You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Issued discovered during the Applied machine learning workshop. Related to issue #159 .
suggested to submit issue from @jyuu .
library(tidymodels)
#> Registered S3 method overwritten by 'xts':#> method from#> as.zoo.xts zoo#> -- Attaching packages ----------------------------------------------------------- tidymodels 0.0.3 --#> v broom 0.5.3 v purrr 0.3.3#> v dials 0.0.4 v recipes 0.1.9#> v dplyr 0.8.3 v rsample 0.0.5#> v ggplot2 3.2.1 v tibble 2.1.3#> v infer 0.5.1 v yardstick 0.0.4#> v parsnip 0.0.5#> -- Conflicts -------------------------------------------------------------- tidymodels_conflicts() --#> x purrr::discard() masks scales::discard()#> x dplyr::filter() masks stats::filter()#> x dplyr::lag() masks stats::lag()#> x ggplot2::margin() masks dials::margin()#> x recipes::step() masks stats::step()#> x recipes::yj_trans() masks scales::yj_trans()
library(tune)
library(doParallel)
#> Loading required package: foreach#> #> Attaching package: 'foreach'#> The following objects are masked from 'package:purrr':#> #> accumulate, when#> Loading required package: iterators#> Loading required package: parallel
data(Chicago)
us_hol<-timeDate::listHolidays() %>%
stringr::str_subset("(^US)|(Easter)")
chi_rec<-
recipe(ridership~., data=Chicago) %>%
step_holiday(date, holidays=us_hol) %>%
step_date(date) %>%
step_rm(date) %>%
step_dummy(all_nominal()) %>%
step_zv(all_predictors())
chi_folds<- rolling_origin(Chicago, initial=364*15, assess=7*4, skip=7*4, cumulative=FALSE)
glmn_grid<- expand.grid(penalty=10^seq(-3, -1,
length.out=20),
mixture= (0:5)/5)
glmn_rec<-chi_rec %>% step_normalize(all_predictors())
glmn_mod<-
linear_reg(penalty= tune(), mixture= tune()) %>% set_engine("glmnet")
ctrl<- control_grid(save_pred=TRUE,
verbose=TRUE)
glmn_tune<-
tune_grid(
glmn_rec,
model=glmn_mod,
resamples=chi_folds,
grid=glmn_grid,
control=ctrl
)
#> i Slice1: recipe#> v Slice1: recipe#> i Slice1: model 1/6#> v Slice1: model 1/6#> i Slice1: model 1/6 (predictions)#> i Slice1: model 2/6#> v Slice1: model 2/6#> i Slice1: model 2/6 (predictions)#> i Slice1: model 3/6#> v Slice1: model 3/6#> i Slice1: model 3/6 (predictions)#> i Slice1: model 4/6#> v Slice1: model 4/6#> i Slice1: model 4/6 (predictions)#> i Slice1: model 5/6#> v Slice1: model 5/6#> i Slice1: model 5/6 (predictions)#> i Slice1: model 6/6#> v Slice1: model 6/6#> i Slice1: model 6/6 (predictions)#> i Slice2: recipe#> v Slice2: recipe#> i Slice2: model 1/6#> v Slice2: model 1/6#> i Slice2: model 1/6 (predictions)#> i Slice2: model 2/6#> v Slice2: model 2/6#> i Slice2: model 2/6 (predictions)#> i Slice2: model 3/6#> v Slice2: model 3/6#> i Slice2: model 3/6 (predictions)#> i Slice2: model 4/6#> v Slice2: model 4/6#> i Slice2: model 4/6 (predictions)#> i Slice2: model 5/6#> v Slice2: model 5/6#> i Slice2: model 5/6 (predictions)#> i Slice2: model 6/6#> v Slice2: model 6/6#> i Slice2: model 6/6 (predictions)#> i Slice3: recipe#> v Slice3: recipe#> i Slice3: model 1/6#> v Slice3: model 1/6#> i Slice3: model 1/6 (predictions)#> i Slice3: model 2/6#> v Slice3: model 2/6#> i Slice3: model 2/6 (predictions)#> i Slice3: model 3/6#> v Slice3: model 3/6#> i Slice3: model 3/6 (predictions)#> i Slice3: model 4/6#> v Slice3: model 4/6#> i Slice3: model 4/6 (predictions)#> i Slice3: model 5/6#> v Slice3: model 5/6#> i Slice3: model 5/6 (predictions)#> i Slice3: model 6/6#> v Slice3: model 6/6#> i Slice3: model 6/6 (predictions)#> i Slice4: recipe#> v Slice4: recipe#> i