-
Notifications
You must be signed in to change notification settings - Fork 2.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
stat_density2d doesn't work nicely with geom_polygon #3846
Comments
The coming release will make you happy 🙂 |
@thomasp85 I hoped to be able to use this for the practical exercises tomorrow, but that's pushing it a bit probably? 😃 Definitely looking forward to it. |
You can install the v3.3.0-rc branch and run with it |
Looking into this now, I'm not sure this is fixed yet. We can draw filled contours from a raster grid of data, but we can't run the density estimation and then draw the filled contour, as far as I can tell. library(tidyverse)
data(airquality)
airQ <- filter_all(airquality, ~!is.na(.))
ggplot(airQ, aes(x = Solar.R, y = Temp)) +
stat_density_2d(aes(fill = after_stat(level)), geom = "polygon") Created on 2020-03-01 by the reprex package (v0.3.0) Session infodevtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.0 (2019-04-26)
#> os macOS Mojave 10.14.6
#> system x86_64, darwin15.6.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Chicago
#> date 2020-03-01
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.0)
#> backports 1.1.5 2019-10-02 [1] CRAN (R 3.6.0)
#> broom 0.5.2 2019-04-07 [1] CRAN (R 3.6.0)
#> callr 3.4.2 2020-02-12 [1] CRAN (R 3.6.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.6.0)
#> cli 2.0.1 2020-01-08 [1] CRAN (R 3.6.0)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.0)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.0)
#> curl 4.3 2019-12-02 [1] CRAN (R 3.6.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.0)
#> devtools 2.2.1 2019-09-24 [1] CRAN (R 3.6.0)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.0)
#> dplyr * 0.8.3 2019-07-04 [1] CRAN (R 3.6.0)
#> ellipsis 0.3.0 2019-09-20 [1] CRAN (R 3.6.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.0)
#> farver 2.0.3 2020-01-16 [1] CRAN (R 3.6.0)
#> forcats * 0.4.0 2019-02-17 [1] CRAN (R 3.6.0)
#> fs 1.3.1 2019-05-06 [1] CRAN (R 3.6.0)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.0)
#> ggplot2 * 3.3.0.9000 2020-02-25 [1] Github (tidyverse/ggplot2@53edc51)
#> glue 1.3.1 2019-03-12 [1] CRAN (R 3.6.0)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.0)
#> haven 2.1.1 2019-07-04 [1] CRAN (R 3.6.0)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.0)
#> hms 0.5.3 2020-01-08 [1] CRAN (R 3.6.0)
#> htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.6.0)
#> httr 1.4.1 2019-08-05 [1] CRAN (R 3.6.0)
#> isoband 0.2.0.9000 2019-06-15 [1] local
#> jsonlite 1.6 2018-12-07 [1] CRAN (R 3.6.0)
#> knitr 1.26 2019-11-12 [1] CRAN (R 3.6.0)
#> labeling 0.3 2014-08-23 [1] CRAN (R 3.6.0)
#> lattice 0.20-38 2018-11-04 [1] CRAN (R 3.6.0)
#> lifecycle 0.1.0 2019-08-01 [1] CRAN (R 3.6.0)
#> lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.6.0)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.0)
#> MASS 7.3-51.4 2019-03-31 [1] CRAN (R 3.6.0)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.0)
#> mime 0.8 2019-12-19 [1] CRAN (R 3.6.0)
#> modelr 0.1.5 2019-08-08 [1] CRAN (R 3.6.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.0)
#> nlme 3.1-140 2019-05-12 [1] CRAN (R 3.6.0)
#> pillar 1.4.3 2019-12-20 [1] CRAN (R 3.6.0)
#> pkgbuild 1.0.6 2019-10-09 [1] CRAN (R 3.6.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.0)
#> pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.6.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.0)
#> processx 3.4.2 2020-02-09 [1] CRAN (R 3.6.0)
#> ps 1.3.2 2020-02-13 [1] CRAN (R 3.6.0)
#> purrr * 0.3.3 2019-10-18 [1] CRAN (R 3.6.0)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.0)
#> Rcpp 1.0.3 2019-11-08 [1] CRAN (R 3.6.0)
#> readr * 1.3.1 2018-12-21 [1] CRAN (R 3.6.0)
#> readxl 1.3.1 2019-03-13 [1] CRAN (R 3.6.0)
#> remotes 2.1.0 2019-06-24 [1] CRAN (R 3.6.0)
#> rlang 0.4.4 2020-01-28 [1] CRAN (R 3.6.0)
#> rmarkdown 1.15 2019-08-21 [1] CRAN (R 3.6.0)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.0)
#> rvest 0.3.4 2019-05-15 [1] CRAN (R 3.6.0)
#> scales 1.1.0 2019-11-18 [1] CRAN (R 3.6.0)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.0)
#> stringi 1.4.5 2020-01-11 [1] CRAN (R 3.6.0)
#> stringr * 1.4.0 2019-02-10 [1] CRAN (R 3.6.0)
#> testthat 2.3.1 2019-12-01 [1] CRAN (R 3.6.0)
#> tibble * 2.1.3 2019-06-06 [1] CRAN (R 3.6.0)
#> tidyr * 1.0.0 2019-09-11 [1] CRAN (R 3.6.0)
#> tidyselect 0.2.5 2018-10-11 [1] CRAN (R 3.6.0)
#> tidyverse * 1.2.1 2017-11-14 [1] CRAN (R 3.6.0)
#> usethis 1.5.1 2019-07-04 [1] CRAN (R 3.6.0)
#> vctrs 0.2.3 2020-02-20 [1] CRAN (R 3.6.0)
#> withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.0)
#> xfun 0.12 2020-01-13 [1] CRAN (R 3.6.0)
#> xml2 1.2.2 2019-08-09 [1] CRAN (R 3.6.0)
#> yaml 2.2.0 2018-07-25 [1] CRAN (R 3.6.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/3.6/Resources/library The reason is that Lines 79 to 81 in 8bc39f2
|
This is how we'd have to do it if we calculate the density grid manually. library(tidyverse)
data(airquality)
airQ <- filter_all(airquality, ~!is.na(.))
h <- c(MASS::bandwidth.nrd(airQ$Solar.R), MASS::bandwidth.nrd(airQ$Temp))
dens <- MASS::kde2d(
airQ$Solar.R, airQ$Temp, h = h, n = 100,
lims = c(range(airQ$Solar.R), range(airQ$Temp))
)
df <- expand.grid(x = dens$x, y = dens$y)
df$z <- as.vector(dens$z)
ggplot(df, aes(x, y, z = z, fill = after_stat(level))) +
geom_contour_filled() +
scale_fill_viridis_d() Created on 2020-03-01 by the reprex package (v0.3.0) |
I just opened a PR (#3864): library(tidyverse)
data(airquality)
airQ <- filter_all(airquality, ~!is.na(.))
ggplot(airQ, aes(x = Solar.R, y = Temp)) +
geom_point() +
stat_density2d(
aes(fill = stat(level)),
geom = "polygon",
contour_type = "bands",
alpha = 0.7
) Created on 2020-03-06 by the reprex package (v0.3.0) |
As per the title. If I use
stat_density2d(aes(fill = stat(level)), geom = "polygon")
the outer regions are completely warbled.gives

The text was updated successfully, but these errors were encountered: