Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
fable/R/ets.R
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
720 lines (668 sloc)
25.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
train_ets <- function(.data, specials, opt_crit, | |
nmse, bounds, ic, restrict = TRUE, ...) { | |
if (length(measured_vars(.data)) > 1) { | |
abort("Only univariate responses are supported by ETS.") | |
} | |
# Rebuild `ets` arguments | |
ets_spec <- specials[c("error", "trend", "season")] | |
map(ets_spec, function(.x) { | |
if (length(.x) > 1) { | |
abort("Only one special of each type is allowed for ETS.") | |
} | |
}) | |
ets_spec <- unlist(ets_spec, recursive = FALSE) | |
# Get response | |
y <- unclass(.data)[[measured_vars(.data)]] | |
idx <- unclass(.data)[[index_var(.data)]] | |
if (any(is.na(y))) { | |
abort("ETS does not support missing values.") | |
} | |
# Build possible models | |
model_opts <- expand.grid( | |
errortype = ets_spec$error$method, | |
trendtype = ets_spec$trend$method, | |
seasontype = ets_spec$season$method, | |
stringsAsFactors = FALSE | |
) | |
model_opts$damped <- nchar(model_opts$trendtype) > 1 | |
model_opts$trendtype <- substr(model_opts$trendtype, 1, 1) | |
# Remove bad models | |
if (NROW(model_opts) > 1) { | |
if (min(y) <= 0) { | |
model_opts <- model_opts[model_opts$errortype != "M", ] | |
} | |
if (restrict) { | |
restricted <- with( | |
model_opts, | |
(errortype == "A" & (trendtype == "M" | seasontype == "M")) | # AMM, AAM, AMA | |
(errortype == "M" & trendtype == "M" & seasontype == "A") | |
) # MMA | |
model_opts <- model_opts[!restricted, ] | |
} | |
} | |
if (NROW(model_opts) == 0) { | |
abort("No valid ETS models have been allowed. Consider allowing different (more stable) models, or enabling the restricted models with `restrict = FALSE`.") | |
} | |
# Find best model | |
best <- NULL | |
last_error <- NULL | |
compare_ets <- function(errortype, trendtype, seasontype, damped) { | |
new <- safely(quietly(etsmodel))( | |
y, m = ets_spec$season$period, | |
errortype = errortype, trendtype = trendtype, seasontype = seasontype, damped = damped, | |
alpha = ets_spec$trend$alpha, alpharange = ets_spec$trend$alpha_range, | |
beta = ets_spec$trend$beta, betarange = ets_spec$trend$beta_range, | |
phi = ets_spec$trend$phi, phirange = ets_spec$trend$phi_range, | |
gamma = ets_spec$season$gamma, gammarange = ets_spec$season$gamma_range, | |
opt.crit = opt_crit, nmse = nmse, bounds = bounds, ...) | |
if (!is.null(new$error)) { | |
last_error <<- new$error | |
} | |
new <- new$result | |
if ((new[[ic]] %||% Inf) < (best[[ic]] %||% Inf) && is.finite(new[[ic]]) || is.null(best)) { | |
best <<- new | |
} | |
new[[ic]] %||% Inf | |
} | |
ic <- pmap_dbl(model_opts, compare_ets) | |
if (is.null(best)) { | |
abort(last_error$message) | |
} | |
best_spec <- model_opts[which.min(ic), ] | |
best_spec$period <- ets_spec$season$period | |
structure( | |
list( | |
par = tibble(term = names(best$par) %||% chr(), estimate = unname(best$par) %||% dbl()), | |
est = mutate( | |
dplyr::ungroup(.data), | |
.fitted = best$fitted, | |
.resid = best$residuals | |
), | |
fit = tibble( | |
sigma2 = sum(best$residuals^2, na.rm = TRUE) / (length(y) - length(best$par)), | |
log_lik = best$loglik, AIC = best$aic, AICc = best$aicc, BIC = best$bic, | |
MSE = best$mse, AMSE = best$amse, MAE = best$mae | |
), | |
states = tsibble( | |
!!!set_names(list(seq(idx[[1]] - default_time_units(interval(.data)), | |
by = default_time_units(interval(.data)), | |
length.out = NROW(best$states) | |
)), index_var(.data)), | |
!!!set_names(split(best$states, col(best$states)), colnames(best$states)), | |
index = !!index(.data) | |
), | |
spec = as_tibble(best_spec) | |
), | |
class = "ETS" | |
) | |
} | |
specials_ets <- new_specials( | |
error = function(method = c("A", "M")) { | |
if (!all(is.element(method, c("A", "M")))) { | |
stop("Invalid error type") | |
} | |
list(method = method) | |
}, | |
trend = function(method = c("N", "A", "Ad"), | |