Slice4: model 1/6#> v Slice4: model 1/6#> i Slice4: model 1/6 (predictions)#> i Slice4: model 2/6#> v Slice4: model 2/6#> i Slice4: model 2/6 (predictions)#> i Slice4: model 3/6#> v Slice4: model 3/6#> i Slice4: model 3/6 (predictions)#> i Slice4: model 4/6#> v Slice4: model 4/6#> i Slice4: model 4/6 (predictions)#> i Slice4: model 5/6#> v Slice4: model 5/6#> i Slice4: model 5/6 (predictions)#> i Slice4: model 6/6#> v Slice4: model 6/6#> i Slice4: model 6/6 (predictions)#> i Slice5: recipe#> v Slice5: recipe#> i Slice5: model 1/6#> v Slice5: model 1/6#> i Slice5: model 1/6 (predictions)#> i Slice5: model 2/6#> v Slice5: model 2/6#> i Slice5: model 2/6 (predictions)#> i Slice5: model 3/6#> v Slice5: model 3/6#> i Slice5: model 3/6 (predictions)#> i Slice5: model 4/6#> v Slice5: model 4/6#> i Slice5: model 4/6 (predictions)#> i Slice5: model 5/6#> v Slice5: model 5/6#> i Slice5: model 5/6 (predictions)#> i Slice5: model 6/6#> v Slice5: model 6/6#> i Slice5: model 6/6 (predictions)#> i Slice6: recipe#> v Slice6: recipe#> i Slice6: model 1/6#> v Slice6: model 1/6#> i Slice6: model 1/6 (predictions)#> i Slice6: model 2/6#> v Slice6: model 2/6#> i Slice6: model 2/6 (predictions)#> i Slice6: model 3/6#> v Slice6: model 3/6#> i Slice6: model 3/6 (predictions)#> i Slice6: model 4/6#> v Slice6: model 4/6#> i Slice6: model 4/6 (predictions)#> i Slice6: model 5/6#> v Slice6: model 5/6#> i Slice6: model 5/6 (predictions)#> i Slice6: model 6/6#> v Slice6: model 6/6#> i Slice6: model 6/6 (predictions)#> i Slice7: recipe#> v Slice7: recipe#> i Slice7: model 1/6#> v Slice7: model 1/6#> i Slice7: model 1/6 (predictions)#> i Slice7: model 2/6#> v Slice7: model 2/6#> i Slice7: model 2/6 (predictions)#> i Slice7: model 3/6#> v Slice7: model 3/6#> i Slice7: model 3/6 (predictions)#> i Slice7: model 4/6#> v Slice7: model 4/6#> i Slice7: model 4/6 (predictions)#> i Slice7: model 5/6#> v Slice7: model 5/6#> i Slice7: model 5/6 (predictions)#> i Slice7: model 6/6#> v Slice7: model 6/6#> i Slice7: model 6/6 (predictions)#> i Slice8: recipe#> v Slice8: recipe#> i Slice8: model 1/6#> v Slice8: model 1/6#> i Slice8: model 1/6 (predictions)#> i Slice8: model 2/6#> v Slice8: model 2/6#> i Slice8: model 2/6 (predictions)#> i Slice8: model 3/6#> v Slice8: model 3/6#> i Slice8: model 3/6 (predictions)#> i Slice8: model 4/6#> v Slice8: model 4/6#> i Slice8: model 4/6 (predictions)#> i Slice8: model 5/6#> v Slice8: model 5/6#> i Slice8: model 5/6 (predictions)#> i Slice8: model 6/6#> v Slice8: model 6/6#> i Slice8: model 6/6 (predictions)# this works fine, but in parralel processing....# parallel processing... parallel::detectCores(logical=FALSE)
#> [1] 4# = 4 cores on my computer
registerDoParallel(makeCluster(4))
# run `tune_grid()`...glmn_tune<-tune::tune_grid(
glmn_rec,
model=glmn_mod,
resamples=chi_folds,
grid=glmn_grid,
control=ctrl
)
#> Warning: All models failed in tune_grid(). See the `.notes` column.glmn_tune$.notes[[1]]
#> # A tibble: 1 x 1#> .notes #> <chr> #> 1 "recipe: Error in all_nominal(): could not find function \"all_nominal\""
This issue has been automatically locked. If you believe you have found a related problem, please file a new issue (with a reprex: https://reprex.tidyverse.org) and link to this issue.
Issued discovered during the Applied machine learning workshop. Related to issue #159 .
suggested to submit issue from @jyuu .
Created on 2020-01-28 by the reprex package (v0.3.0)
The text was updated successfully, but these errors were encountered: