Decision tree predictions fail when using the Spark engine. Reprex:
suppressPackageStartupMessages(library(sparklyr))
library(parsnip)
sc <- spark_connect("local", version = "4.0.1")
iris_2 <- iris[iris$Species %in% c("setosa", "virginica"), ]
tbl_iris <- copy_to(sc, iris_2, name = "iris")
decision_tree_spec <- decision_tree() |>
set_mode("classification") |>
set_engine("spark")
decision_tree_fit <- decision_tree_spec |>
fit(Species ~ ., data = tbl_iris)
predict(decision_tree_fit, type = "class", new_data = tbl_iris)
#> Error in ml_predict.ml_model_classification(object = object$fit, dataset = new_data): argument "x" is missing, with no default
spark_disconnect(sc)