VM but not turing-complete
at the language level. In the first version, Lazo deliberately
omitted language features that are common in other languages,
such as inheritance, generics, function overloading, etc.

The language distinguished between local and global state.
The local state is only known between the involved senders
and receivers, thus, querying a local state in the Bazo VM
only works with a SCP, as this provides the local state. The
advantage of local state is reduced storage size. In the listing,
a payment can be local, which means a receiver needs to proof
that it received the coins, while the total amount is global and
can be accessed by anyone.

L. Perfect Bloom Filter Growth

Since we need to exclude false positives in a Bloom filter,
a perfect Bloom filter needs to be created. A value can be
hashed multiple times, with different hashing functions. As
long as they are all well-behaved hashing functions (evenly
distributed, consistent, minimal collisions), multiple indices
can be generated to flip for each value. This number of hashes
can be scaled up and is subject to optimising the perfect Bloom
filter with regard to total number of addresses and the actual
number of participating addresses for a specific block. At the
same time, increasing the number of hashes also increases the
space each element will take up when it is being inserted into
the Bloom filter. Thus, the second strategy to exclude false
positives is to scale up the bit array of the Bloom filter. Using

these strategies, a simple mechanism for finding a perfect
Bloom filter is as follows.

Given a zero-based set of all addresses A, where n =
len(A). For simplicity, assume that all participating addresses
ag...a;m—1 are stored at the front of the array, where m is the
number of participating addresses, and all non-participating
addresses a,,...a,—1 are at the back of the array, where n —m
is the number of non-participating addresses.

1) A Bloom filter of size s = 0 bit is created.

2) All participating addresses ag...a,,—1 are inserted.

3) All non-participating addresses with indices a,...a,—1

are checked whether they return a false-positive in
the Bloom filter. If no, the Bloom filter contains a
false-positive and the Bloom filter is too small, hence,
increment the Bloom filter size s = s+ 1 and repeat the
process. If yes, a perfect Bloom filter was found.
Note that this code can be optimised, e.g., instead of in-
crementing the Bloom filter size it could be increased with
doubling/halving of the size. Another optimisation is the usage
of heuristics. As can be seen in Figure 3] the Bloom filter
gradually increases with the number of participating addresses.

Tests have been conducted in order to determine the growth
of the perfect Bloom filter. Given a fixed number of total
addresses in the system, it is of particular interest how the
perfect Bloom filter grows with regard to the actual number
of participating addresses for a specific block. For simplicity
reasons, tests have been using a Bloom filter with three hashes
per insert/query operation, that is, inserting a value or querying
the Bloom filter hashes the value three times each time.

9000

8000

Bloom Filter Size (in Bits)

g
g

0 100 200 300 400 500 600 700 800 900 1000
Participating Addresses in Block

— 100 TA 500 TA 1000 TA Concat addresses

Fig. 3: Bloom Filter Growth with Regard to Participating
Addresses for 100, 500 and 1000 Total Addresses (TA)

Figure [3| shows the growth of the perfect Bloom filter
with regard to the number of participating addresses. For
example, given a system of 500 total addresses (orange line),
a perfect Bloom filter with three hashes never exceed the
size of 3000 bits (at around 400 participating addresses).
These tests show that, in comparison to just concatenate the

participating addresses in the header (yellow line) for 32 bytes
for each address, the usage of a perfect Bloom filter reduces
the block header size considerably. However, additional time
and resources are necessary to calculate the perfect Bloom
filter.

V. CONCLUSION

In this paper, we presented the Superlight concept, a light-
client only blockchain. In this blockchain the information
about senders and receivers is stored in a perfect Bloom filter
in the block header, together with BLS signatures and all
known addresses. The light-client stores private keys and self-
contained proofs. With this approach, the size of a public
blockchain can significantly be reduced.

In a scenario where a blockchain protocol is solely based on
efficient, lightweight clients, where each client is in possession
of all block headers and their own transactions, clients not only
have to store their secret key securely, but also transactions
and Merkle proofs. If a client loses one transaction and/or
Merkle proof it will be no longer be able to create a valid
self-contained proof, and it will lose access all its funds.

A positive side effect in this scenario is the per-miner
storage decrease, because clients are responsible for their own
transactions and block bodies only need to store the global
state. A negative side effect is that a receiver needs to be
online in order to create the BLS signature to receive funds.

At its core, self-contained proofs are an interesting way
of transaction verification, allowing to transform a blockchain
with full-clients into a trust-less light-client-only blockchain. It
offers promising scalability and more efficient mobile wallets
in future blockchains.

