
1

Location Aware Source Code Differencing for
Mining Changes in Java

Jindae Kim and Sunghun Kim
The Hong Kong University of Science and Technology

{jdkim, hunkim}@cse.ust.hk

Abstract—Source code differencing techniques have played im-
portant roles in software development and research. One common
strategy of differencing is converting source code into ASTs and
matching equivalent nodes between ASTs to identify changed
nodes. However, sometimes two similar, but not equivalent nodes
are matched incorrectly and it leads to edit scripts which are
distant from human’s perception about changes. To mitigate
this issue, we introduce LAS, a novel location aware source
code differencing algorithm for mining changes. LAS employs
multiple node matching steps considering syntactic and relative
locations of nodes to find more appropriate node matches. In
qualitative evaluation, we compared generated edit scripts for
10 changes with human’s scripts independently written the same
changes. The result indicates that LAS generated edit scripts
more or equivalently similar to human-written scripts compared
to the state-of-the-art technique for 7 out of 10 changes. Runtime
performance evaluation on about a half million changes also
shows that LAS generates edit scripts at least 10 times and twice
faster for 27.93% and 95.78% of the changes, and saved 15 hours
of wall clock time on a high performance server.

I. INTRODUCTION

Source code differencing techniques have played important
roles in software development and research. These techniques
have been used in version control systems to help developers
for identifying changes. They are also often employed in
empirical studies involving change mining tasks to auto-
matically collect a large number of changes from software
repositories [9], [30], [18].

One common differencing strategy is converting source code
related to a change into abstract form such as Abstract Syntax
Tree (AST), and identifying changed nodes from converted
ASTs. Differencing techniques using ASTs first try to match
equivalent nodes existing in both ASTs. Once links between
two ASTs are established by node matches, differencing
techniques generate an edit script with edit operations such as
insert, delete or update for unmatched nodes or matched nodes
having differences. Therefore matching nodes which are not
actually equivalent in two ASTs may lead to an inaccurate edit
script with confusing description about a change.

To find node matches, differencing techniques often employ
heuristics which compare node types or compute the similarity
of two nodes based on the similarity of two subtrees rooted
at the two nodes. The issue is that these techniques usually
try to match as many nodes as possible to generate smaller
edit scripts by identifying more unchanged nodes. During this
process, some of nodes representing similar code fragments
are matched although they do not remain unchanged and

accidentally similar like code clones. Because of these wrong
matches, generated edit scripts are sometime not in line
with human developers’ perception about actual source code
changes. If a differencing algorithm is used for one single
change, such glitches might be acceptable since users can
quickly compare them with source code change. However, this
issue may affect change mining tasks more significantly when
generated edit scripts for numerous changes are accumulated
and their statistics are analyzed.

We introduce a novel Location Aware Source code dif-
ferencing algorithm (LAS) to mitigate this issue for mining
changes. LAS employs multiple node matching steps consid-
ering syntactic and relative locations of nodes to find more
appropriate node matches. In the first two matching steps,
LAS simultaneously traverses two ASTs in level order and
tries to match two nodes visited at the same time. If these
nodes are not matched, LAS expands search region to nodes
close to them to find appropriate matches for the visited
nodes. By matching more similar and more close nodes first,
LAS tries to avoid matching similar but not equivalent nodes
which might be appeared frequently due to repetitiveness
of small size code fragments or changes [11], [21], [23].
At the next matching step, LAS identifies follow-up node
matches based on already matched nodes. In human’s eyes,
two code fragments surrounded by the same code fragments
often look corresponding although they are not quite similar.
For example, two statements having the same previous and
next statements is likely to correspond to each other although
they are not very similar. This matching step reflects such
intuition to find node matches which might be missed by
similarity constraint.

To evaluate the quality of edit scripts generated by LAS, we
randomly select 10 source code changes from five different
Java open source projects. Then we generate edit scripts by
apply LAS to these changes, and compare them with scripts
independently written by human. We design the score of
generated edit script representing the similarity of generated
edit scripts to human-written scripts, and compare scores
of edit scripts generated by LAS and the state-of-the-art
source code differencing technique, GumTree [8]. In this way,
we can systematically evaluate the quality of generated edit
scripts with respect to human’s perception about changes.
Evaluation result shows that LAS generated edit scripts more
or equivalently similar to human-written scripts for 7 out of 10
changes. This result indicates that LAS’s edit scripts are more
close to human’s perception about changes, hence it provides

2

more reliable results for change mining tasks.
We also evaluate runtime performance and the size of gen-

erated edit scripts. Since change mining tasks often process a
huge amount of changes, runtime performance is an important
factor to evaluate source code differencing technique. We
collect 435,282 changes from the same five projects used in
quality evaluation, and apply LAS and GumTree to generate
edit scripts for the changes. In the evaluation results, LAS
generated edit scripts at least 10 times faster for about 27.93%
of the changes, and LAS performs at least two times faster
for 95.78% of the changes. The actual saved wall clock
time is almost 15 hours for less than a half million changes
with a high performance server, hence this time reduction is
quite meaningful particularly when LAS is used for change
mining tasks which often involved with more than a million
changes [30], [18], [21].

This paper makes the following contributions:
• We introduce a novel source code differencing algorithm

LAS, which is designed for mining changes.
• We present a new systematic method of evaluating the

quality of generated edit scripts with respect to human’s
perception about changes and evaluation results.

• We provide a large scale runtime performance evaluation
results on 435,282 real changes from five different open
source projects.

The remainder of this paper is organized as follows. We
introduce LAS, our source code differencing algorithm in
Section II with an example change. Section III describes how
we evaluated the performance of LAS. We present the results
of evaluation in Section IV, and we discuss about our findings
in Section V. We argue the validity of our experiment design
and results in Section VI. After that, we discuss about related
work in Section VII and we conclude with future work in
Section VIII.

II. DIFFERENCING ALGORITHM

LAS identifies differences and generates edit scripts in three
steps: tree building, node matching and edit script generation.
First LAS parses old and new versions of source code and
builds old and new ASTs. Then it finds node matches between
the two ASTs to use that for identifying inserted or deleted
AST nodes as well as moved or updated nodes. After node
matching is done, LAS generates node level edit operations
for each changed AST node and connects them based on the
connectivity of changed AST nodes to create an edit script
with AST subtree level edit operations.

A. Tree Building

In tree building step, LAS parses old and new versions of
source code related to a change, and builds old and new ASTs
respectively. Each AST consists of labeled AST nodes, and
each AST node has its hash string and node type vector which
represents an AST subtree rooted at the node. The label of
an AST node represents the type of the AST node, and if
this node contains a specific value such as variable names,
literals, modifiers or operators, this value is also included in
the label. These hash strings and node type vectors will be used

to find exact matches and similar matches in node matching
step respectively.

Fig. 1 shows textual differences of an example change
derby2 used in our edit script quality evaluation. Fig. 2a and
Fig. 2b are two AST subtrees related to source code shown in
Fig. 1. Each AST node has a label which indicates the type of
the node. If a node has a specific value, this value is shown
in the node’s label within brackets. For example, the operator
“==” of an infix expression in Fig. 2a is shown in the label,
hence LAS can recognize that the operator is changed to “!=”
in Fig. 2b. Note that we omit some code fragments such a
block - shown as the root node in the ASTs - in the source
code for brevity.

B. Node Matching

Once old and new ASTs have been built, LAS finds node
matches between the two ASTs with four matching steps. We
first describe how LAS traverses ASTs and finds candidates
for matches, and then we explain detailed methods how LAS
matches two AST nodes in each matching step.

