-
Notifications
You must be signed in to change notification settings - Fork 1
/
version_0_9_2.Rmd
58 lines (46 loc) · 1.77 KB
/
version_0_9_2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
title: "Version 0.9.2"
author:
- name: Xiaotao Shen (https://www.shenxt.info/)
date: "Created on 2020-04-01 and updated on `r Sys.Date()`"
output:
html_document:
df_print: paged
toc: no
pdf_document:
toc: no
vignette: >
%\VignetteIndexEntry{version_0_9_2}
%\VignettePackage{masscleaner}
% \VignetteEngine{knitr::rmarkdown}
% \usepackage[utf8]{inputenc}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE, echo=FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
message = TRUE,
out.width = "100%"
)
```
***
In this version, we just added a new function `output_eic()`. This can be used to generate peaks in some samples after you run `process_data()`. For example, you analyzed data, and found some features are very important, so you want to check the peak shapes of them in QC samples, so you can use `output_eic()` function.
## **Set work directory**
First, you need to set the work directory to the folder which you used to run the `process_data()` function. For example, in our [example for `process_Data`](https://jaspershen.github.io/masscleaner/articles/raw_data_processing.html), we set the work directory in `example/POS`, so here, we also set work directory in this folder.
## **Run `output_eic()`**
Then we can run `output_eic()` function.
```{r,eval=FALSE,warning=FALSE, R.options="", message=FALSE,cache = TRUE}
library(masscleaner)
output_eic(path = ".",
query_sample_name = c("QC_1"),
query_peak_name = c("M70T54_POS", "M70T579_POS"),
polarity = "positive",
threads = 4)
```
Then the peak shape of plots will be outputted in `example/POS/Result`.
# **Session information**
```{r,eval=TRUE,warning=FALSE, R.options="", message=FALSE, cache=TRUE}
sessionInfo()
```