-
Notifications
You must be signed in to change notification settings - Fork 60
/
vroom.R
579 lines (520 loc) · 20.4 KB
/
vroom.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#' Read a delimited file into a tibble
#'
#' @param file Either a path to a file, a connection, or literal data (either a
#' single string or a raw vector). `file` can also be a character vector
#' containing multiple filepaths or a list containing multiple connections.
#'
#' Files ending in `.gz`, `.bz2`, `.xz`, or `.zip` will be automatically
#' uncompressed. Files starting with `http://`, `https://`, `ftp://`, or
#' `ftps://` will be automatically downloaded. Remote gz files can also be
#' automatically downloaded and decompressed.
#'
#' Literal data is most useful for examples and tests. To be recognised as
#' literal data, wrap the input with `I()`.
#' @param delim One or more characters used to delimit fields within a
#' file. If `NULL` the delimiter is guessed from the set of `c(",", "\t", " ",
#' "|", ":", ";")`.
#' @param col_names Either `TRUE`, `FALSE` or a character vector
#' of column names.
#'
#' If `TRUE`, the first row of the input will be used as the column
#' names, and will not be included in the data frame. If `FALSE`, column
#' names will be generated automatically: X1, X2, X3 etc.
#'
#' If `col_names` is a character vector, the values will be used as the
#' names of the columns, and the first row of the input will be read into
#' the first row of the output data frame.
#'
#' Missing (`NA`) column names will generate a warning, and be filled
#' in with dummy names `...1`, `...2` etc. Duplicate column names
#' will generate a warning and be made unique, see `name_repair` to control
#' how this is done.
#' @param col_types One of `NULL`, a [cols()] specification, or
#' a string.
#'
#' If `NULL`, all column types will be imputed from `guess_max` rows
#' on the input interspersed throughout the file. This is convenient (and
#' fast), but not robust. If the imputation fails, you'll need to increase
#' the `guess_max` or supply the correct types yourself.
#'
#' Column specifications created by [list()] or [cols()] must contain
#' one column specification for each column. If you only want to read a
#' subset of the columns, use [cols_only()].
#'
#' Alternatively, you can use a compact string representation where each
#' character represents one column:
#' - c = character
#' - i = integer
#' - n = number
#' - d = double
#' - l = logical
#' - f = factor
#' - D = date
#' - T = date time
#' - t = time
#' - ? = guess
#' - _ or - = skip
#'
#' By default, reading a file without a column specification will print a
#' message showing what `readr` guessed they were. To remove this message,
#' set `show_col_types = FALSE` or set `options(readr.show_col_types = FALSE)`.
#' @param id Either a string or 'NULL'. If a string, the output will contain a
#' variable with that name with the filename(s) as the value. If 'NULL', the
#' default, no variable will be created.
#' @param skip Number of lines to skip before reading data. If `comment` is
#' supplied any commented lines are ignored _after_ skipping.
#' @param n_max Maximum number of lines to read.
#' @param na Character vector of strings to interpret as missing values. Set this
#' option to `character()` to indicate no missing values.
#' @param quote Single character used to quote strings.
#' @param comment A string used to identify comments. Any text after the
#' comment characters will be silently ignored.
#' @param skip_empty_rows Should blank rows be ignored altogether? i.e. If this
#' option is `TRUE` then blank rows will not be represented at all. If it is
#' `FALSE` then they will be represented by `NA` values in all the columns.
#' @param trim_ws Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from
#' each field before parsing it?
#' @param escape_double Does the file escape quotes by doubling them?
#' i.e. If this option is `TRUE`, the value '""' represents
#' a single quote, '"'.
#' @param escape_backslash Does the file use backslashes to escape special
#' characters? This is more general than `escape_double` as backslashes
#' can be used to escape the delimiter character, the quote character, or
#' to add special characters like `\\n`.
#' @param locale The locale controls defaults that vary from place to place.
#' The default locale is US-centric (like R), but you can use
#' [locale()] to create your own locale that controls things like
#' the default time zone, encoding, decimal mark, big mark, and day/month
#' names.
#' @param guess_max Maximum number of lines to use for guessing column types.
#' See `vignette("column-types", package = "readr")` for more details.
#' @param altrep Control which column types use Altrep representations,
#' either a character vector of types, `TRUE` or `FALSE`. See
#' [vroom_altrep()] for for full details.
#' @param altrep_opts \Sexpr[results=rd, stage=render]{lifecycle::badge("deprecated")}
#' @param col_select Columns to include in the results. You can use the same
#' mini-language as `dplyr::select()` to refer to the columns by name. Use
#' `c()` to use more than one selection expression. Although this
#' usage is less common, `col_select` also accepts a numeric column index. See
#' [`?tidyselect::language`][tidyselect::language] for full details on the
#' selection language.
#' @param num_threads Number of threads to use when reading and materializing
#' vectors. If your data contains newlines within fields the parser will
#' automatically be forced to use a single thread only.
#' @param progress Display a progress bar? By default it will only display
#' in an interactive session and not while knitting a document. The automatic
#' progress bar can be disabled by setting option `readr.show_progress` to
#' `FALSE`.
#' @param show_col_types Control showing the column specifications. If `TRUE`
#' column specifications are always show, if `FALSE` they are never shown. If
#' `NULL` (the default) they are shown only if an explicit specification is not
#' given to `col_types`.
#' @param .name_repair Handling of column names. The default behaviour is to
#' ensure column names are `"unique"`. Various repair strategies are
#' supported:
#' * `"minimal"`: No name repair or checks, beyond basic existence of names.
#' * `"unique"` (default value): Make sure names are unique and not empty.
#' * `"check_unique"`: no name repair, but check they are `unique`.
#' * `"universal"`: Make the names `unique` and syntactic.
#' * A function: apply custom name repair (e.g., `name_repair = make.names`
#' for names in the style of base R).
#' * A purrr-style anonymous function, see [rlang::as_function()].
#'
#' This argument is passed on as `repair` to [vctrs::vec_as_names()].
#' See there for more details on these terms and the strategies used
#' to enforce them.
#' @export
#' @examples
#' # get path to example file
#' input_file <- vroom_example("mtcars.csv")
#' input_file
#'
#' # Read from a path
#'
#' # Input sources -------------------------------------------------------------
#' # Read from a path
#' vroom(input_file)
#' # You can also use paths directly
#' # vroom("mtcars.csv")
#'
#' \dontrun{
#' # Including remote paths
#' vroom("https://github.com/tidyverse/vroom/raw/main/inst/extdata/mtcars.csv")
#' }
#'
#' # Or directly from a string with `I()`
#' vroom(I("x,y\n1,2\n3,4\n"))
#'
#' # Column selection ----------------------------------------------------------
#' # Pass column names or indexes directly to select them
#' vroom(input_file, col_select = c(model, cyl, gear))
#' vroom(input_file, col_select = c(1, 3, 11))
#'
#' # Or use the selection helpers
#' vroom(input_file, col_select = starts_with("d"))
#'
#' # You can also rename specific columns
#' vroom(input_file, col_select = c(car = model, everything()))
#'
#' # Column types --------------------------------------------------------------
#' # By default, vroom guesses the columns types, looking at 1000 rows
#' # throughout the dataset.
#' # You can specify them explicitly with a compact specification:
#' vroom(I("x,y\n1,2\n3,4\n"), col_types = "dc")
#'
#' # Or with a list of column types:
#' vroom(I("x,y\n1,2\n3,4\n"), col_types = list(col_double(), col_character()))
#'
#' # File types ----------------------------------------------------------------
#' # csv
#' vroom(I("a,b\n1.0,2.0\n"), delim = ",")
#' # tsv
#' vroom(I("a\tb\n1.0\t2.0\n"))
#' # Other delimiters
#' vroom(I("a|b\n1.0|2.0\n"), delim = "|")
#'
#' # Read datasets across multiple files ---------------------------------------
#' mtcars_by_cyl <- vroom_example(vroom_examples("mtcars-"))
#' mtcars_by_cyl
#'
#' # Pass the filenames directly to vroom, they are efficiently combined
#' vroom(mtcars_by_cyl)
#'
#' # If you need to extract data from the filenames, use `id` to request a
#' # column that reveals the underlying file path
#' dat <- vroom(mtcars_by_cyl, id = "source")
#' dat$source <- basename(dat$source)
#' dat
vroom <- function(
file,
delim = NULL,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
skip = 0,
n_max = Inf,
na = c("", "NA"),
quote = '"',
comment = "",
skip_empty_rows = TRUE,
trim_ws = TRUE,
escape_double = TRUE,
escape_backslash = FALSE,
locale = default_locale(),
guess_max = 100,
altrep = TRUE,
altrep_opts = deprecated(),
num_threads = vroom_threads(),
progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique"