1) Identifying Match Candidates: To consider location of
AST nodes during node matching, LAS visits AST nodes
at the same depth of two ASTs one by one, and tries to
match two nodes visited at the same time. For example,
LAS first compares two Block nodes at the root of the trees
in Fig. 2. Then LAS tries to match their child nodes by
comparing them one at a time (the If and VarDecl nodes,
the Assignment[+=] and If nodes, etc.). If one AST node
has more child nodes than the other AST node, remaining
nodes are compared with the last visited node. For instance,
there are four nodes and three nodes at depth 2 in Fig. 2a and
Fig. 2b respectively. If the nodes are visited one by one, Fig. 2b
does not have a corresponding node for the last Return node
in Fig. 2a. In this case, LAS simply tries to match this Return
node with the last visited node in Fig. 2b, which is another
Return node.

If a node x is not matched to another node y visited at the
same time, LAS tries to match the node y to other candidate
nodes close to y. Algorithm 1 represents how LAS identifies
match candidates for given node x and y. To identify can-
didates, LAS lists nodes within distance and depth threshold
in a specific order. First, LAS adds y’s siblings within the
distance threshold as candidates from close nodes to distant
nodes (line 5-6). Next, nodes at the same depth as y are added
to candidates (line 7-9). To identify the same depth nodes
with the distance threshold, LAS first identifies siblings of y’s
parent within the distance threshold, then adds all their child
nodes as candidates. After that, LAS includes descendants of
y and its siblings within the depth thresholds to candidates
(line 10-14). Finally, ancestors of y within the depth threshold
are added to the candidates (line 15-21).

This specific order of identifying candidate is to apply
heuristic which reflects the structure of AST according to
source code. LAS first checks siblings since an added or
deleted code fragment may simply shift an AST node to
another position in the same parent node. Then LAS tries
other nodes in the same depth. These same depth nodes often

3

- if (database == null)
- return s;
- s += database.buildRuntimeInfo(indent,localLangUtil);
- s += "\n";
+ Database db = database;
+ if (db != null) {
+ s += db.buildRuntimeInfo(indent, localLangUtil);
+ s += "\n";
+ }

return s;
}

Fig. 1: An Example change derby2 used in our qualitative evaluation. Parts of the source code including comments and whitespace are hidden for
brevity.

Block

If Assignment[+=] Assignment[+=] Return

Infix[==] Return

Name[database] Null Name[s]

Name[s] MethodInvoc

Name[database] Name[buildRuntimeInfo] Name[indent] Name[localLangUtil]

Name[s] String[\n] Name[s]

(a) An old AST parsed from the old version of source code.

Block

VarDecl If Return

Type[Database] Name[db] Name[database] Infix[!=] Block

Name[db] Null Assignment[+=] Assignment[+=]

Name[s] MethodInvoc

Name[database] Name[buildRuntimeInfo] Name[indent] Name[localLangUtil]

Name[s] String[\n]

Name[s]

(b) A new AST parsed from the new version of source code.
Fig. 2: The AST pair parsed from the example change derby2. Node labels with brackets indicate that they have specific values shown in the
brackets. Nodes filled with gray are matched in exact matching step. Nodes with dashed lines or bold lines are not matched nodes. Dashed line
indicates a node is deleted, and bold line represents a node is inserted.

represent expressions in other statements in the same scope of
source code. LAS also considers descendants before ancestors.
Since surrounding code fragments with a block makes a node
moved to a new node’s descendant, it is more likely to find a
right match from descendants than ancestors.

2) Exact Matches: Exact matching step is designed to
match unchanged parts of AST by quickly matching entire
AST subtrees instead of only one AST node pair. For each
AST node, LAS assigns a hash string which represents the
whole subtree rooted at the AST node. By comparing two
hash strings, LAS can find exact matches of two AST nodes
as well as matches of all their descendant nodes.

We use Dyck word hashing [6] of an AST for the exact

matching step. The Dyck word Dn of a node n with k child
nodes is defined as follows.

Dn = {n.label{Dc1 , Dc2 , · · · , Dck}},
where c1, c2, ...ck are child nodes of n

For example, a Dyck word of a grey filled Assignment
node in Fig. 2a is “{Assignment[+=]{Name[s],String[
n]}}.” This Dyck word represents the structure of an AST
subtree rooted at the node, as well as specific values included
in the AST subtree. Therefore LAS can use Dyck words as
hash strings to find the same AST subtree representing the
same assignment in Fig. 2b. LAS can also match two return

4

Algorithm 1 Identify Match Candidates

1: DIST: distance threshold
2: DEPTH: depth threshold
3: procedure FINDCANDIDATES(x, y)
4: candidates: empty
5: siblings ← getSiblings(y)
6: candidates.addSameTypeNodes(siblings, x.type)

//Add nodes with type x.type only.
7: parentSiblings ← GetSiblings(y.parent)
8: for all n in parentSiblings do
9: candidates.addSameTypeNodes(n.children, x.type)

10: depth← 1
11: while depth < DEPTH do
12: siblings← siblings.children
13: candidates.addSameTypeNodes(siblings, x.type)
14: depth++
15: depth← 1
16: parent: y.parent
17: while depth < DEPTH do
18: ancestors← parent+GetSiblings(parent)
19: candidates.addSameTypeNodes(ancestors, x.type)
20: parent← parent.parent
21: depth++

return candidates
22: procedure GETSIBLINGS(y)
23: siblings: empty
24: range = # of y’s siblings ×DIST
25: dist← 1
26: while dist ≤ range do
27: siblings += node n where n.index = y.index−dist
28: siblings += node n where n.index = y.index+dist
29: dist++

return siblings

statements represented by grey nodes. Remind that Fig. 1 only
shows one changed method of a Java class. LAS can quickly
find exact matches of unchanged parts of AST such as methods
or fields based on their hash strings, and it can even find some
smaller exact matches of statements in a changed method too.
Therefore LAS can save a lot of effort to compare each AST
node one by one and improve the runtime performance.

Algorithm 2 describes exact matching step of LAS. As we
explained in Section II-B1, LAS visits two ASTs in level order
and tries to match two nodes visited at the same time (line 4-
7). If the two ASTs do not have the same number of AST
nodes at a certain level, LAS tries to match remaining nodes
in one AST with the last visited node (lastY) in the other
AST (line 8-11). Similarly, one AST might be deeper than the
other tree and some nodes have no corresponding node at the
same level. LAS also uses the nodes at the last visited level
for exact matching in this case (line 12-19). To find an exact
match for an individual AST node x, LAS compares the hash
string of x with hash strings of y and other candidates found
by Algorithm 1 (line 21-24). Once an exact match c of x is
found, LAS updates the match of x with c (line 25). Since the
exact match of two nodes also means that all their descendants
are also matched, LAS updates the match of the descendant
nodes accordingly (line 26-29).

