diff --git a/R/fit.R b/R/fit.R
index 3725396d9..2256d1a80 100644
--- a/R/fit.R
+++ b/R/fit.R
@@ -89,8 +89,8 @@
#' @export fit.model_spec
fit.model_spec <-
function(object,
- formula = NULL,
- data = NULL,
+ formula,
+ data,
control = control_parsnip(),
...
) {
@@ -180,8 +180,8 @@ fit.model_spec <-
#' @export fit_xy.model_spec
fit_xy.model_spec <-
function(object,
- x = NULL,
- y = NULL,
+ x,
+ y,
control = control_parsnip(),
...
) {
diff --git a/docs/dev/articles/articles/Classification.html b/docs/dev/articles/articles/Classification.html
index 20a8780b1..465762e1a 100644
--- a/docs/dev/articles/articles/Classification.html
+++ b/docs/dev/articles/articles/Classification.html
@@ -153,7 +153,7 @@
Classification Example
nnet_fit
#> parsnip model object
#>
-#> Fit in: 15.3sModel
+#> Fit in: 14.8sModel
#> ________________________________________________________________________________
#> Layer (type) Output Shape Param #
#> ================================================================================
@@ -185,17 +185,17 @@ Classification Example
#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
-#> 1 roc_auc binary 0.824
+#> 1 roc_auc binary 0.825
test_results %>% accuracy(truth = Status, nnet_class)
#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
-#> 1 accuracy binary 0.801
+#> 1 accuracy binary 0.805
test_results %>% conf_mat(truth = Status, nnet_class)
#> Truth
#> Prediction bad good
-#> bad 188 96
-#> good 125 704
+#> bad 190 94
+#> good 123 706
# S3 method for model_spec
-fit(object, formula = NULL, data = NULL, control = control_parsnip(), ...)
+fit(object, formula, data, control = control_parsnip(), ...)
# S3 method for model_spec
-fit_xy(object, x = NULL, y = NULL, control = control_parsnip(), ...)
+fit_xy(object, x, y, control = control_parsnip(), ...)
Arguments
@@ -255,7 +255,7 @@ Examp
using_formula#> parsnip model object
#>
-#> Fit in: 28ms
+#> Fit in: 26ms
#> Call: stats::glm(formula = formula, family = stats::binomial, data = data)
#>
#> Coefficients:
@@ -266,7 +266,7 @@
Examp
#> Null Deviance: 4055
#> Residual Deviance: 3698 AIC: 3704
using_xy
#> parsnip model object
#>
-#> Fit in: 18ms
+#> Fit in: 15ms
#> Call: stats::glm(formula = formula, family = stats::binomial, data = data)
#>
#> Coefficients:
diff --git a/man/fit.Rd b/man/fit.Rd
index 2c284e8cb..57286fd52 100644
--- a/man/fit.Rd
+++ b/man/fit.Rd
@@ -5,9 +5,9 @@
\alias{fit_xy.model_spec}
\title{Fit a Model Specification to a Dataset}
\usage{
-\method{fit}{model_spec}(object, formula = NULL, data = NULL, control = control_parsnip(), ...)
+\method{fit}{model_spec}(object, formula, data, control = control_parsnip(), ...)
-\method{fit_xy}{model_spec}(object, x = NULL, y = NULL, control = control_parsnip(), ...)
+\method{fit_xy}{model_spec}(object, x, y, control = control_parsnip(), ...)
}
\arguments{
\item{object}{An object of class \code{model_spec} that has a chosen engine