diff --git a/man/details_auto_ml_h2o.Rd b/man/details_auto_ml_h2o.Rd index 4c21dad53..b567c3ef4 100644 --- a/man/details_auto_ml_h2o.Rd +++ b/man/details_auto_ml_h2o.Rd @@ -70,8 +70,8 @@ performance assessment and potential early stopping. Factor/categorical predictors need to be converted to numeric values (e.g., dummy or indicator variables) for this engine. When using the -formula method via \code{\link[=fit.model_spec]{fit()}}, parsnip -will convert factor columns to indicators. +formula method via \code{\link[=fit.model_spec]{fit()}}, parsnip will +convert factor columns to indicators. } \subsection{Initializing h2o}{ diff --git a/man/details_boost_tree_h2o.Rd b/man/details_boost_tree_h2o.Rd index 8c4e9c214..3aba6bb5b 100644 --- a/man/details_boost_tree_h2o.Rd +++ b/man/details_boost_tree_h2o.Rd @@ -72,6 +72,7 @@ The \strong{agua} extension package is required to fit this model. ## ## Model fit template: ## agua::h2o_train_xgboost(x = missing_arg(), y = missing_arg(), +## weights = missing_arg(), validation_frame = missing_arg(), ## col_sample_rate = integer(), ntrees = integer(), min_rows = integer(), ## max_depth = integer(), learn_rate = numeric(), min_split_improvement = numeric(), ## stopping_rounds = integer()) @@ -106,6 +107,7 @@ The \strong{agua} extension package is required to fit this model. ## ## Model fit template: ## agua::h2o_train_xgboost(x = missing_arg(), y = missing_arg(), +## weights = missing_arg(), validation_frame = missing_arg(), ## col_sample_rate = integer(), ntrees = integer(), min_rows = integer(), ## max_depth = integer(), learn_rate = numeric(), min_split_improvement = numeric(), ## stopping_rounds = integer()) diff --git a/man/details_linear_reg_gls.Rd b/man/details_linear_reg_gls.Rd index e6135b979..1f201e0ba 100644 --- a/man/details_linear_reg_gls.Rd +++ b/man/details_linear_reg_gls.Rd @@ -180,6 +180,7 @@ lme_fit \%>\% tidy() \%>\% \if{html}{\out{
}}\preformatted{## # A tibble: 0 × 6 ## # … with 6 variables: term , estimate , std.error , df , ## # statistic , p.value +## # ℹ Use `colnames()` to see all variable names }\if{html}{\out{
}} \if{html}{\out{
}}\preformatted{# gls: diff --git a/man/details_linear_reg_h2o.Rd b/man/details_linear_reg_h2o.Rd index 2ccadd73f..1f5588f28 100644 --- a/man/details_linear_reg_h2o.Rd +++ b/man/details_linear_reg_h2o.Rd @@ -51,8 +51,9 @@ wrapper around \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}} with ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), lambda = 1, -## alpha = 0.5, family = "gaussian") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = 1, alpha = 0.5, +## family = "gaussian") }\if{html}{\out{
}} } diff --git a/man/details_logistic_reg_h2o.Rd b/man/details_logistic_reg_h2o.Rd index 1c48a9a3b..d7b355601 100644 --- a/man/details_logistic_reg_h2o.Rd +++ b/man/details_logistic_reg_h2o.Rd @@ -50,7 +50,8 @@ binomial responses. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), family = "binomial") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), family = "binomial") }\if{html}{\out{}} To use a non-default argument in \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}}, @@ -69,7 +70,8 @@ pass in as an engine argument to \code{set_engine()}: ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), compute_p_values = TRUE, +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), compute_p_values = TRUE, ## family = "binomial") }\if{html}{\out{}} } diff --git a/man/details_mlp_h2o.Rd b/man/details_mlp_h2o.Rd index 95c26d9e1..223fe18fd 100644 --- a/man/details_mlp_h2o.Rd +++ b/man/details_mlp_h2o.Rd @@ -82,9 +82,10 @@ input layer, which defaults to 0. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), hidden = integer(1), -## l2 = double(1), hidden_dropout_ratios = double(1), epochs = integer(1), -## activation = character(1), rate = double(1)) +## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), hidden = integer(1), l2 = double(1), +## hidden_dropout_ratios = double(1), epochs = integer(1), activation = character(1), +## rate = double(1)) }\if{html}{\out{}} } @@ -116,9 +117,10 @@ input layer, which defaults to 0. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), hidden = integer(1), -## l2 = double(1), hidden_dropout_ratios = double(1), epochs = integer(1), -## activation = character(1), rate = double(1)) +## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), hidden = integer(1), l2 = double(1), +## hidden_dropout_ratios = double(1), epochs = integer(1), activation = character(1), +## rate = double(1)) }\if{html}{\out{}} } diff --git a/man/details_multinom_reg_h2o.Rd b/man/details_multinom_reg_h2o.Rd index b57919740..265ef2896 100644 --- a/man/details_multinom_reg_h2o.Rd +++ b/man/details_multinom_reg_h2o.Rd @@ -52,8 +52,9 @@ a wrapper around \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}} with ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), family = missing_arg(), -## lambda = double(1), alpha = double(1), family = "multinomial") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = double(1), alpha = double(1), +## family = "multinomial") }\if{html}{\out{}} } diff --git a/man/details_naive_Bayes_h2o.Rd b/man/details_naive_Bayes_h2o.Rd index 81b1db143..1795308f6 100644 --- a/man/details_naive_Bayes_h2o.Rd +++ b/man/details_naive_Bayes_h2o.Rd @@ -52,7 +52,8 @@ The \strong{agua} extension package is required to fit this model. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_nb(x = missing_arg(), y = missing_arg(), laplace = numeric(0)) +## agua::h2o_train_nb(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), laplace = numeric(0)) }\if{html}{\out{}} } diff --git a/man/details_poisson_reg_h2o.Rd b/man/details_poisson_reg_h2o.Rd index 1613d3225..253b305a3 100644 --- a/man/details_poisson_reg_h2o.Rd +++ b/man/details_poisson_reg_h2o.Rd @@ -56,8 +56,9 @@ poisson_reg(penalty = double(1), mixture = double(1)) \%>\% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), lambda = double(1), -## alpha = double(1), family = "poisson") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = double(1), alpha = double(1), +## family = "poisson") }\if{html}{\out{}} } diff --git a/man/details_proportional_hazards_glmnet.Rd b/man/details_proportional_hazards_glmnet.Rd index f4093afdd..084d2709a 100644 --- a/man/details_proportional_hazards_glmnet.Rd +++ b/man/details_proportional_hazards_glmnet.Rd @@ -49,7 +49,7 @@ proportional_hazards(penalty = double(1), mixture = double(1)) \%>\% ## Computational engine: glmnet ## ## Model fit template: -## censored::glmnet_fit_wrapper(formula = missing_arg(), data = missing_arg(), +## censored::coxnet_train(formula = missing_arg(), data = missing_arg(), ## weights = missing_arg(), alpha = double(1)) }\if{html}{\out{}} } diff --git a/man/details_rand_forest_h2o.Rd b/man/details_rand_forest_h2o.Rd index 13ec892cf..0bd26fdfc 100644 --- a/man/details_rand_forest_h2o.Rd +++ b/man/details_rand_forest_h2o.Rd @@ -51,8 +51,9 @@ regression. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), mtries = integer(1), -## ntrees = integer(1), min_rows = integer(1)) +## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), mtries = integer(1), ntrees = integer(1), +## min_rows = integer(1)) }\if{html}{\out{}} \code{min_rows()} and \code{min_cols()} will adjust the number of neighbors if the @@ -81,8 +82,9 @@ chosen value if it is not consistent with the actual data dimensions. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), mtries = integer(1), -## ntrees = integer(1), min_rows = integer(1)) +## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), mtries = integer(1), ntrees = integer(1), +## min_rows = integer(1)) }\if{html}{\out{}} } diff --git a/man/details_rule_fit_h2o.Rd b/man/details_rule_fit_h2o.Rd index a0a5df183..456428c59 100644 --- a/man/details_rule_fit_h2o.Rd +++ b/man/details_rule_fit_h2o.Rd @@ -65,7 +65,8 @@ rule_fit( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), rule_generation_ntrees = integer(1), +## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), rule_generation_ntrees = integer(1), ## max_rule_length = integer(1), lambda = numeric(1)) }\if{html}{\out{}} } @@ -97,7 +98,8 @@ The \strong{agua} extension package is required to fit this model. ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), rule_generation_ntrees = integer(1), +## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), rule_generation_ntrees = integer(1), ## max_rule_length = integer(1), lambda = numeric(1)) }\if{html}{\out{}} } diff --git a/man/glmnet-details.Rd b/man/glmnet-details.Rd index f45308bd0..c42bc95fe 100644 --- a/man/glmnet-details.Rd +++ b/man/glmnet-details.Rd @@ -219,6 +219,7 @@ all_tidy_coefs ## 9 (Intercept) 9 30.3 2.45 0.640 ## 10 (Intercept) 10 31.1 2.23 0.673 ## # … with 630 more rows +## # ℹ Use `print(n = ...)` to see more rows }\if{html}{\out{}} \if{html}{\out{
}}\preformatted{length(unique(all_tidy_coefs$lambda)) diff --git a/man/rmd/boost_tree_h2o.md b/man/rmd/boost_tree_h2o.md index e3d67f2dd..3d184b102 100644 --- a/man/rmd/boost_tree_h2o.md +++ b/man/rmd/boost_tree_h2o.md @@ -62,6 +62,7 @@ boost_tree( ## ## Model fit template: ## agua::h2o_train_xgboost(x = missing_arg(), y = missing_arg(), +## weights = missing_arg(), validation_frame = missing_arg(), ## col_sample_rate = integer(), ntrees = integer(), min_rows = integer(), ## max_depth = integer(), learn_rate = numeric(), min_split_improvement = numeric(), ## stopping_rounds = integer()) @@ -98,6 +99,7 @@ boost_tree( ## ## Model fit template: ## agua::h2o_train_xgboost(x = missing_arg(), y = missing_arg(), +## weights = missing_arg(), validation_frame = missing_arg(), ## col_sample_rate = integer(), ntrees = integer(), min_rows = integer(), ## max_depth = integer(), learn_rate = numeric(), min_split_improvement = numeric(), ## stopping_rounds = integer()) diff --git a/man/rmd/glmnet-details.md b/man/rmd/glmnet-details.md index 3c6750536..aebd37fee 100644 --- a/man/rmd/glmnet-details.md +++ b/man/rmd/glmnet-details.md @@ -200,6 +200,7 @@ all_tidy_coefs ## 9 (Intercept) 9 30.3 2.45 0.640 ## 10 (Intercept) 10 31.1 2.23 0.673 ## # … with 630 more rows +## # ℹ Use `print(n = ...)` to see more rows ``` ```r diff --git a/man/rmd/linear_reg_gls.md b/man/rmd/linear_reg_gls.md index 3290b6d02..ca32574cd 100644 --- a/man/rmd/linear_reg_gls.md +++ b/man/rmd/linear_reg_gls.md @@ -182,6 +182,7 @@ lme_fit %>% tidy() %>% ## # A tibble: 0 × 6 ## # … with 6 variables: term , estimate , std.error , df , ## # statistic , p.value +## # ℹ Use `colnames()` to see all variable names ``` ```r diff --git a/man/rmd/linear_reg_h2o.md b/man/rmd/linear_reg_h2o.md index 3e816b77a..da08030b6 100644 --- a/man/rmd/linear_reg_h2o.md +++ b/man/rmd/linear_reg_h2o.md @@ -40,8 +40,9 @@ linear_reg(penalty = 1, mixture = 0.5) %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), lambda = 1, -## alpha = 0.5, family = "gaussian") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = 1, alpha = 0.5, +## family = "gaussian") ``` ## Preprocessing requirements diff --git a/man/rmd/logistic_reg_h2o.md b/man/rmd/logistic_reg_h2o.md index a78cd070b..92acf8389 100644 --- a/man/rmd/logistic_reg_h2o.md +++ b/man/rmd/logistic_reg_h2o.md @@ -37,7 +37,8 @@ logistic_reg() %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), family = "binomial") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), family = "binomial") ``` To use a non-default argument in [h2o::h2o.glm()], pass in as an engine argument to `set_engine()`: @@ -58,7 +59,8 @@ logistic_reg() %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), compute_p_values = TRUE, +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), compute_p_values = TRUE, ## family = "binomial") ``` diff --git a/man/rmd/mlp_h2o.md b/man/rmd/mlp_h2o.md index 1c5a09f30..371ef157c 100644 --- a/man/rmd/mlp_h2o.md +++ b/man/rmd/mlp_h2o.md @@ -66,9 +66,10 @@ mlp( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), hidden = integer(1), -## l2 = double(1), hidden_dropout_ratios = double(1), epochs = integer(1), -## activation = character(1), rate = double(1)) +## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), hidden = integer(1), l2 = double(1), +## hidden_dropout_ratios = double(1), epochs = integer(1), activation = character(1), +## rate = double(1)) ``` ## Translation from parsnip to the original package (classification) @@ -102,9 +103,10 @@ mlp( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), hidden = integer(1), -## l2 = double(1), hidden_dropout_ratios = double(1), epochs = integer(1), -## activation = character(1), rate = double(1)) +## agua::h2o_train_mlp(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), hidden = integer(1), l2 = double(1), +## hidden_dropout_ratios = double(1), epochs = integer(1), activation = character(1), +## rate = double(1)) ``` diff --git a/man/rmd/multinom_reg_h2o.md b/man/rmd/multinom_reg_h2o.md index f610b7bb2..4b4c5e7de 100644 --- a/man/rmd/multinom_reg_h2o.md +++ b/man/rmd/multinom_reg_h2o.md @@ -39,8 +39,9 @@ multinom_reg(penalty = double(1), mixture = double(1)) %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), family = missing_arg(), -## lambda = double(1), alpha = double(1), family = "multinomial") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = double(1), alpha = double(1), +## family = "multinomial") ``` ## Preprocessing requirements diff --git a/man/rmd/naive_Bayes_h2o.md b/man/rmd/naive_Bayes_h2o.md index f35426bfb..d5393c52c 100644 --- a/man/rmd/naive_Bayes_h2o.md +++ b/man/rmd/naive_Bayes_h2o.md @@ -45,7 +45,8 @@ naive_Bayes(Laplace = numeric(0)) %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_nb(x = missing_arg(), y = missing_arg(), laplace = numeric(0)) +## agua::h2o_train_nb(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), laplace = numeric(0)) ``` ## Initializing h2o diff --git a/man/rmd/poisson_reg_h2o.md b/man/rmd/poisson_reg_h2o.md index e0dda70a9..ff6ef2c59 100644 --- a/man/rmd/poisson_reg_h2o.md +++ b/man/rmd/poisson_reg_h2o.md @@ -43,8 +43,9 @@ poisson_reg(penalty = double(1), mixture = double(1)) %>% ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), lambda = double(1), -## alpha = double(1), family = "poisson") +## agua::h2o_train_glm(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), lambda = double(1), alpha = double(1), +## family = "poisson") ``` ## Preprocessing requirements diff --git a/man/rmd/proportional_hazards_glmnet.md b/man/rmd/proportional_hazards_glmnet.md index cb3039369..5f06573c2 100644 --- a/man/rmd/proportional_hazards_glmnet.md +++ b/man/rmd/proportional_hazards_glmnet.md @@ -42,7 +42,7 @@ proportional_hazards(penalty = double(1), mixture = double(1)) %>% ## Computational engine: glmnet ## ## Model fit template: -## censored::glmnet_fit_wrapper(formula = missing_arg(), data = missing_arg(), +## censored::coxnet_train(formula = missing_arg(), data = missing_arg(), ## weights = missing_arg(), alpha = double(1)) ``` diff --git a/man/rmd/rand_forest_h2o.md b/man/rmd/rand_forest_h2o.md index cd2dfed76..68c9da38f 100644 --- a/man/rmd/rand_forest_h2o.md +++ b/man/rmd/rand_forest_h2o.md @@ -44,8 +44,9 @@ rand_forest( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), mtries = integer(1), -## ntrees = integer(1), min_rows = integer(1)) +## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), mtries = integer(1), ntrees = integer(1), +## min_rows = integer(1)) ``` `min_rows()` and `min_cols()` will adjust the number of neighbors if the chosen value if it is not consistent with the actual data dimensions. @@ -75,8 +76,9 @@ rand_forest( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), mtries = integer(1), -## ntrees = integer(1), min_rows = integer(1)) +## agua::h2o_train_rf(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), mtries = integer(1), ntrees = integer(1), +## min_rows = integer(1)) ``` ## Preprocessing requirements diff --git a/man/rmd/rule_fit_h2o.md b/man/rmd/rule_fit_h2o.md index 043f995be..65d31e1a9 100644 --- a/man/rmd/rule_fit_h2o.md +++ b/man/rmd/rule_fit_h2o.md @@ -59,7 +59,8 @@ rule_fit( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), rule_generation_ntrees = integer(1), +## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), rule_generation_ntrees = integer(1), ## max_rule_length = integer(1), lambda = numeric(1)) ``` @@ -94,7 +95,8 @@ rule_fit( ## Computational engine: h2o ## ## Model fit template: -## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), rule_generation_ntrees = integer(1), +## agua::h2o_train_rule(x = missing_arg(), y = missing_arg(), weights = missing_arg(), +## validation_frame = missing_arg(), rule_generation_ntrees = integer(1), ## max_rule_length = integer(1), lambda = numeric(1)) ```