Algorithm 2 Find Exact Matches

1: procedure EXACTMATCH(nodes1, nodes2)
2: if nodes1.size < nodes2.size then
3: swap(nodes1, nodes2)
4: for all y in nodes2 do
5: x: nodes1.get(y.index)
6: if x.match = null && x 6= leaf node then
7: EXACTMATCH(x, y)
8: lastY : the last node in nodes2
9: for all x in the remainder of nodes1 do

10: if x.match = null && x 6= leaf node then
11: EXACTMATCH(x, lastY)
12: children1← children of unmatched nodes in nodes1
13: children2← children of unmatched nodes in nodes2
14: if children1.size > 0 && children2.size > 0 then
15: EXACTMATCH(children1, children2)
16: else if Only children1.size = 0 then
17: EXACTMATCH(nodes1, children2)
18: else if Only children2.size = 0 then
19: EXACTMATCH(children1, nodes2)
20: procedure EXACTMATCH(x, y)
21: candidates← y + FINDCANDIDATES(x, y)
22: while x.match = null && candidates.size > 0 do
23: c← candidates.pop()
24: if c.match = null && c.hash = x.hash then
25: x.match← c
26: for all dx, dc in descendants of x and c do
27: if dx.match = null && dc.match = null

then
28: dx.match← dc
29: dc.match← dx

3) Similar Matches: In similar matching step, LAS finds
similar matches from remaining unmatched nodes after the
exact matching step. Algorithm 3 presents the similar matching
step of LAS. Similar matching step is analogous to exact
matching step, except for two major differences: the similarity
threshold and mutual matching. To find a similar match for a
given node x, LAS computes the similarities between node
x and all identified match candidates, and finds the best
match x.best among candidates with similarity higher than
the similarity threshold SIM (line-22-29). The similarity of
two nodes is defined as the similarity of two node type vectors
assigned to the nodes, and this similarity represents the ratio
of common nodes to all nodes in two subtrees rooted at the
given two nodes. After the best matches for all given nodes are
identified, LAS confirms each match of two nodes only if they
are mutually the best matches for each other (line 5-8). Once
two nodes are confirmed as matched, LAS identifies similar
matches for children of the two matched nodes (line 9), similar
to exact matching step updates all descendant matches. Note
that similar matching step does not consider matches for leaf
nodes (line 20). Leaf nodes have no child nodes, hence their
node type vectors do not provide enough information to find
matches between them. Therefore LAS matches leaf nodes
separately in leaf node matching step to find more correct
matches among them.

5

Algorithm 3 Find Similar Matches

1: procedure SIMILARMATCH(nodes1,nodes2)
2: SIM: similarity threshold
3: UPDATECANDIDATES(nodes1, nodes2)
4: UPDATECANDIDATES(nodes2, nodes1)
5: for all n in nodes1, nodes2 do
6: if n = n.best.best then
7: n.match← n.best
8: n.best.match← n
9: SIMILARMATCH(n.children,

n.match.children)
10: children1← children of unmatched nodes in nodes1
11: children2← children of unmatched nodes in nodes2
12: if children1.size > 0 && children2.size > 0 then
13: SIMILARMATCH(children1, children2)
14: else if Only children1.size = 0 then
15: SIMILARMATCH(children2, nodes1)
16: else if Only children2.size = 0 then
17: SIMILARMATCH(children1, nodes2)
18: procedure UPDATECANDIDATES(nodes1,nodes2)
19: for all x in nodes1 do
20: if x.match = null && x 6= leaf node then
21: y ← nodes2.get(x.index) or lastX
22: candidates← y + FINDCANDIDATES(x, y)
23: highest← null
24: for all c in candidates do
25: sim← similarity(x,c)
26: if sim = 1 then stop.
27: else if sim ≥ SIM then
28: update highest based on sim.
29: x.best← highest

Unlike general node type vectors using only AST node
types [12], [6], LAS uses both AST node type and specific
values shown in a node’s label for node type vectors. Generally
a node type vector of an AST subtree is a vector whose
component represents the number of occurrences for each node
type. For example, suppose there are three AST node types
Infix, Name, and Null, and a node type vector is repre-
sented by (Infix, Name, Null). Then general node type
vectors of the infix expression subtrees in Fig. 2a and Fig. 2b
are both (1, 1, 1). However, LAS uses nodes’ labels for node
type vectors, and node type vectors can be represented with
more dimensions like (Infix[==], Infix[!=], Name[database],
Name[db], Null). Hence new node type vectors for the same
infix expression subtrees are (1, 0, 1, 0, 1) and (0, 1, 0, 1, 1),
and LAS can distinguish these two different code fragment,
which cannot be distinguished with the previous node type
vectors. In this way, a subtree with more common variable
names and literals is considered more similar than another
subtree of the same structure, but less common variable names
and literals.

We can compute the similarity of two node type vectors
by converting the vectors into two multisets and calculating
the ratio of the common element number to the total element
number. Equation 1 shows how to compute the similarity of
two multisets v1 and v2 representing two node type vectors.

similarity(v1, v2) =
2× |v1 ∩ v2|
|v1|+ |v2|

(1)

First we consider a node type vector as a multiset of node
labels, since each component of the vector represents the
multiplicity of a certain node label. The intersection of two
multisets indicates the common AST nodes between two AST
subtrees represented by the original node type vectors. Then,
we divide the total number of elements by the number of
common elements in two multisets to obtain the similarity.
Note that we multiply the cardinality of the intersection by two
since the common elements are included in the both multisets.

With the above definition of the similarity (Equation 1), we
can control the generated edit scripts more intuitively by using
different similarity thresholds. If only one node is changed in a
subtree with three nodes, the similarity of two versions of the
subtree is 4

6 ' 0.67. Since a subtree with three nodes is quite
frequent (e.g. infix expressions, assignments) in AST, we use
0.65 as the default similarity threshold to allow only one node
change for such cases. For example, in Fig. 2, the operator
and one of the operands are changed in the infix expression.
With the default similarity threshold, LAS considers these
two operators are not matched, and generates an edit script
indicating the infix expression in Fig. 2a is deleted and the
infix expression in Fig. 2b is inserted. However, if we want
to allow more generous matching and generate a smaller edit
script, we can use the similarity threshold 0.3 to match two
infix expressions and consider both operator and operand are
updated.

4) Follow-up Matches: After exact matches and similar
matches are found, LAS identifies follow-up matches from
remaining unmatched nodes based on already matched nodes.
For example, in Fig. 2, the root nodes (Block) of two
ASTs indicate a method body before and after a change. The
similarity of the two nodes is 24

39 ' 0.62, which is lower than
the default similarity threshold. This low similarity is due to
the inserted VarDecl subtree and the non-matched rooted at
the If node. However, it is obvious that these two root nodes
should be matched, since they represent the same method body
in the source code shown in Fig. 1. Therefore LAS identifies
such follow-up matches using the matching status of parents,
siblings, and children.

Fig. 3 shows three types of follow-up matches identified by
LAS. First, LAS matches two Block nodes if their parents
are already matched (Fig. 3a). Since a block statement works
as a container of other statements, we usually consider that a
block belongs to a statement where it is attached. For example,
a block attached to a method declaration is called a method
body, and a block shown with an if or else statement is
often referred to as a then-block or else-block. Therefore
it is reasonable to match Block nodes based on their parent
matches. Second, if two nodes have matched parents and at
least one child node match, these two nodes are also matched
(Fig. 3b). This match type is necessary since the similarity of
two nodes might be low if subtrees rooted at the two nodes
have small number of nodes. Although the similarity of two
nodes is low, it is highly unlikely that the two nodes are not the
same node if their parent nodes and one of their child nodes

6

P

Block

P

C C

Block

C C

(a) Type 1 - Block

P

M

P

C C C

M

C

(b) Type 2 - Intermediate

P

L M R

P

L RM

(c) Type 3 - Surrounded

Fig. 3: Follow-up match types used in LAS. Label P, C, L, and R of nodes indicate parent, child, left and right nodes respectively. Nodes with bold
lines are already matched nodes. Nodes filled with grey represent follow-up matches.

Algorithm 4 Find Follow-up Matches

1: procedure FOLLOWUPMATCH(T1, T2)
2: bfs← breadth-first traversal of T1

3: for all n in bfs do
4: if n.match 6= null && n 6=leaf node then
5: pmatch← n.parent.match
6: if pmatch 6= null then
7: candidates← pmatch.children
8: if n.type =Block then
9: for all c in candiates do

10: if c.type =Block then
11: match n, c and stop.
12: else
13: FOLLOWUPMATCH(n, pmatch)
14: Repeat the above loop with T2.
15: procedure FOLLOWUPMATCH(n, pmatch)
16: SIM : similarity threshold.
17: for all child in n.children do
18: c← child.match.parent
19: if child.type = Block then
20: FOLLOWUPMATCH(child, pmatch)
21: else if c.match = null&&c.parent = pmatch then
22: match n, c and stop.
23: if n.match = null then
24: lmatch← n.left.match
25: rmatch← n.right.match
26: if lmatch.parent = pmatch then
27: c← lmatch.right
28: else if rmatch.parent = pmatch then
29: c← rmatch.left

30: if leafsimilarity(n, c) ≥ SIM then
31: match n, c.

are already matched. Third, if two nodes are surrounded by
matched nodes, LAS computes the ratio of leaf nodes having
same labels between the two nodes, and match these nodes if
the ratio is greater than the similarity threshold. As shown
in Fig. 3c, it is highly likely that two nodes are matched
if their parents are matched and both of their left and right
nodes are matched too. However, still there exists a possibility
that the two nodes are not matched since none of their child
nodes are matched. If there exist any child node matches,
they should be already found as the second type follow-up
match. We cannot use the similarity defined in Equation 1
since it is already low due to some differences in the two
nodes’ descendants. Instead, LAS tests the leaf similarity of

the two nodes (Equation 2), because leaf nodes often contain
specific values such as names, types, modifiers and literals.
For example, LAS can match two method declaration nodes
based on their leaf nodes representing method name, modifiers
and return type, even if the method body of this method is
significantly changed.

leafsimilarity(v, w) =
2× Lc

Lv + Lw
,where

Lc : the number of same label leaf nodes in v, w,

Ln : the number of leaf nodes in n

(2)

Algorithm 5 Find Leaf Node Matches

1: procedure LEAFMATCH(T1, T2)
2: bfs← breadth-first traversal of T1

3: for all n in bfs do
4: if n.match 6= null && n 6=leaf node then
5: Ln ← unmatched leaf nodes of n
6: Lm ← unmatched leaf nodes of n.match
7: for all ln in Ln do
8: for all lm in Lm do
9: if ln.label = lm.label then match ln, lm.

10: Remove all matched leaf nodes from Ln, Lm.
11: for all ln in Ln do
12: for all lm in Lm do
13: if ln.type = lm.type then match ln, lm.

5) Leaf Node Matches: The last step of matching is iden-
tifying leaf node matches. Since previous matching steps do
not match leaf nodes except for exact matching which updates
all descendants of two matched nodes, remaining leaf nodes
should be matched. Algorithm 5 shows the leaf node matching
step. LAS first matches leaf nodes of each matched node
pair based on the labels of leaf nodes (line 7-9). Some of
the leaf nodes may not be matched due to updated values
such as modifier changes or variable name changes, which are
reflected in the label of leaf nodes. In this case, LAS examines
unmatched leaf nodes from left to right, and matches two leaf
nodes if they have the same AST node type (line 11-13).

C. Edit Script Generation

After finding node matches between two ASTs parsed from
a change, LAS generates an edit script for the change based
on matching results. Each edit script consists of AST subtree
level edit operations indicating AST subtree changes in the
two ASTs. To generate a subtree level edit operation, LAS

7

generates and combines AST node level edit operations rep-
resenting changed AST nodes in each changed AST subtree.

There are four different types of subtree level and node
level edit operations. The four node level edit operation types
generated by LAS are described below.

• insert n, p, i: insert node n as i-th child of node p.
• delete n, p, i: delete i-th child n from node p.
• move n, p, i: move node n from its original location

(n.parent) to node p as p’s i-th child.
• update n1, n2: update node n1 to n2, only if n1, n2 have

different values.

Each type of edit operation is represented by the operation
type, related nodes and the location. For instance, in an edit
operation “insert n, p, i”, insert is the operation type, n, p are
the related nodes, and i is the location of a change. One
exception is update operation, which indicates that a value
is updated in the same node.

A subtree level edit operation is represented by a tree of
node level edit operations. For a subtree level insert, delete,
move operation, all node level edit operations opi have the
same operation type, and all changed nodes ni of opi belong
to the same AST subtree. Since the subtree level edit operation
is constructed based on the connectivity of nodes ni, two trees
formed by ni and operations opi are isomorphic. Similar to
node level edit operations, update operation type is the only
exception, which always has one root update edit operation.

Algorithm 6 Edit Script Generation

1: procedure GENERATEEDITSCRIPT(Told, Tnew)
2: stack: an empty stack for tree construction.
3: script← GENERATEDELETE(Told.root, stack)
4: stack ← empty
5: script += GENERATEIMU(Tnew.root, stack)
6: script += GENERATEORDERCHANGE(Told.root)
7: procedure GENERATEORDERCHANGE(n)
8: op← empty
9: if n.match 6= null then

10: oldNodes← n.children
11: newNodes← n.match.children
12: LCS ← LCS of oldNodes, newNodes
13: for all c not in LCS do
14: if c.match 6= null&&c is not moved then
15: m← c.match
16: mov ← move c,m.parent,m.index
17: op += mov

18: for all child in n.children do
19: op += GENERATEORDERCHANGE(child)

return op

Algorithm 6 provides the overall edit script generation
algorithm of LAS. First, LAS traverses the old AST Told

and generates delete operations with Algorithm 7 (line 3).
Then LAS generates insert, move, update operations with
Algorithm 8 by visiting the new AST Tnew (line 5). Finally,
LAS identifies node order changes based on the difference
between indices of matched nodes (line 6-19).

We first explain about order change operations represented

newNodes

oldNodes

A R

A

B C

B

M

C

D

DI

Fig. 4: Order change generation example. Edges between oldNodes and
newNodes represent matched nodes. Node D is identified as moved from
the last to next to node A. Node R indicates a removed node, node M
means a moved node, and node I represents an inserted node.

by move edit operations. Fig. 4 shows an example of order
change operation generation. oldNodes and newNodes show
child nodes of a given node n and its match n.match (line
9-11). Node A, B, C, D are matched nodes, and node R,
M, I are unmatched nodes which are deleted, moved, and
inserted respectively. Since indices of matched nodes B, C,
D are changed, it is possible that the order of these nodes
are changed. We can consider this example as nodes B and C
are moved next to node D, or node D is moved before node
B. To find nodes whose order is changed, LAS first identifies
the longest common subsequence (LCS) of matched nodes
between oldNodes and newNodes (line 12). In the example,
LCS is nodes A, B, C. LAS considers these nodes unchanged,
although their indices might be changed. Nodes R, M, I are
ignored since they are changed nodes, and edit operations for
these nodes are already generated by previous steps (line 1-
5). Then the remaining node D, is the only node whose order
is changed. LAS generates a move operation for each node
identified as its order is changed (line 13-17). LAS repeats
this step for all the children of the given node n too (line
18-19).

Algorithm 7 Generate Delete Operations

1: procedure GENERATEDELETE(n, stack)
2: op← empty
3: if n.match = null then
4: del← delete n, n.parent, n.index
5: if stack is empty then add del to op
6: else attach del to stack.top

7: stack.push(del)
8: for all c in n.children do
9: op += GENERATEDELETE(c, stack)

10: if n was pushed then stack.pop()
return op.

Algorithm 7 describes how LAS generates delete operations.
In the old AST, all unmatched nodes are considered as deleted
nodes. LAS visits each node in depth-first manner, and creates
a delete operation if a node is unmatched (line 3-4). If there is
no edit operation in the stack, the generated delete operation
is the root of a new subtree level delete edit operation (line
5). Otherwise, LAS attaches the generated delete operation to
stack.top, which is the edit operation generated for the parent
node of the current unmatched node (line 6).

