-
Notifications
You must be signed in to change notification settings - Fork 29
grid_max_entropy need better error message for unfinalized parameters #99
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
library(tidymodels)
#> ── Attaching packages ────────────────────────────────────────────────────────────────────────────────── tidymodels 0.0.4 ──
#> ✓ broom 0.5.4 ✓ recipes 0.1.9
#> ✓ dials 0.0.4 ✓ rsample 0.0.5
#> ✓ dplyr 0.8.4 ✓ tibble 2.1.3
#> ✓ ggplot2 3.2.1 ✓ tune 0.0.1
#> ✓ infer 0.5.1 ✓ workflows 0.1.0
#> ✓ parsnip 0.0.5 ✓ yardstick 0.0.5
#> ✓ purrr 0.3.3
#> ── Conflicts ───────────────────────────────────────────────────────────────────────────────────── tidymodels_conflicts() ──
#> x purrr::discard() masks scales::discard()
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> x ggplot2::margin() masks dials::margin()
#> x recipes::step() masks stats::step()
#> x recipes::yj_trans() masks scales::yj_trans()
rf_params_cars = parameters(mtry(), min_n())
rf_params_cars
#> Collection of 2 parameters for tuning
#>
#> id parameter type object class
#> mtry mtry nparam[?]
#> min_n min_n nparam[+]
#>
#> Parameters needing finalization:
#> # Randomly Selected Predictors ('mtry')
#>
#> See `?dials::finalize` or `?dials::update.parameters` for more information.
rf_params_cars <-
rf_params_cars %>%
update(mtry = finalize(mtry(), mtcars %>% select(-mpg)))
rf_params_cars
#> Collection of 2 parameters for tuning
#>
#> id parameter type object class
#> mtry mtry nparam[+]
#> min_n min_n nparam[+]
set.seed(131)
rf_grid_cars = grid_max_entropy(rf_params_cars, size = 3)
rf_grid_cars
#> # A tibble: 3 x 2
#> mtry min_n
#> <int> <int>
#> 1 4 34
#> 2 9 21
#> 3 2 16 Created on 2020-02-24 by the reprex package (v0.3.0) We need a better error message though. (edit - hit wrong key) |
I'm going to move this to |
That's because the message (and entries in the > rf_stage_1_cv_results_tbl_oto$.notes[[5]]$.notes
[1] "internal: A correlation computation is required, but `estimate` is constant
and has 0 standard deviation, resulting in a divide by 0 error. `NA` will be
returned." This happens when a model predicts the same value for all samples. The main error in the code was the lack of > rf_stage_1_cv_results_tbl_oto %>% show_best()
Error in check_metric_choice(metric, maximize) :
argument "metric" is missing, with no default
> rf_stage_1_cv_results_tbl_oto %>% show_best(metric = "rmse", maximize = FALSE)
# A tibble: 5 x 6
min_n .metric .estimator mean n std_err
<int> <chr> <chr> <dbl> <int> <dbl>
1 2 rmse standard 2.06 5 0.292
2 5 rmse standard 2.24 5 0.286
3 7 rmse standard 2.49 5 0.271
4 9 rmse standard 2.65 5 0.247
5 11 rmse standard 2.94 5 0.204 |
This issue has been automatically locked. If you believe you have found a related problem, please file a new issue (with a reprex: https://reprex.tidyverse.org) and link to this issue. |
Hi,
thanks for great tidymodels packages. (Great job!)
While training random forest models, I've encounter an issue with tune grid and parameters. It seems that mtry() is not supported (case 2 in below code).
There is also minor problem with show_best function which throw an error if there are NA in .metric.
Best
Sewe
Reproducible example
The text was updated successfully, but these errors were encountered: