diff --git a/R/decision_tree.R b/R/decision_tree.R index 9ce767dad..4bb0c7271 100644 --- a/R/decision_tree.R +++ b/R/decision_tree.R @@ -102,7 +102,7 @@ print.decision_tree <- function(x, ...) { #' @export #' @inheritParams update.boost_tree -#' @param object A random forest model specification. +#' @param object A decision tree model specification. #' @examples #' model <- decision_tree(cost_complexity = 10, min_n = 3) #' model diff --git a/R/mlp.R b/R/mlp.R index b71ac9453..2ca3565ac 100644 --- a/R/mlp.R +++ b/R/mlp.R @@ -37,7 +37,7 @@ #' @param dropout A number between 0 (inclusive) and 1 denoting the proportion #' of model parameters randomly set to zero during model training. #' @param epochs An integer for the number of training iterations. -#' @param activation A single character strong denoting the type of relationship +#' @param activation A single character string denoting the type of relationship #' between the original predictors and the hidden unit layer. The activation #' function between the hidden and output layers is automatically set to either #' "linear" or "softmax" depending on the type of outcome. Possible values are: @@ -105,7 +105,7 @@ print.mlp <- function(x, ...) { #' #' @export #' @inheritParams update.boost_tree -#' @param object A random forest model specification. +#' @param object A multilayer perceptron model specification. #' @examples #' model <- mlp(hidden_units = 10, dropout = 0.30) #' model