8

Algorithm 8 Generate Insert,Move,Update Operations

1: procedure GENERATEIMU(n, stack)
2: op← empty
3: if n is matched then
4: if parents are different then
5: m← n.match
6: mov ← move n,m.parent,m.index
7: if stack.top = move then
8: attach mov to stack.top
9: else op += mov

10: stack.push(mov)
11: if n is matched, but labels are different then
12: upd← update n, n.match
13: add upd to op

14: else
15: ins← insert n, n.parent, n.index
16: if stack.top = insert then attach ins to stack.top
17: else op += ins

18: stack.push(ins)
19: for all c in n.children do
20: op += GENERATEIMU(c, stack)
21: if n was pushed then stack.pop()

return op

Algorithm 8 shows the detailed process of generating insert,
move, update operations. While visiting the new AST, LAS
tests conditions for matched nodes and generates move and
update operations (line 3-13). If node n has a match, but
parent nodes p1 and p2 are not matched each other, then it
indicates that the node n is moved from p1 to p2 (line 4-
10). Also, if node n is matched, but labels of node n in
two ASTs are different, then this means that the value of the
node n is updated (line 11-13). Note that LAS matches nodes
only if they have the same node type, and each label consists
of the node type and value. Therefore a matched node with
changed labels must have an update in its value. In addition,
if LAS meets an unmatched node in the new AST, this node
is considered inserted and an insert operation is generated for
the node (line 14-18).

III. EVALUATION

In this section, we first present our research questions, and
we explain our evaluation methods to address the questions.

A. Research Questions

• How well does LAS represent human’s perception
about changes? The result of change mining and anal-
ysis with a source code differencing algorithm is highly
dependent to the quality of edit scripts generated by the
algorithm. If a generated edit script does not match to hu-
man’s perception about a change, it may lead to a wrong
conclusion of an analysis. Therefore we evaluate how
well edit scripts of LAS represent human’s perception
about changes.

• How efficiently does LAS generate edit scripts? For
change mining task, execution time is an important factor

to evaluate the performance of a source code differencing
algorithm and its implementation. Even a small difference
in execution time to analyze one change could be critical
if we want to analyze millions of changes. Also, if
an algorithm has high time complexity, it might show
unreliable runtime performance when it is applied to large
source code. Hence we evaluate the runtime performance
of LAS with its execution time.

B. Experimental Setting

TABLE I: Subject information collected for evaluation.
Project First Rev. Last Rev. Revisions Changes
derby 22ff5fc 45a4a1d 149 90,124
jdt-core 23e866c 0ed94a3 87 2,862
lucene 8a3eb50 afd960c 496 341,134
math b3c5dae 5f9cfa6 266 737
rhino a4a1f13 0e0cf58 82 425
Total 1,080 435,282

Table I shows SHA reference of the first and the last
revisions we used, the number of revisions and the number
of changed files for each project. For evaluation of LAS, we
first collected 435,282 changes from the five different Java
open source projects. From a source code repository of each
project, we identified all changed Java files from the latest
release to the head revision. We consider one changed file as
one source code change, since the implementations of source
code differencing algorithms usually take two files from old
and new versions as input. Collected changes include various
aspects of source code changes such as implementing new
features, adding new tests and system-wide changes due to
refactoring.

Since LAS and GumTree implementations both have pa-
rameters to control the execution, we used our default set-
tings (distance=0.5, depth=3, similarity=0.65) for LAS and
the default settings (min. height=2, similarity=0.3, max. sub-
tree size=1000) recommended in the deploying website for
GumTree 1.

We executed both tools on a server having 2.67GHz Intel
Xeon CPU and 64GB RAM and Linux installed.

C. Edit Script Quality

To evaluate the quality of generated edit scripts with respect
to human’s perception about changes, we propose a new
systematic method instead of simply asking people’s opinion
about two different edit scripts. We first provide source code
changes to participants, and ask them to describe changes with
the same set of edit operations. In this way we can have two
types of edit scripts for the same change, one written by human
and one generated by a source code differencing algorithm.
Then we can compare these two edit scripts to evaluate how
well the generated edit script of a change represents human’s
perception about the change.

Participants may not be familiar to understand changes in
AST node level. To reflect human’s perception about changes
more correctly, we provide an edit script generator as shown

1https://github.com/GumTreeDiff/gumtree/wiki/Core-options

9

Fig. 5: The Edit Script Generator used in edit script quality evaluation.

in Fig. 5. With this tool, participants can select changed code
fragments in textual form, and generate four different types
of edit operations same as LAS and GumTree do. Although
we explained about the four types of edit operations, we did
not constrain their usage much to catch participants’ natural
understanding about changes. Instead, we processed partici-
pants’ edit operations later to match usage of edit operations.
For example, in LAS and GumTree, move operations only used
for the same code fragments in two source code versions since
the same code fragment is moved. Also update operations are
only used for leaf nodes, since this is originally used for value
updates such as variable name change or literal value changes.
If participants used such move and update edit operations in a
different way, we simply converted them to one deletion from
the old version and one insertion in the new version, which
LAS and GumTree are able to generate.

Also, participants may write different edit scripts for the
same change, and it is difficult to decide which edit script
is better. To resolve this issue, we assign higher score for
edit scripts written by more participants. For example, suppose
there are two scripts, one is written by 6 out 10 participants and
the other is written by four participants. We assign 0.6 for the
first edit script, and 0.4 for the other edit script. Equation 3
shows how we compute the score of a human written edit
script.

S.score =
|PS |
|P |

where S = a human written edit script,
P = {p is a participant},
PS = {p : p ∈ P, p wrote an edit script same as S}

(3)

It is possible that source code differencing algorithm may
not generate exactly the same edit script as human does. We
compute the similarity of two edit scripts with the number
of common edit operations in the edit scripts divided by
the number of unique edit operations in the edit scripts. To
compute the score of a generated edit script, we find the most
similar human written edit script and multiply the score of the
found edit script by the similarity of two edit scripts. Then
divide the computed score by the maximum score of human

written edit script to scale the score within range from 0.0 to
1.0.

score(S1) =
S2.score ∗ similarity(S1, S2)

S.max
where HS = {human written edit scripts},
GS = {generated edit scripts},
S1 = {a set of edit operations}, S1 ∈ GS,

S2 = argmax
S∈HS

similarity(S1, S),

S.max = max
S∈HS

(S.score),

similarity(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(4)

Equation 4 shows how to compute the score of a generated
edit script. In this way, we can assign a higher score to a
generated edit script which is more similar to an edit script
written by more participants.

For the quality evaluation, we recruited five graduate stu-
dents and two professional software engineers, and asked
them to describe 10 source code changes with the edit script
generator we provided. These 10 changes were randomly
chosen from changes of five open source Java projects (two
changes for each project) collected for runtime performance
evaluation shown in TABLE I.

Fig. 5 shows our edit script generator implemented as an
Eclipse RCP application. The changes are provided within the
edit script generator. When a participant opens a change, it
shows Java source compare editor with highlighted change
parts computed by Eclipse’s compare algorithm, to help
participants recognize changed parts. Participants can select
changed code fragments, and use context menus to generate
edit operations based on their opinion.

Once we collected edit scripts written by participants with
our edit script generator, we converted human written edit
scripts to the same formats which are used by LAS and
GumTree respectively. After that, we generated edit scripts
for the same changes with LAS and GumTree, and computed
scores by Equation 4.

10

Fig. 6: Change derby1 opened in Edit Script Generator. Differences are provided and highlighted by Eclipse’s Java comparison.

IV. RESULTS

In this section, we present our evaluation results obtained
by experiments described in Section III and discuss about their
implications.

A. Individual Edit Script Quality

TABLE II: LAS and GumTree’s edit script scores and similarities
computed by Equation 4. Similarities shown in brackets. Score Diff.
column indicates the difference of LAS and GumTree’s scores and shown
in bold when LAS has a higher score.

