Skip to content
Switch branches/tags

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


This the the lab code for the ACL 2017 paper Improved Word Representation Learning with Sememes. Sememes are minimum semantic units of word meanings, and the meaning of each word sense is typically composed by several sememes. Since sememes are not explicit for each word, people manually annotate word sememes and form linguistic common-sense knowledge bases. In this paper, we present that, word sememe information can improve word representation learning (WRL), which maps words into a low-dimensional semantic space and serves as a fundamental step for many NLP tasks. The key idea is to utilize word sememes to capture exact meanings of a word within specific contexts accurately. More specifically, we follow the framework of Skip-gram and present three sememe-encoded models to learn representations of sememes, senses and words, where we apply the attention scheme to detect word senses in various contexts. We conduct experiments on two tasks including word similarity and word analogy, and our models significantly outperform baselines. The results indicate that WRL can benefit from sememes via the attention scheme, and also confirm our models being capable of correctly modeling sememe information.

New Version

New version of SAT is released:

Other methods are coming soon.

How to Run

Using the following command to train word-sense-sememe embeddings.

cp SSA.c[SSA.c/MST.c/SAC.c/SAT.c] word2vec/word2vec.c
cd word2vec
./word2vec -train TrainFile -output vectors.bin -cbow 0 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 30 -binary 1 -iter 3 -read-vocab VocabFile -read-meaning SememeFile -read-sense Word_Sense_Sememe_File -min-count 50 -alpha 0.025

TrainFile is train data set. The following three files can be found in directory datasets. VocabFile is the word vocabulary file, and SememeFile is the sememe vocabulary file. Word_Sense_Sememe_File is a file recording group information of word-sense-sememe.

Before training, you should replace word2vec/word2vec.c with one of the four files SSA.c/MST.c/SAC.c/SAT.c.

Data Set

HowNet.txt is an Chinese knowledge base with annotated word-sense-sememe information.

Sogou-T(sample).txt is a sample dataset extracted from Sogou-T.

Complete training dataset Clean-SogouT is released in f2ul).

Evaluation Set

wordsim-240.txt and wordsim-297.txt in this files are utilized to evaluate the quality of word representations.

analogy.txt in this file is utilized to evaluate models' capability of word analogy inference.

Annotation Information

The annotation information is for the four files SSA.c/MST.c/SAC.c/SAT.c. Annotation of the common code is only included in file SSA.c.


We are sorry that we have found some bugs in our algorithm implementation, and have fixed them in the github version. The new experiment results are released on GitHub as follows and we have also updated the [paper] ( The new results still confirm the general idea and conclusion of our paper.

Word Similarity

Model Wordsim-240 Wordsim-297
CBOW 57.7 61.1
GloVe 59.8 58.7
Skip-gram 58.5 63.3
SSA 58.9 64.0
MST 59.2 62.8
SAC 59.1 61.0
SAT 61.2 63.3

Word Analogy

Model Capital City Relationship All
CBOW 49.8 85.7 86.0 64.2
GloVe 57.3 74.3 81.6 65.8
Skip-gram 66.8 93.7 76.8 73.4
SSA 62.3 93.7 81.6 71.9
MST 65.7 95.4 82.7 74.5
SAC 79.2 97.7 75.0 81.0
SAT 82.6 98.9 80.1 84.5


Improved Word Representation Learning with Sememes





No releases published


No packages published

Contributors 4