) {
# vroom does not support newlines as the delimiter, just as the EOL, so just
# assign a value that should never appear in CSV text as the delimiter,
# 001, start of heading.
if (identical(delim, "\n")) {
delim <- "\x01"
}
if (!is_missing(altrep_opts)) {
deprecate_warn("1.1.0", "vroom(altrep_opts = )", "vroom(altrep = )")
altrep <- altrep_opts
}
file <- standardise_path(file)
if (!is_ascii_compatible(locale$encoding)) {
file <- reencode_file(file, locale$encoding)
locale$encoding <- "UTF-8"
}
if (length(file) == 0 || (n_max == 0 & identical(col_names, FALSE))) {
return(tibble::tibble())
}
if (n_max < 0 || is.infinite(n_max)) {
n_max <- -1
}
if (guess_max < 0 || is.infinite(guess_max)) {
guess_max <- -1
}
# Workaround weird RStudio / Progress bug: https://github.com/r-lib/progress/issues/56#issuecomment-384232184
if (
isTRUE(progress) &&
is_windows() &&
identical(Sys.getenv("RSTUDIO"), "1")) {
Sys.setenv("RSTUDIO" = "1")
}
col_select <- vroom_enquo(enquo(col_select))
has_col_types <- !is.null(col_types)
col_types <- as.col_spec(col_types)
na <- enc2utf8(na)
out <- vroom_(file, delim = delim %||% col_types$delim, col_names = col_names,
col_types = col_types, id = id, skip = skip, col_select = col_select,
name_repair = .name_repair,
na = na, quote = quote, trim_ws = trim_ws, escape_double = escape_double,
escape_backslash = escape_backslash, comment = comment,
skip_empty_rows = skip_empty_rows, locale = locale,
guess_max = guess_max, n_max = n_max, altrep = vroom_altrep(altrep),
num_threads = num_threads, progress = progress)
# Drop any NULL columns
is_null <- vapply(out, is.null, logical(1))
out[is_null] <- NULL
# If no rows expand columns to be the same length and names as the spec
if (NROW(out) == 0) {
cols <- attr(out, "spec")[["cols"]]
for (i in seq_along(cols)) {
out[[i]] <- collector_value(cols[[i]])
}
names(out) <- names(cols)
}
out <- tibble::as_tibble(out, .name_repair = identity)
class(out) <- c("spec_tbl_df", class(out))
out <- vroom_select(out, col_select, id)
if (should_show_col_types(has_col_types, show_col_types)) {
show_col_types(out, locale)
}
out
}
should_show_col_types <- function(has_col_types, show_col_types) {
if (is.null(show_col_types)) {
return(isTRUE(!has_col_types))
}
isTRUE(show_col_types)
}
make_names <- function(x, len) {
if (len == 0) {
return(character())
}
if (length(x) == len) {
return(x)
}
if (length(x) > len) {
return(x[seq_len(len)])
}
nms <- make.names(seq_len(len))
nms[seq_along(x)] <- x
nms
}
#' Determine whether progress bars should be shown
#'
#' By default, vroom shows progress bars. However, progress reporting is
#' suppressed if any of the following conditions hold:
#' - The bar is explicitly disabled by setting the environment variable
#' `VROOM_SHOW_PROGRESS` to `"false"`.
#' - The code is run in a non-interactive session, as determined by
#' [rlang::is_interactive()].
#' - The code is run in an RStudio notebook chunk, as determined by
#' `getOption("rstudio.notebook.executing")`.