Change LAS (Sim.) GumTree (Sim.) Score Diff.
derby1 0.8462 (0.8462) 0.1418 (0.7089) 0.7044
derby2 0.8889 (0.8889) 0.6500 (0.6500) 0.2389
jdt-core1 0.8649 (0.8649) 0.7317 (0.7317) 0.1332
jdt-core2 0.9333 (0.9333) 0.8718 (0.8718) 0.0615
lucene1 0.7407 (0.7407) 0.8462 (0.8462) -0.1054
lucene2 0.2222 (0.6667) 0.8571 (0.8571) -0.6349
math1 0.5000 (1.0000) 0.5000 (1.0000) 0.0000
math2 0.9714 (0.9714) 0.9592 (0.9592) 0.0122
rhino1 0.1620 (0.8101) 0.2391 (0.9565) -0.0771
rhino2 1.0000 (1.0000) 1.0000 (1.0000) 0.0000

Table II shows the scores of edit script generated by LAS
and GumTree for the 10 changes. LAS and GumTree columns
present scores of LAS and GumTree edit scripts respectively,
and provides similarities to the best matched human-written
scripts in brackets. Score Diff. column shows the difference of
LAS and GumTree scores. For 9 out of 10 changes, LAS and
GumTree generated different edit scripts. For the remaining
change (rhino2), two techniques generated the same edit script,
and it was also same as the human written edit scripts.

Among the 10 changes, LAS generated edit scripts more
similar to human-written edit scripts for five changes which
the differences are shown as bold. For these changes, all LAS
edit scripts are at least 74% similar (lucene1) to the human-
written script supported by the most participants. Note that
we set the score of the most supported human-written script
to 1.0 and penalize it based on similarity of generated edit
scripts. Therefore if a generated edit script has the score
identical to the similarity shown in brackets, it means that
this script is most similar to the human-written script which
the most participants agreed with. In case of GumTree, it also
generates similar to the most supported human-written scripts
for 4 out of 5 changes, but the similarities are lower than LAS
edit script’s similarities. This indicates that LAS can generate
edit scripts which are more close to changes in participants’
perception.

We manually investigated the difference between LAS and
GumTree scripts, and it is mainly due to GumTree’s excessive
matching of AST nodes. In human-written scripts, participants
tend to consider a whole code fragment is changed although
there are some small parts which may be matched by the
algorithms. For example, Fig. 6 is a screen capture of our
edit script generator for change derby1. Grey highlighted
area is changed parts provided by Eclipse’s basic Java com-
parison. Although there exists some unchanged part in two
methods setThreadPriority() and isDaemonThread(),
5 out of 7 participants described this change as the whole
method on the left is deleted and the whole method on the
right is inserted. However, GumTree tries to match as much
AST nodes as it can. As a result, some of code fragments
such as Thread, getThreadGroup(), and deamonGroup are
considered moved from one method to the other method in
GumTree’s edit script. On the other hand, LAS generates an
edit script with the left method deleted and the right method
inserted. The only difference between LAS edit script and a
matched human-written script is that LAS generates extra edit
operations representing that the condition of the if statement
t.getThreadGroup() == daemonGroup is moved to the
return statement on the right method, and the variable name
t is updated to thread. Although LAS generates a slightly
different edit script from the human-written script, this small
difference does not blur the human’s understanding about this
change much.

There are 3 out of 10 changes which GumTree performs
better than LAS. For 2 out of 3 cases (lucene2, rhino1), LAS
edit scripts are more matched to human-written scripts other
than the most supported one. These changes contain small
changed parts such as inserting type parameters in a parame-
terized type, but LAS considers the whole parameterized type
is changed. This result reminds us that identifying changes in
more large fragment may not surgically represent such small,
fine-grained changes. However, it does not mean that LAS edit
scripts for these changes are completely wrong, and they are
still similar to one of the human-written scripts at least 67%.

For the remaining two changes, LAS and GumTree edit
scripts are identical to one of the human-written scripts. In
case of rhino2, all generated edit scripts and human-written
scripts are identical, since the change is very simple which
inserts a new field. For math1, LAS and GumTree generated
different edit scripts which are identical to two different
human-written scripts. For this change, participants wrote
slightly different scripts since the change is quite complex.

11

Only two participants wrote the same script, and both LAS
and GumTree failed to generated an edit script identical to this
script. Hence the scores of edit scripts are both 0.5, although
each edit script is identical to one of the human-written script.
However, in this case, we need to interpret this result as the
two generated edit scripts have the same quality, rather than
both edit scripts have low quality due to the low score.

B. Change Statistics

TABLE III shows top 10 most frequent edit operations
identified by Human, LAS and GumTree in each column. We
aggregate individual edit operations in edit scripts of all 500
changes of the benchmark. Edit operations which insert, delete
or move import declarations are excluded, since these edit
operations are usually dependent to other changes and often
not meaningful for change mining tasks.

Overall, edit operation ranks of LAS is more similar to
Human edit operations compared to GumTree edit operations.
Among top 10 most frequent Human edit operations, eight of
them present in top 10 LAS edit operations, while only two
of them are shown in top 10 GumTree edit operations. One of
the eight LAS edit operations has exactly same rank as Human
edit operations (bold font), and four of them have similar rank
which are no more than one rank different to original ranks of
Human edit operations (marked with *). Remaining three edit
operations have different ranks from Human edit operations
(marked with **), but at least LAS does not miss these three
operations and contains them in the top 10 list.

These results indicate that using LAS provides more precise
change statistics and conclusion based on such statistics will
be more accurate and convincing. If we use LAS, we can
identify a half of top 10 most frequent changes without much
distortion of its meaning. We can also identify 80% of the top
10 frequent changes, while using GumTree misses 80% of the
top 10 frequent changes. Although LAS is not perfect, it is
obvious that using LAS is a better choice to obtain accurate
results for change mining studies.

Fig. 7 shows box plots obtained from 100 rank comparison
evaluation. From the benchmark of 500 changes, we randomly
select 200 changes and identify top 10 most frequent edit
operations from human, LAS and GumTree edit scripts. Then
we compare ranks of the top 10 edit operations in the different
edit scripts, and categorize them to three groups shown in X-
axis: Exact, Similar, Appear. Exact group indicates that an edit
operation has the same rank in both human edit scripts and
generated edit scripts. Similar group contains edit operations
with rank difference no more than 2. For instance, for one
edit operation of rank 3 in human edit scripts, if the same edit
operation has rank 1 to rank 5, it is included in similar group.
Appear group counts all edit operations in human edit scripts
which are also appeared in edit scripts generated by LAS or
GumTree. This means that if an edit operation is appeared in
top 10 edit operations of both human and LAS edit scripts, this
edit operation is counted regardless of its rank. Y-axis of each
plot indicates the number of edit operations in each group.
Overall, LAS significantly outperforms GumTree. For all six
cases of three different groups and with or without import and

●

●

●

●

●

●

0 1 2 3 4 5

0
20

40
60

80

Match Count

N
um

be
r

of
 E

xp
er

im
en

ts

● LAS
GumTree

(a) Exact Cases

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7

0
10

20
30

40
50

Match Count

N
um

be
r

of
 E

xp
er

im
en

ts

● LAS
GumTree

(b) Similar Cases

● ● ● ●
●

●

●

●

●

●

0 2 4 6 8

0
10

20
30

40

Match Count

N
um

be
r

of
 E

xp
er

im
en

ts

● LAS
GumTree

(c) Present Cases
Fig. 7: Numbers of Exact, Similar, and Present cases in 100 repeated
experiments.

method declarations, LAS tends to have more matched top 10
edit operations.

