-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathgeom-histogram.R
163 lines (162 loc) · 6.19 KB
/
geom-histogram.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#' Histograms and frequency polygons
#'
#' Visualise the distribution of a single continuous variable by dividing
#' the x axis into bins and counting the number of observations in each bin.
#' Histograms (`geom_histogram()`) display the counts with bars; frequency
#' polygons (`geom_freqpoly()`) display the counts with lines. Frequency
#' polygons are more suitable when you want to compare the distribution
#' across the levels of a categorical variable.
#'
#' `stat_bin()` is suitable only for continuous x data. If your x data is
#' discrete, you probably want to use [stat_count()].
#'
#' By default, the underlying computation (`stat_bin()`) uses 30 bins;
#' this is not a good default, but the idea is to get you experimenting with
#' different number of bins. You can also experiment modifying the `binwidth` with
#' `center` or `boundary` arguments. `binwidth` overrides `bins` so you should do
#' one change at a time. You may need to look at a few options to uncover
#' the full story behind your data.
#'
#' By default, the _height_ of the bars represent the counts within each bin.
#' However, there are situations where this behavior might produce misleading
#' plots (e.g., when non-equal-width bins are used), in which case it might be
#' preferable to have the _area_ of the bars represent the counts (by setting
#' `aes(y = after_stat(count / width))`). See example below.
#'
#' In addition to `geom_histogram()`, you can create a histogram plot by using
#' `scale_x_binned()` with [geom_bar()]. This method by default plots tick marks
#' in between each bar.
#'
#' @eval rd_orientation()
#'
#' @section Aesthetics:
#' `geom_histogram()` uses the same aesthetics as [geom_bar()];
#' `geom_freqpoly()` uses the same aesthetics as [geom_line()].
#'
#' @export
#' @inheritParams layer
#' @inheritParams geom_bar
#' @param geom,stat Use to override the default connection between
#' `geom_histogram()`/`geom_freqpoly()` and `stat_bin()`. For more information
#' at overriding these connections, see how the [stat][layer_stats] and
#' [geom][layer_geoms] arguments work.
#' @examples
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram()
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram(binwidth = 0.01)
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram(bins = 200)
#' # Map values to y to flip the orientation
#' ggplot(diamonds, aes(y = carat)) +
#' geom_histogram()
#'
#' # For histograms with tick marks between each bin, use `geom_bar()` with
#' # `scale_x_binned()`.
#' ggplot(diamonds, aes(carat)) +
#' geom_bar() +
#' scale_x_binned()
#'
#' # Rather than stacking histograms, it's easier to compare frequency
#' # polygons
#' ggplot(diamonds, aes(price, fill = cut)) +
#' geom_histogram(binwidth = 500)
#' ggplot(diamonds, aes(price, colour = cut)) +
#' geom_freqpoly(binwidth = 500)
#'
#' # To make it easier to compare distributions with very different counts,
#' # put density on the y axis instead of the default count
#' ggplot(diamonds, aes(price, after_stat(density), colour = cut)) +
#' geom_freqpoly(binwidth = 500)
#'
#'
#' # When using the non-equal-width bins, we should set the area of the bars to
#' # represent the counts (not the height).
#' # Here we're using 10 equi-probable bins:
#' price_bins <- quantile(diamonds$price, probs = seq(0, 1, length = 11))
#'
#' ggplot(diamonds, aes(price)) +
#' geom_histogram(breaks = price_bins, color = "black") # misleading (height = count)
#'
#' ggplot(diamonds, aes(price, after_stat(count / width))) +
#' geom_histogram(breaks = price_bins, color = "black") # area = count
#'
#' if (require("ggplot2movies")) {
#' # Often we don't want the height of the bar to represent the
#' # count of observations, but the sum of some other variable.
#' # For example, the following plot shows the number of movies
#' # in each rating.
#' m <- ggplot(movies, aes(rating))
#' m + geom_histogram(binwidth = 0.1)
#'
#' # If, however, we want to see the number of votes cast in each
#' # category, we need to weight by the votes variable
#' m +
#' geom_histogram(aes(weight = votes), binwidth = 0.1) +
#' ylab("votes")
#'
#' # For transformed scales, binwidth applies to the transformed data.
#' # The bins have constant width on the transformed scale.
#' m +
#' geom_histogram() +
#' scale_x_log10()
#' m +
#' geom_histogram(binwidth = 0.05) +
#' scale_x_log10()
#'
#' # For transformed coordinate systems, the binwidth applies to the
#' # raw data. The bins have constant width on the original scale.
#'
#' # Using log scales does not work here, because the first
#' # bar is anchored at zero, and so when transformed becomes negative
#' # infinity. This is not a problem when transforming the scales, because
#' # no observations have 0 ratings.
#' m +
#' geom_histogram(boundary = 0) +
#' coord_trans(x = "log10")
#' # Use boundary = 0, to make sure we don't take sqrt of negative values
#' m +
#' geom_histogram(boundary = 0) +
#' coord_trans(x = "sqrt")
#'
#' # You can also transform the y axis. Remember that the base of the bars
#' # has value 0, so log transformations are not appropriate
#' m <- ggplot(movies, aes(x = rating))
#' m +
#' geom_histogram(binwidth = 0.5) +
#' scale_y_sqrt()
#' }
#'
#' # You can specify a function for calculating binwidth, which is
#' # particularly useful when faceting along variables with
#' # different ranges because the function will be called once per facet
#' ggplot(economics_long, aes(value)) +
#' facet_wrap(~variable, scales = 'free_x') +
#' geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))
geom_histogram <- function(mapping = NULL, data = NULL,
stat = "bin", position = "stack",
...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBar,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
binwidth = binwidth,
bins = bins,
na.rm = na.rm,
orientation = orientation,
pad = FALSE,
...
)
)
}