VI. FUTURE WORK

Security Considerations. The concept of self-contained
proofs has been implemented as a proof-of-concept in
Bazo [14], an open-source research blockchain to test and
evaluate mechanisms such as proof-of-stake, storage pruning,
sharding, etc. However, a rigorous security analysis to identify
potential threats is crucial before using SCPs in production.

Proof Size. The size of a self-contained proof in a trans-
action could potentially become very large when a user has
to provide many small transactions in order to spend a large
amount of coins in a single transaction. One way to solve
this problem is to introduce checkpoints or aggregation to the
blockchain. Future work includes performing evaluation tests
for the proposed approach to assess how much the storage can
be lowered. It will also evaluate the computational cost due to
BLS signatures.

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[9]
[10]

[11]

[12]
[13]
[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash
http://bitcoin.org/bitcoin.pdf, 2008.

G. Wood, Ethereum: A secure decentralised generalised transaction
ledger, Ethereum project yellow paper, 2014, pp.1-32.

Cardano, https://www.cardano.org, visited on 09-12-2018.

I. Eyal, A. Gencer, E. Gun Sirer, R. Van Renesse, Bitcoin-NG: A
Scalable Blockchain Protocol, 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), 2016, pp. 45-59.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, B. Ford,
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding,
2018, pp. 19-34.

Zilliga Team, The Zilliqa Technical
https://docs.zilliqga.com/whitepaper.pdf, 2018.

R. Blum, Scalability for the Bazo Blockchain with Sharding,
https://dsl.hsr.ch, pp. 12-13, 2018.

J. Poon, T. Dryja, The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments, https://lightning.network/lightning-network-paper.pdf,
2018.

Raiden Network - Fast, cheap, scalable token transfers for Ethereum,
https://raiden.network, visited on 09-12-2018

J. Poon, V. Buterin, Plasma: Scalable Autonomous Smart Contracts,
http://plasma.io/plasma.pdf, 2018.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena, A
Secure Sharding Protocol For Open Blockchains, Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pp. 17-30, 2016.

Microsoft, Sharding Pattern, https://docs.microsoft.com/en-
us/azure/architecture/patterns/sharding, visited on 10-12-2018.

Protocol Rules, https://en.bitcoin.it/wiki/Protocol_rules, visited on 10-
12-2018.

Bazo Blockchain, https://github.com/bazo-blockchain, visited on 10-12-
2018.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, 13(7):422426, 1970.

R. Merkle, Method of providing digital signatures, The Board Of
Trustees Of The Leland Stanford Junior University, US patent 4309569,
1982.

Merkle Patricia Tree, https:/github.com/ethereum/wiki/wiki/Patricia-
Tree, visited on 10-12-2018.

D. Boneh, C. Gentry, H. Shacham, and B. Lynn: Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps, Eurocrypt 2003,
LNCS 2656, pp. 416-432, 2003.

D. Boneh, M. Drijvers, G. Neven: Compact Multi-signatures for Smaller
Blockchains, Advances in Cryptology, ASIACRYPT, pp. 435-464, 2018.

system,

Whitepaper,

Evolution of the total number of Ethereum accounts,
https://www.etherchain.org/charts/totalAccounts, ~visited on 04-01-
2019.

Binance, What Is Ethereum Plasma?,

https://www.binance.vision/blockchain/what-is-ethereum-plasma,
visited on 06-02-2019.

9 Types of Consensus Mechanisms That You Didnt Know About,
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-
that-you-didnt-know-about-49ec365179da, visited on 06-02-2019.

D. Perard, J. Lacan, Y. Bachy, J. Detchart, Erasure code-based low
storage blockchain node, https://arxiv.org/abs/1805.00860, visited on 06-
02-2019.

A. Block, BLS: Is it really that slow?, https://blog.dash.org/bls-is-it-
really-that-slow-4ca8c1fcd38e, visited on 06-02-2019.

R. Pfister, K. Thurairatham, Improving the Bazo Blockchain,
https://eprints.hsr.ch/736/, 2018.

http://bitcoin.org/bitcoin.pdf
http://plasma.io/plasma.pdf

	I Introduction
	II Background and Related Work
	III System Setting, Assumptions, and Definitions
	IV Design
	IV-A Self-Contained Proofs
	IV-B Block Header
	IV-C Blocks with Aggregated Transactions
	IV-D Client-Side Proof Calculation
	IV-E Interactive Protocol
	IV-F Proof Verification by Miners
	IV-G Local and Global State
	IV-H Smart Contract Language with Local and Global State
	IV-I Perfect Bloom Filter Growth

	V Conclusion
	VI Future Work
	References