V. DICUSSION

In this section, we further discuss about LAS and its
evaluation. First, we analyze time complexity and runtime
performance of LAS. In addition, we discuss about the effec-
tiveness of each matching step which significantly affects the
performance. Lastly, we present the characteristics of human-
written scripts observed during the qualitative evaluation.

12

TABLE III: Top 10 most frequent edit operations from Human, LAS and GumTree edit scripts for 500 changes in the benchmark.
Rank Human LAS GumTree

1 update NumberLiteral update NumberLiteral move SimpleName
2 update SimpleType move MethodInvocation update SimpleName**
3 delete MethodDeclaration update SimpleType* insert SwitchCase
4 insert MethodDeclaration insert MethodInvocation* move SimpleName
5 insert MethodInvocation delete MethodDeclaration** insert BreakStatement
6 insert IfStatement delete MethodInvocation** delete SwitchCase
7 delete Modifier update SimpleName* delete BreakStatement
8 update SimpleName delete Modifier* update QualifiedName
9 insert ParameterizedType insert MethodDeclaration** move MethodInvocation

10 delete MethodInvocation delete VariableDeclarationStatement update SimpleType**

A. Time Complexity and Runtime Performance

1) Time Complexity: The asymptotic worst-case time com-
plexity of LAS for two ASTs T1, T2, n = max(|T1|, |T2|) is
O(n2). LAS builds two ASTs and assigns hash strings and
node type vectors in O(n), since it only requires visiting
AST nodes in each tree. In node matching step, the worst
case is that LAS compares each node in one AST to all
nodes in another AST for each different matching step due to
large distance and depth thresholds. Each comparison takes a
constant time since it uses hash strings or fixed size node type
vectors. Therefore the whole matching step requires O(n2).
In edit script generation step, LAS traverses each AST once
to generate edit operations and visits two ASTs again to find
ordering changes, which takes O(n) in total. Therefore the
overall time complexity is O(n2).

2) Runtime Performance: Although we analyzed time com-
plexity, it only represents the worst case scenario, and it is
possible that only a few changes belong to such worst cases.
Therefore it is necessary to verify that LAS shows reliable
performance when it is applied to various changes.

0.0

0.1

0.2

0.3

 0 1 2 3 4 5 6 7 8 9 10<
Exec. Ratio (GumTree Exec.Time/LAS Exec.Time)

T
he

 R
at

io
 o

f C
ha

ng
es

Fig. 8: The execution time ratio of LAS and GumTree.

Fig. 8 presents the differences in average execution time of
LAS and GumTree for individual changes.

We first divide the execution time of GumTree by the
execution time of LAS for each change to compute execution
time ratio. Then we group changes based on their execution
time ratio, to represent how many times LAS is faster than
GumTree for how much of the changes. For example, the third
bar in Fig. 8 indicates that LAS is at least two times faster,
but less than three times faster for about 10% of the changes.

For individual changes, LAS shows more improved runtime
performance than GumTree. For 27.93% of 435,282 changes,
LAS is at least 10 times faster than GumTree in generating edit

scripts. For most of the changes (95.78%), LAS generates an
edit script at least twice faster than GumTree. GumTree shows
better performance only for 0.56% of the changes. These
results imply that LAS is contantly more efficient regardless
of processed changes, although its performance varies for each
change.

B. The Effectiveness of Matching Steps

0.00

0.25

0.50

0.75

1.00

 EXACT SIMILAR FOLLOWUP LEAF
Matching Steps

T
he

 R
at

io
 o

f M
at

ch
es

Fig. 9: The ratio of matches found in each matching step.

Fig. 9 shows how much of node matches are found in
each matching step. To find changes between two ASTs,
LAS first identifies node matches between the ASTs through
four different matching steps. For each collected change, we
counted the number of matches found in each matching step.
Then we computed the ratio of the matches found in each
step to the total number of matches found. Such ratios for all
changes used in our evaluation is shown as box plots in Fig. 9.

The result indicates that the exact matching step of LAS
effectively filters out unchanged parts in given ASTs. More
than 99% of the node matches were found in exact matching
step. This proves the assumption for our design that changed
parts are much smaller than unchanged parts and thus we
need to quickly rule out unchanged part. Note that LAS
only compares hash strings for exact matching and updates
matches for AST subtrees within a certain range. In this way,
LAS can filter out a large unchanged portion and apply more
sophisticated method for actually changed parts.

C. Characteristics of Human-written Scripts

As we explained in Section IV-A, we did not strictly
constrain the usage of four edit operations when we collected
human-written scripts. Therefore we can observe differences

13

of human-written edit scripts compared to automatically gen-
erated edit scripts for the same changes. We can use these
observations to improve source code differencing algorithm
and design of edit scripts.

In collected human-written scripts, participants tend to
describe changes in a whole code fragment. They ignore
small similar parts of source code if changed parts of source
code are relatively large. Change derby1 in Fig. 6 is a good
example of this case. Although there exist some similar
code fragments, participants consider them as separated code
fragments which are accidentally identical. If a source code
differencing algorithm only considers the similarity of AST
subtrees from a change, it may mark similar code fragments
unchanged, but these code fragments may actually be changed
in human’s perspective. Therefore this finding indicates that it
is not meaningful to blindly generate smaller edit scripts.

We also observed that many of the participants used up-
date operations as replace operations. Update operations are
originally used for leaf node changes to represent updates of
values in LAS and GumTree. However, participants used an
update operation to describe one code fragment is replaced by
another code fragment. Such update operations can be broken
into one insertion and one deletion, but the connection between
a deleted code fragment and an inserted code fragment will
be lost in two separated operations. Therefore, to describe
changes better with respect to human’s perspective, we need
to consider employing replace operations in edit scripts.

VI. THREATS TO VALIDITY

One major threat to validity of this study is our experimental
design for the evaluation.

First of all, we used the default values for LAS and
GumTree’s runtime parameters. Since these parameters control
differencing processes of the two tools, evaluation results
would be different if we used different parameters. However,
the default parameters we used for GumTree were recom-
mended by its authors. In a situation we use these source
code differencing tools, we cannot know which parameters
will show the best performance for a given set of changes.
It is highly likely that running GumTree with the default
parameters shows better performance than using other values
as parameters for the majority of changes. Therefore using
default parameters for the evaluation was a reasonable choice.

It is also possible that our measurements for runtime per-
formance suffer from noises. However, we applied LAS and
GumTree 10 times to each change and computed average
time consumption to avoid any bias or accidental noise. Also,
the runtime performance difference is quite huge, and the
implications of the results would not be changed even if there
were some noises. For the confirmation, we repeated the whole
runtime performance evaluation process at least twice, and
obtained almost same results for every attempt.

Another threat to validity of this study is our qualitative
evaluation of generated edit scripts. Since participants are
not familiar with source code differencing studies and edit
scripts, human-written scripts used in this study may not
represent the human’s perspective about the given changes

properly. However, we provided a prototype tool for edit script
generation, and the participants were asked to describe changes
by using the tool in textual format with changed parts of source
code highlighted as shown in Fig. 5. We also presented simple
descriptions and instructions about how to use this tool to
generate edit scripts. For 6 out of 10 changes, at least three
participants described them with the exactly same edit scripts.
Therefore the human-written scripts used in the evaluation
actually describe the given changes looked in human’s eyes.

Our choice of the subjects is also one of the threats
to validity. We carefully selected Java software projects of
various sizes, functionalities, and also managed by different
groups. However, they are all open source software projects,
and these projects may not be representative. The choice of
the changes used in the qualitative evaluation also has the
same issue. In spite of this limitation, LAS continuously shows
promising performance for the majority of the changes, and
the implications of our results will not be significantly changed
even if we consider such limitation in subject selections.

