R C++ Other
romainfrancois Merge pull request #3755 from tidyverse/f-3753-slice-dense
slice() was confused about dense groups. closes #3753
Latest commit a428a81 Aug 14, 2018
Permalink
Failed to load latest commit information.
.github Remove dupe key 😬 Jun 25, 2018
R Tweak documentation of count(), follow-up to #3752 Aug 13, 2018
archive run-in and run-all Mar 16, 2018
data-raw strict = TRUE Mar 13, 2018
data Adds storms data set with documentation. (#2431) Feb 16, 2017
docs Restore groomed NEWS on website Jun 9, 2018
inst Rcpp 0.12.18 is current which include the `-DRCPP_DEFAULT_INCLUDE_CAL… Aug 6, 2018
man Tweak documentation of count(), follow-up to #3752 Aug 13, 2018
revdep Add results Jun 20, 2018
src slice() was confused about dense groups. closes #3753 Aug 14, 2018
tests slice() was confused about dense groups. closes #3753 Aug 14, 2018
vignettes - library(tibble) Aug 14, 2018
.Rbuildignore Merge branch 'r-0.7.6' (early part) Jun 30, 2018
.gitattributes Use tic (#3268) Dec 30, 2017
.gitignore revdep updates Apr 11, 2018
.travis.yml Copy .travis.yml from master Jun 9, 2018
API Update API description (#2805) May 31, 2017
DESCRIPTION Document with roxygen2 6.1.0 Aug 13, 2018
Doxyfile fine-tune Sep 29, 2016
LICENSE update copyright years Apr 14, 2015
LICENSE.md Add full license (as md) Feb 17, 2017
NAMESPACE also support [, drop = TRUE] on grouped data frames when dropping is … Aug 6, 2018
NEWS.md Merge pull request #3740 from tidyverse/f-3714-extract-grouped-df Aug 13, 2018
README.Rmd Edit per HW comments Jul 23, 2018
README.md Edit per HW comments Jul 23, 2018
_pkgdown.yml Add search May 23, 2018
appveyor.yml Get rid of rlang remote (#3049) Aug 25, 2017
codecov.yml Make codecov quiet (#2535) Mar 23, 2017
cran-comments.md Reword CRAN comment [ci skip] Jun 27, 2018
dplyr.Rproj Update RStudio Jun 5, 2017
tic.R oops Apr 13, 2018

README.md

dplyr

Build Status AppVeyor Build Status CRAN_Status_Badge Coverage Status

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

  • mutate() adds new variables that are functions of existing variables
  • select() picks variables based on their names.
  • filter() picks cases based on their values.
  • summarise() reduces multiple values down to a single summary.
  • arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation “by group”. You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table").

dplyr is designed to abstract over how the data is stored. That means as well as working with local data frames, you can also work with remote database tables, using exactly the same R code. Install the dbplyr package then read vignette("databases", package = "dbplyr").

If you are new to dplyr, the best place to start is the data import chapter in R for data science.

Installation

# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just dplyr:
install.packages("dplyr")

Development version

To get a bug fix, or use a feature from the development version, you can install dplyr from GitHub.

# install.packages("devtools")
devtools::install_github("tidyverse/dplyr")

Cheatsheet

Usage

library(dplyr)

starwars %>% 
  filter(species == "Droid")
#> # A tibble: 5 x 13
#>   name  height  mass hair_color skin_color eye_color birth_year gender
#>   <chr>  <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> 
#> 1 C-3PO    167    75 <NA>       gold       yellow           112 <NA>  
#> 2 R2-D2     96    32 <NA>       white, bl… red               33 <NA>  
#> 3 R5-D4     97    32 <NA>       white, red red               NA <NA>  
#> 4 IG-88    200   140 none       metal      red               15 none  
#> 5 BB8       NA    NA none       none       black             NA none  
#> # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> #   vehicles <list>, starships <list>

starwars %>% 
  select(name, ends_with("color"))
#> # A tibble: 87 x 4
#>   name           hair_color skin_color  eye_color
#>   <chr>          <chr>      <chr>       <chr>    
#> 1 Luke Skywalker blond      fair        blue     
#> 2 C-3PO          <NA>       gold        yellow   
#> 3 R2-D2          <NA>       white, blue red      
#> 4 Darth Vader    none       white       yellow   
#> 5 Leia Organa    brown      light       brown    
#> # ... with 82 more rows

starwars %>% 
  mutate(name, bmi = mass / ((height / 100)  ^ 2)) %>%
  select(name:mass, bmi)
#> # A tibble: 87 x 4
#>   name           height  mass   bmi
#>   <chr>           <int> <dbl> <dbl>
#> 1 Luke Skywalker    172    77  26.0
#> 2 C-3PO             167    75  26.9
#> 3 R2-D2              96    32  34.7
#> 4 Darth Vader       202   136  33.3
#> 5 Leia Organa       150    49  21.8
#> # ... with 82 more rows

starwars %>% 
  arrange(desc(mass))
#> # A tibble: 87 x 13
#>   name  height  mass hair_color skin_color eye_color birth_year gender
#>   <chr>  <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> 
#> 1 Jabb…    175  1358 <NA>       green-tan… orange         600   herma…
#> 2 Grie…    216   159 none       brown, wh… green, y…       NA   male  
#> 3 IG-88    200   140 none       metal      red             15   none  
#> 4 Dart…    202   136 none       white      yellow          41.9 male  
#> 5 Tarf…    234   136 brown      brown      blue            NA   male  
#> # ... with 82 more rows, and 5 more variables: homeworld <chr>,
#> #   species <chr>, films <list>, vehicles <list>, starships <list>

starwars %>%
  group_by(species) %>%
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
  ) %>%
  filter(n > 1)
#> # A tibble: 9 x 3
#>   species      n  mass
#>   <chr>    <int> <dbl>
#> 1 <NA>         5  48  
#> 2 Droid        5  69.8
#> 3 Gungan       3  74  
#> 4 Human       35  82.8
#> 5 Kaminoan     2  88  
#> # ... with 4 more rows

Getting help

If you encounter a clear bug, please file a minimal reproducible example on github. For questions and other discussion, please use community.rstudio.com, or the manipulatr mailing list.


Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.