#' @export
#' @examples
#' vroom_progress()
vroom_progress <- function() {
env_to_logical("VROOM_SHOW_PROGRESS", TRUE) &&
is_interactive() &&
# some analysis re: rstudio.notebook.executing can be found in:
# https://github.com/r-lib/rlang/issues/1031
# TL;DR it's not consulted by is_interactive(), but probably should be
# consulted for progress reporting specifically
!isTRUE(getOption("rstudio.notebook.executing"))
}
pb_file_format <- function(filename) {
# Workaround RStudio bug https://github.com/rstudio/rstudio/issues/4777
withr::with_options(list(crayon.enabled = (!is_rstudio_console() || is_rstudio_version("1.2.1578")) && getOption("crayon.enabled", TRUE)),
glue::glue_col("{bold}indexing{reset} {blue}{basename(filename)}{reset} [:bar] {green}:rate{reset}, eta: {cyan}:eta{reset}")
)
}
pb_width <- function(format) {
ansii_chars <- nchar(format) - crayon::col_nchar(format)
getOption("width", 80L) + ansii_chars
}
pb_connection_format <- function(unused) {
withr::with_options(list(crayon.enabled = (!is_rstudio_console() || is_rstudio_version("1.2.1578")) && getOption("crayon.enabled", TRUE)),
glue::glue_col("{bold}indexed{reset} {green}:bytes{reset} in {cyan}:elapsed{reset}, {green}:rate{reset}")
)
}
pb_write_format <- function(unused) {
withr::with_options(list(crayon.enabled = (!is_rstudio_console() || is_rstudio_version("1.2.1578")) && getOption("crayon.enabled", TRUE)),
glue::glue_col("{bold}wrote{reset} {green}:bytes{reset} in {cyan}:elapsed{reset}, {green}:rate{reset}")
)
}
# Guess delimiter by splitting every line by each delimiter and choosing the
# delimiter which splits the lines into the highest number of consistent fields
guess_delim <- function(lines, delims = c(",", "\t", " ", "|", ":", ";")) {
if (length(lines) == 0) {
return("")
}
# blank text within quotes
lines <- gsub('"[^"]*"', "", lines)
splits <- lapply(delims, strsplit, x = lines, useBytes = TRUE, fixed = TRUE)
counts <- lapply(splits, function(x) table(lengths(x)))
num_fields <- vapply(counts, function(x) as.integer(names(x)[[1]]), integer(1))
num_lines <- vapply(counts, function(x) (x)[[1]], integer(1))
top_lines <- 0
top_idx <- 0
for (i in seq_along(delims)) {
if (num_fields[[i]] >= 2 && num_lines[[i]] > top_lines ||
(top_lines == num_lines[[i]] && (top_idx <= 0 || num_fields[[top_idx]] < num_fields[[i]]))) {
top_lines <- num_lines[[i]]
top_idx <- i
}
}
if (top_idx == 0) {
stop(glue::glue('
Could not guess the delimiter.\n
{silver("Use `vroom(delim =)` to specify one explicitly.")}
'), call. = FALSE)
}
delims[[top_idx]]
}
cached <- new.env(parent = emptyenv())
vroom_threads <- function() {
res <- as.integer(
Sys.getenv("VROOM_THREADS",
cached$num_threads <- cached$num_threads %||% parallel::detectCores()
)
)
if (is.na(res) || res <= 0) {
res <- 1
}
res
}
vroom_tempfile <- function() {
dir <- Sys.getenv("VROOM_TEMP_PATH")
if (!nzchar(dir)) {
dir <- tempdir()
}
tempfile(pattern = "vroom-", tmpdir = dir)
}
#' Show which column types are using Altrep
#'
#' `vroom_altrep()` can be used directly as input to the `altrep`
#' argument of [vroom()].
#'
#' Alternatively there is also a family of environment variables to control use of
#' the Altrep framework. These can then be set in your `.Renviron` file, e.g.
#' with `usethis::edit_r_environ()`. For versions of R where the Altrep
#' framework is unavailable (R < 3.5.0) they are automatically turned off and
#' the variables have no effect. The variables can take one of `true`, `false`,
#' `TRUE`, `FALSE`, `1`, or `0`.
#'
#' - `VROOM_USE_ALTREP_NUMERICS` - If set use Altrep for _all_ numeric types
#' (default `false`).
#'
#' There are also individual variables for each type. Currently only
#' `VROOM_USE_ALTREP_CHR` defaults to `true`.