VII. RELATED WORK

One line of work which can be directly compared to LAS
is differencing ASTs. ChangeDistiller [10] is an AST differ-
encing algorithm which generates an edit scripts with vari-
ous edit operations in statement-level. ChangeDistiller detects
statement-level changes to support understanding changes, but
it uses a slightly abstracted version of ASTs and sometimes
miss changes smaller than statement-level. GumTree [8] is
a fine-grained AST differencing algorithm shows excellent
runtime performance. GumTree solves the issue of missing
changes in ChangeDistiller by detecting AST node level
changes, and it accurately generates edit scripts describing
source code changes. However, GumTree focuses on gener-
ating smaller edit scripts for a change, which can pin-point
changed parts of ASTs, and it may lead to edit scripts which
are different from human’s conception about the change. We
designed a new evaluation method of edit scripts’ quality,
and found that LAS can generate edit scripts more similar
to human’s conceptual changes than GumTree.

Another method to detect changes is text differencing. Text
differencing techniques can identify differences in lines of
source code text [20], [19]. Also, there exist more advanced
differencing techniques designed for tracking source code
evolution [2], [24], [3]. These techniques are very efficient, and
more importantly language independent since change detection
is based on text. However, these techniques may not be suitable
for change mining since text formatting differences can cause
incorrect change detection and it is difficult to handle such
incorrectness individually when we try to collect a large
amount of changes. Also, text line level change detection often
provides coarse-grained changes since each group of changed
lines may contains many unchanged code fragments.

We may also adapt tree differencing algorithms to AST
differencing. Some tree differencing algorithms based on tree
distance [26], [29], [25], which is similar to source code finger-
printing techniques we used in LAS. Other tree differencing
algorithms [5], [27], [7], [4], [1] are designed for structured

14

document differencing such as LaTeX or XML, which are
closely related to source code differencing. Since these tree
differencing algorithms highly focus on the performance, we
may benefit from such high performance when we handle
a large amount of changes. However, there still remains the
same qualitative issue discussed in Section IV-A, which means
that these algorithms are not designed for source code, hence
detected changes may not described mined changes correctly.

There exist other studies which can benefit from a new AST
differencing algorithm particularly designed for change min-
ing. There have been studies which tried to discover change
patterns by analyzing edits identified by an AST differencing
algorithm [9], [17]. Zhong et al. also used a source code
differencing technique to identify repair actions in their large
scale study on real bug-fixes collected from Apache Software
Foundation projects [30]. These studies require analyzing a
large amount of changes, and LAS can be useful for these
studies since it is particularly designed for mining changes.
Martinez and Monperrus built a repair model based on the
change and entity types supported by an AST differencing
algorithm, and evaluated the models with bug fixes mined from
software repositories. [18]. Some of the automatic program
repair techniques use a small number of pre-defined change
templates [13], [15], [16] or several mutation operators to
modify source code [14], [22], [28]. The proposed repair
model can augment these templates by mining changes from
human-written bug-fixes, and LAS can support such change
mining task very efficiently.

VIII. CONCLUSION

In this paper, we have introduced LAS, a location aware
source code differencing algorithm for mining changes. LAS
uses multiple node matching steps to consider nodes’ location
to find more appropriate node matches and generates edit
scripts more similar to human’s perception about changes.
For qualitative evaluation of edit scripts with respect to hu-
man’s perception about changes, we propose a new systematic
method comparing generated edit scripts with human’s scripts
independently written for the same changes. Our evaluation
results show that LAS generates edit scripts more similar to
human-written edit scripts, and it also generates edit scripts
much faster than the other compared differencing technique.
We also analyze human-written scripts collected for qualitative
evaluation and found the characteristics of human-written
scripts. We believe that these characteristics can help us
to improve current source code differencing algorithms, and
improving LAS with this information and developing new
applications of LAS will be our future work.

REFERENCES

[1] R. Al-Ekram, A. Adma, and O. Baysal. diffX: An Algorithm to Detect
Changes in Multi-version XML Documents. In Proceedings of the
2005 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’05, pages 1–11. IBM Press, 2005.

[2] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. D. Penta. Lhdiff:
A language-independent hybrid approach for tracking source code lines.
In Proceedings of the 2013 IEEE International Conference on Software
Maintenance, ICSM ’13, pages 230–239, Washington, DC, USA, 2013.
IEEE Computer Society.

[3] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your changes: A
language-independent approach. IEEE Softw., 26(1):50–57, Jan. 2009.

[4] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in
structured data. SIGMOD Rec., 26(2):26–37, June 1997.

[5] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom.
Change detection in hierarchically structured information. SIGMOD
Rec., 25(2):493–504, June 1996.

[6] M. Chilowicz, E. Duris, G. Roussel, and U. Paris-est. Syntax tree
fingerprinting: a foundation for source code similarity detection, 2009.

[7] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML
documents. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 41–52. IEEE, 2002.

[8] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus.
Fine-grained and Accurate Source Code Differencing. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 313–324, New York, NY, USA, 2014.
ACM.

[9] B. Fluri, E. Giger, and H. C. Gall. Discovering patterns of change types.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 463–466, Washington,
DC, USA, 2008. IEEE Computer Society.

[10] B. Fluri, M. Wursch, M. Pinzger, and H. Gall. Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction. Software
Engineering, IEEE Transactions on, 33(11):725–743, Nov 2007.

[11] M. Gabel and Z. Su. A Study of the Uniqueness of Source Code. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 147–156, New
York, NY, USA, 2010. ACM.

[12] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proceedings of the
29th International Conference on Software Engineering., pages 96–105,
2007.

[13] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, ICSE’13, 2013.

[14] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 3–13, Piscataway, NJ, USA, 2012. IEEE
Press.

[15] F. Long and M. Rinard. Staged program repair with condition synthesis.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 166–178, New York, NY,
USA, 2015. ACM.

[16] F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’16, pages
298–312, New York, NY, USA, 2016. ACM.

[17] M. Martinez, L. Duchien, and M. Monperrus. Automatically extracting
instances of code change patterns with ast analysis. In Proceedings of the
2013 IEEE International Conference on Software Maintenance, ICSM
’13, pages 388–391, Washington, DC, USA, 2013. IEEE Computer
Society.

[18] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2015.

[19] W. Miller and E. W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, 1985.

[20] E. W. Myers. Ano(nd) difference algorithm and its variations. Algorith-
mica, 1(1):251–266, 1986.

[21] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. Nguyen, and H. Rajan. A
study of repetitiveness of code changes in software evolution. In Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 180–190, Nov 2013.

[22] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering, pages 254–265.
ACM, 2014.

[23] B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann. The
Uniqueness of Changes: Characteristics and Applications. Technical
report, Microsoft Research Technical Report, 2014.

[24] S. P. Reiss. Tracking source locations. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages 11–
20, New York, NY, USA, 2008. ACM.

[25] D. Shasha and K. Zhang. Fast algorithms for the unit cost editing
distance between trees. Journal of Algorithms, 11(4):581 – 621, 1990.

15

[26] G. Valiente. An efficient bottom-up distance between trees. In
Proceedings Eighth Symposium on String Processing and Information
Retrieval, pages 212–219, Nov 2001.

[27] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An effective change
detection algorithm for XML documents. In Data Engineering, 2003.
Proceedings. 19th International Conference on, pages 519–530. IEEE,
2003.

[28] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, pages 356–366. IEEE, 2013.

[29] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM Journal on Computing,
18(6):1245–1262, 1989.

[30] H. Zhong and Z. Su. An empirical study on real bug fixes. In Proceed-
ings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 913–923, Piscataway, NJ, USA, 2015. IEEE
Press.

