Skip to content
master
Switch branches/tags
Code

Latest commit

* startup message to find functions

* Choose from 1 of 5 startup tips using %% of time

* Update NEWS

Co-authored-by: Julia Silge <julia.silge@gmail.com>
69ebce8

Git stats

Files

Permalink
Failed to load latest commit information.

tidymodels

R build status Codecov test coverage CRAN_Status_Badge Downloads lifecycle

Overview

tidymodels is a “meta-package” for modeling and statistical analysis that share the underlying design philosophy, grammar, and data structures of the tidyverse.

It includes a core set of packages that are loaded on startup:

  • broom takes the messy output of built-in functions in R, such as lm, nls, or t.test, and turns them into tidy data frames.

  • dials has tools to create and manage values of tuning parameters.

  • dplyr contains a grammar for data manipulation.

  • ggplot2 implements a grammar of graphics.

  • infer is a modern approach to statistical inference.

  • parsnip is a tidy, unified interface to creating models.

  • purrr is a functional programming toolkit.

  • recipes is a general data preprocessor with a modern interface. It can create model matrices that incorporate feature engineering, imputation, and other help tools.

  • rsample has infrastructure for resampling data so that models can be assessed and empirically validated.

  • tibble has a modern re-imagining of the data frame.

  • tune contains the functions to optimize model hyper-parameters.

  • workflows has methods to combine pre-processing steps and models into a single object.

  • yardstick contains tools for evaluating models (e.g. accuracy, RMSE, etc.)

You can install the released version of tidymodels from CRAN with:

install.packages("tidymodels")

Install the development version from GitHub with:

library("devtools")
install_github("tidymodels/tidymodels")

When loading the package, the versions and conflicts are listed:

library(tidymodels)
#> ── Attaching packages ────────────────────────────────────── tidymodels 0.1.3 ──
#> ✓ broom        0.7.6      ✓ recipes      0.1.16
#> ✓ dials        0.0.9      ✓ rsample      0.0.9 
#> ✓ dplyr        1.0.5      ✓ tibble       3.1.0 
#> ✓ ggplot2      3.3.3      ✓ tidyr        1.1.3 
#> ✓ infer        0.5.4      ✓ tune         0.1.3 
#> ✓ modeldata    0.1.0      ✓ workflows    0.2.2 
#> ✓ parsnip      0.1.5      ✓ workflowsets 0.0.2 
#> ✓ purrr        0.3.4      ✓ yardstick    0.0.8
#> ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
#> x purrr::discard() masks scales::discard()
#> x dplyr::filter()  masks stats::filter()
#> x dplyr::lag()     masks stats::lag()
#> x recipes::step()  masks stats::step()
#> ● Use tidymodels_prefer() to resolve common conflicts.

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.