Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow single values_fn in pivot_wider() #739

Closed
moodymudskipper opened this issue Sep 15, 2019 · 0 comments
Closed

Allow single values_fn in pivot_wider() #739

moodymudskipper opened this issue Sep 15, 2019 · 0 comments
Labels
feature a feature request or enhancement pivoting ♻️ pivot rectangular data to different "shapes"

Comments

@moodymudskipper
Copy link

See #737 for full example

library(tidyverse)
df1 <- tibble::tribble(
  ~id, ~type, ~name, ~var1, ~var2, ~var3,
  10L, "Country",   "Norway", 169L,         14L, 164L,
  10L,   "Sport",     "Skii", 169L,         14L, 164L,
  10L,  "Format",    "Video", 169L,         14L, 164L,
  11L, "Country",    "Spain", 150L,         16L, 178L,
  11L,  "Format",    "Photo", 150L,         16L, 178L,
  11L,   "Sport",     "Bike", 150L,         16L, 178L,
  11L,   "Sport",   "Soccer", 150L,         16L, 178L,
  11L,   "Sport",   "Basket", 150L,         16L, 178L,
  12L, "Country",      "USA",   0L,          0L,   0L,
  12L,  "Format",    "Video",   0L,          0L,   0L,
  12L,   "Sport", "Baseball",   0L,          0L,   0L
)

################################################################
# This default behavior is nice but to get rid of the default  #
# message requires to be explicit, which can be annoying       #
################################################################

pivot_wider(df1, names_from = "type", values_from = "name")
#> Warning: Values in `name` are not uniquely identified; output will contain list-cols.
#> * Use `values_fn = list(name = list)` to suppress this warning.
#> * Use `values_fn = list(name = length)` to identify where the duplicates arise
#> * Use `values_fn = list(name = summary_fun)` to summarise duplicates
#> # A tibble: 3 x 7
#>      id  var1  var2  var3     Country       Sport      Format
#>   <int> <int> <int> <int> <list<chr>> <list<chr>> <list<chr>>
#> 1    10   169    14   164         [1]         [1]         [1]
#> 2    11   150    16   178         [1]         [3]         [1]
#> 3    12     0     0     0         [1]         [1]         [1]

pivot_wider(df1, names_from = "type", values_from = "name", values_fn = list(name=list))
#> # A tibble: 3 x 7
#>      id  var1  var2  var3     Country       Sport      Format
#>   <int> <int> <int> <int> <list<chr>> <list<chr>> <list<chr>>
#> 1    10   169    14   164         [1]         [1]         [1]
#> 2    11   150    16   178         [1]         [3]         [1]
#> 3    12     0     0     0         [1]         [1]         [1]

################################################################
# It becomes a lot of work if we have several "values_from"    #
################################################################

df2 <- df1 %>% mutate(name2 = substr(name,1,1)) %>%
  filter(type != "Format")

pivot_wider(df2, names_from = "type", values_from = c("name","name2"),
            values_fn = list(name=list, name2 = list))
#> # A tibble: 3 x 8
#>      id  var1  var2  var3 name_Country name_Sport name2_Country name2_Sport
#>   <int> <int> <int> <int>  <list<chr>> <list<chr>   <list<chr>> <list<chr>>
#> 1    10   169    14   164          [1]        [1]           [1]         [1]
#> 2    11   150    16   178          [1]        [3]           [1]         [3]
#> 3    12     0     0     0          [1]        [1]           [1]         [1]

Why couldn't we just do :

pivot_wider(df2, names_from = "type", values_from = c("name","name2"), values_fn = list)

In mutate_at / summarize_at we can feed either a function or a list of functions, this would feel natural here as well.

@hadley hadley changed the title apply values_fn on all by default Allow single values_fn in pivot_wider() Nov 24, 2019
@hadley hadley added feature a feature request or enhancement pivoting ♻️ pivot rectangular data to different "shapes" labels Nov 24, 2019
@hadley hadley closed this as completed in e7ffbd4 Nov 28, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
feature a feature request or enhancement pivoting ♻️ pivot rectangular data to different "shapes"
Projects
None yet
Development

No branches or pull requests

2 participants