#'
#' - `VROOM_USE_ALTREP_CHR`
#' - `VROOM_USE_ALTREP_FCT`
#' - `VROOM_USE_ALTREP_INT`
#' - `VROOM_USE_ALTREP_BIG_INT`
#' - `VROOM_USE_ALTREP_DBL`
#' - `VROOM_USE_ALTREP_NUM`
#' - `VROOM_USE_ALTREP_LGL`
#' - `VROOM_USE_ALTREP_DTTM`
#' - `VROOM_USE_ALTREP_DATE`
#' - `VROOM_USE_ALTREP_TIME`
#'
#' @param which A character vector of column types to use Altrep for. Can also
#' take `TRUE` or `FALSE` to use Altrep for all possible or none of the
#' types
#' @examples
#' vroom_altrep()
#' vroom_altrep(c("chr", "fct", "int"))
#' vroom_altrep(TRUE)
#' vroom_altrep(FALSE)
#' @export
vroom_altrep <- function(which = NULL) {
if (!is.null(which)) {
if (is.logical(which)) {
types <- names(altrep_vals())
if (isTRUE(which)) {
which <- as.list(stats::setNames(rep(TRUE, length(types)), types))
} else {
which <- as.list(stats::setNames(rep(FALSE, length(types)), types))
}
} else {
which <- match.arg(which, names(altrep_vals()), several.ok = TRUE)
which <- as.list(stats::setNames(rep(TRUE, length(which)), which))
}
}
args <- list(
getRversion() >= "3.5.0" && which$chr %||% vroom_use_altrep_chr(),
getRversion() >= "3.5.0" && which$fct %||% vroom_use_altrep_fct(),
getRversion() >= "3.5.0" && which$int %||% vroom_use_altrep_int(),
getRversion() >= "3.5.0" && which$dbl %||% vroom_use_altrep_dbl(),
getRversion() >= "3.5.0" && which$num %||% vroom_use_altrep_num(),
getRversion() >= "3.6.0" && which$lgl %||% vroom_use_altrep_lgl(), # logicals only supported in R 3.6.0+
getRversion() >= "3.5.0" && which$dttm %||% vroom_use_altrep_dttm(),
getRversion() >= "3.5.0" && which$date %||% vroom_use_altrep_date(),
getRversion() >= "3.5.0" && which$time %||% vroom_use_altrep_time(),
getRversion() >= "3.5.0" && which$big_int %||% vroom_use_altrep_big_int()
)
out <- 0L
for (i in seq_along(args)) {
out <- bitwOr(out, bitwShiftL(as.integer(args[[i]]), i - 1L))
}
structure(out, class = "vroom_altrep")
}
#' Show which column types are using Altrep
#'
#' @description
#' \Sexpr[results=rd, stage=render]{lifecycle::badge("deprecated")}
#' This function is deprecated in favor of `vroom_altrep()`.
#'
#' @inheritParams vroom_altrep
#' @export
vroom_altrep_opts <- function(which = NULL) {
deprecate_warn("1.1.0", "vroom_altrep_opts()", "vroom_altrep()")
vroom_altrep(which)
}
altrep_vals <- function() c(
"none" = 0L,
"chr" = 1L,
"fct" = 2L,
"int" = 4L,
"dbl" = 8L,
"num" = 16L,
"lgl" = 32L,
"dttm" = 64L,
"date" = 128L,
"time" = 256L,
"big_int" = 512L,
"skip" = 1024L
)
#' @export
print.vroom_altrep <- function(x, ...) {
vals <- altrep_vals()
reps <- names(vals)[bitwAnd(vals, x) > 0]
cat("Using Altrep representations for:\n",
glue::glue("
* {reps}
", reps = glue::glue_collapse(reps, "\n * ")), "\n", sep = "")
}
vroom_use_altrep_chr <- function() {
env_to_logical("VROOM_USE_ALTREP_CHR", TRUE)
}
vroom_use_altrep_fct <- function() {
# fct is a numeric internally
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_FCT", FALSE)
}
vroom_use_altrep_int <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_INT", FALSE)
}
vroom_use_altrep_big_int <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_BIG_INT", FALSE)
}
vroom_use_altrep_dbl <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_DBL", FALSE)
}
vroom_use_altrep_num <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_NUM", FALSE)
}
vroom_use_altrep_lgl <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_LGL", FALSE)
}
vroom_use_altrep_dttm <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_DTTM", FALSE)
}
vroom_use_altrep_date <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_DATE", FALSE)
}
vroom_use_altrep_time <- function() {
env_to_logical("VROOM_USE_ALTREP_NUMERICS", FALSE) || env_to_logical("VROOM_USE_ALTREP_TIME", FALSE)
}