-
Notifications
You must be signed in to change notification settings - Fork 2.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implementation of list() that uses NSE to name components lazily #1290
Comments
Indeed, dplyr may well be a better fit than purrr for |
I think this does the trick? auto_list <- function(...) {
lapply(dplyr:::named_dots(...), eval)
}
a <- 5
auto_list(a, 1:10, c = 'hi')
# $a
# [1] 5
#
# $`1:10`
# [1] 1 2 3 4 5 6 7 8 9 10
#
# $c
# [1] "hi"
auto_list(thing_one, thing_two)
# $thing_one
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1 5.1 3.5 1.4 0.2 setosa
# 2 4.9 3.0 1.4 0.2 setosa
# 3 4.7 3.2 1.3 0.2 setosa
#
# $thing_two
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1 5.1 3.5 1.4 0.2 setosa
# 2 4.9 3.0 1.4 0.2 setosa
# 3 4.7 3.2 1.3 0.2 setosa |
I think this should be as similar as possible to data_frame <- function(...) {
as_data_frame(auto_list(...))
} works. This would improve the design of But what's a good name? |
This produces the same functionality as my previous implementation and uses lazyeval style NSE. lst <- function(...) {
lst_(lazyeval::lazy_dots(...))
}
lst_ <- function(columns) {
lazyeval::lazy_eval(lazyeval::auto_name(columns))
}
thing_one <- head(iris, 3)
thing_two <- head(iris, 3)
lst(thing_one, thing_two)
#> $thing_one
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#>
#> $thing_two
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa Also seems to work fine as a replacement for data_frame2 <- function(...) {
as_data_frame(lst(...))
}
data_frame2(a=1:10, b=letters[1:10])
#> Source: local data frame [10 x 2]
#>
#> a b
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#> 6 6 f
#> 7 7 g
#> 8 8 h
#> 9 9 i
#> 10 10 j
data_frame2(a=1:10, b="a")
#> Error: Columns are not all same length |
In midst of refactoring |
Make data_frame() and as_data_frame() more consistent. Improve error messages. Fixes tidyverse#1290
- Initial CRAN release - Extracted from `dplyr` 0.4.3 - Exported functions: - `tbl_df()` - `as_data_frame()` - `data_frame()`, `data_frame_()` - `frame_data()`, `tibble()` - `glimpse()` - `trunc_mat()`, `knit_print.trunc_mat()` - `type_sum()` - New `lst()` and `lst_()` create lists in the same way that `data_frame()` and `data_frame_()` create data frames (tidyverse/dplyr#1290). `lst(NULL)` doesn't raise an error (#17, @jennybc), but always uses deparsed expression as name (even for `NULL`). - New `add_row()` makes it easy to add a new row to data frame (tidyverse/dplyr#1021). - New `rownames_to_column()` and `column_to_rownames()` (#11, @zhilongjia). - New `has_rownames()` and `remove_rownames()` (#44). - New `repair_names()` fixes missing and duplicate names (#10, #15, @r2evans). - New `is_vector_s3()`. - Features - New `as_data_frame.table()` with argument `n` to control name of count column (#22, #23). - Use `tibble` prefix for options (#13, #36). - `glimpse()` now (invisibly) returns its argument (tidyverse/dplyr#1570). It is now a generic, the default method dispatches to `str()` (tidyverse/dplyr#1325). The default width is obtained from the `tibble.width` option (#35, #56). - `as_data_frame()` is now an S3 generic with methods for lists (the old `as_data_frame()`), data frames (trivial), matrices (with efficient C++ implementation) (tidyverse/dplyr#876), and `NULL` (returns a 0-row 0-column data frame) (#17, @jennybc). - Non-scalar input to `frame_data()` and `tibble()` (including lists) creates list-valued columns (#7). These functions return 0-row but n-col data frame if no data. - Bug fixes - `frame_data()` properly constructs rectangular tables (tidyverse/dplyr#1377, @kevinushey). - Minor modifications - Uses `setOldClass(c("tbl_df", "tbl", "data.frame"))` to help with S4 (tidyverse/dplyr#969). - `tbl_df()` automatically generates column names (tidyverse/dplyr#1606). - `tbl_df`s gain `$` and `[[` methods that are ~5x faster than the defaults, never do partial matching (tidyverse/dplyr#1504), and throw an error if the variable does not exist. `[[.tbl_df()` falls back to regular subsetting when used with anything other than a single string (#29). `base::getElement()` now works with tibbles (#9). - `all_equal()` allows to compare data frames ignoring row and column order, and optionally ignoring minor differences in type (e.g. int vs. double) (tidyverse/dplyr#821). Used by `all.equal()` for tibbles. (This package contains a pure R implementation of `all_equal()`, the `dplyr` code has identical behavior but is written in C++ and thus faster.) - The internals of `data_frame()` and `as_data_frame()` have been aligned, so `as_data_frame()` will now automatically recycle length-1 vectors. Both functions give more informative error messages if you are attempting to create an invalid data frame. You can no longer create a data frame with duplicated names (tidyverse/dplyr#820). Both functions now check that you don't have any `POSIXlt` columns, and tell you to use `POSIXct` if you do (tidyverse/dplyr#813). `data_frame(NULL)` raises error "must be a 1d atomic vector or list". - `trunc_mat()` and `print.tbl_df()` are considerably faster if you have very wide data frames. They will now also only list the first 100 additional variables not already on screen - control this with the new `n_extra` parameter to `print()` (tidyverse/dplyr#1161). The type of list columns is printed correctly (tidyverse/dplyr#1379). The `width` argument is used also for 0-row or 0-column data frames (#18). - When used in list-columns, S4 objects only print the class name rather than the full class hierarchy (#33). - Add test that `[.tbl_df()` does not change class (#41, @jennybc). Improve `[.tbl_df()` error message. - Documentation - Update README, with edits (#52, @bhive01) and enhancements (#54, @jennybc). - `vignette("tibble")` describes the difference between tbl_dfs and regular data frames (tidyverse/dplyr#1468). - Code quality - Test using new-style Travis-CI and AppVeyor. Full test coverage (#24, #53). Regression tests load known output from file (#49). - Renamed `obj_type()` to `obj_sum()`, improvements, better integration with `type_sum()`. - Internal cleanup.
Opening at @hadley's suggestion on twitter. Relevant to a triplicated question on stackoverflow. Overlaps with the
store()
proposal by @lionel- over inpurrr
.If list components could get named at creation time, that would be handy.
The text was updated successfully, but these errors were encountered: