Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
90 lines (67 sloc) 3.19 KB

###How to access ESS data via Python ####Steps

  1. Import relevant libraries (json, pandas, requests)
  2. Request the data from ESS API using requests.get()
  3. Import the JSON data using .json()
  4. Convert data to a dataframe using pandas.DataFrame()
import json   # to deal with json objects
import pandas as pd # to convert to dataframe and complete analysis
import requests # to make http request

url = ""
sentiment_states = requests.get(url)
sentiment_states.status_code # check that status code is OK (200)
sentiment_states.headers # check the content-type this response; confirm that it's type json
sentiment_states_data = sentiment_states.json() # import json data
print(sentiment_states_data['data'])  # check the data

Convert json data to a dataframe

sentiment_states_df = pd.DataFrame(sentiment_states_data['data'], columns= ['count', 'score', 'id', 'start_date', 'end_date'])


The sentiments data is now ready for analysis!

#####Dealing with Nested Lists The question scores data needs some restructuring for analysis. Take a look at the scores column in the the dataframe below:

url2 = ""
question_scores = requests.get(url2)
question_scores_data = question_scores_data.json()

question_scores_df = pd.DataFrame(question_scores_data, columns= ['id', 'levels', 'scores', 'start_date', 'end_date'])

Notice how the column scores is a list of dictionaries with key values level and score. We want to restructure the data so that each field is its own column in a dataframe:

new_qs_data = {'id': [], 'start_date': [], 'end_date': [], 'level' : [], 'score' : []}

for i in question_scores_data['data']:

    id_vals = i['id']
    start_date_vals = i['start_date']
    end_date_vals = i['end_date']
    for j in i['scores']:
        level_vals = j['level']
        score_vals = j['score']


print new_qs_data

testing_df2 = pd.DataFrame(new_qs_data) # convert dictionary to dataframe
print testing_df2.head() # preview dataframe

We now have the structure we want. The final step is to reorder the columns if needed.

testing_df3 = testing_df2[['id', 'level', 'score', 'start_date', 'end_date']] # reorder dataframe columns
print(testing_df3.head()) # preview updated dataframe

And now the question scores data is ready to be further analyzed in Python!

You can’t perform that action at this time.