alpha = NULL, alpha_range = c(1e-04, 0.9999), | |
beta = NULL, beta_range = c(1e-04, 0.9999), | |
phi = NULL, phi_range = c(0.8, 0.98)) { | |
if (!all(is.element(method, c("N", "A", "Ad", "M", "Md")))) { | |
stop("Invalid trend type") | |
} | |
if (alpha_range[1] > alpha_range[2]) { | |
abort("Lower alpha limits must be less than upper limits") | |
} | |
if (beta_range[1] > beta_range[2]) { | |
abort("Lower beta limits must be less than upper limits") | |
} | |
if (phi_range[1] > phi_range[2]) { | |
abort("Lower phi limits must be less than upper limits") | |
} | |
if(!is.null(alpha)) alpha_range <- rep(alpha, 2) | |
if(!is.null(beta)) beta_range <- rep(beta, 2) | |
if(!is.null(phi)) phi_range <- rep(phi, 2) | |
list( | |
method = method, | |
alpha = alpha, alpha_range = alpha_range, | |
beta = beta, beta_range = beta_range, | |
phi = phi, phi_range = phi_range | |
) | |
}, | |
season = function(method = c("N", "A", "M"), period = NULL, | |
gamma = NULL, gamma_range = c(1e-04, 0.9999)) { | |
if (!all(is.element(method, c("N", "A", "M")))) { | |
abort("Invalid season type") | |
} | |
if (gamma_range[1] > gamma_range[2]) { | |
abort("Lower gamma limits must be less than upper limits") | |
} | |
if(!is.null(gamma)) gamma_range <- rep(gamma, 2) | |
m <- get_frequencies(period, self$data, .auto = "smallest") | |
if (m <= 1 || (NROW(self$data) <= m && self$stage %in% c("estimate", "refit"))) { | |
method <- intersect("N", method) | |
} | |
if (m > 24) { | |
if (!is.element("N", method)) { | |
abort("Seasonal periods (`period`) of length greather than 24 are not supported by ETS.") | |
} else if (length(method) > 1) { | |
warn("Seasonal periods (`period`) of length greather than 24 are not supported by ETS. Seasonality will be ignored.") | |
method <- "N" | |
} | |
} | |
if (is_empty(method)) { | |
abort("A seasonal ETS model cannot be used for this data.") | |
} | |
list(method = method, gamma = gamma, gamma_range = gamma_range, period = m) | |
}, | |
xreg = no_xreg, | |
.required_specials = c("error", "trend", "season") | |
) | |
#' Exponential smoothing state space model | |
#' | |
#' Returns ETS model specified by the formula. | |
#' | |
#' Based on the classification of methods as described in Hyndman et al (2008). | |
#' | |
#' The methodology is fully automatic. The model is chosen automatically if not | |
#' specified. This methodology performed extremely well on the M3-competition | |
#' data. (See Hyndman, et al, 2002, below.) | |
#' | |
#' @aliases report.ETS | |
#' | |
#' @param formula Model specification (see "Specials" section). | |
#' @param opt_crit The optimization criterion. Defaults to the log-likelihood | |
#' `"lik"`, but can also be set to `"mse"` (Mean Square Error), `"amse"` | |
#' (Average MSE over first `nmse` forecast horizons), `"sigma"` (Standard | |
#' deviation of residuals), or `"mae"` (Mean Absolute Error). | |
#' @param nmse If `opt_crit == "amse"`, `nmse` provides the number of steps for | |
#' average multistep MSE (`1<=nmse<=30`). | |
#' @param bounds Type of parameter space to impose: `"usual"` indicates | |
#' all parameters must lie between specified lower and upper bounds; | |
#' `"admissible"` indicates parameters must lie in the admissible space; | |
#' `"both"` (default) takes the intersection of these regions. | |
#' @param ic The information criterion used in selecting the model. | |
#' @param restrict If TRUE (default), the models with infinite variance will not | |
#' be allowed. These restricted model components are AMM, AAM, AMA, and MMA. | |
#' | |
#' @param ... Other arguments | |
#' | |
#' @section Specials: | |
#' | |
#' The _specials_ define the methods and parameters for the components (error, trend, and seasonality) of an ETS model. If more than one method is specified, `ETS` will consider all combinations of the specified models and select the model which best fits the data (minimising `ic`). The method argument for each specials have reasonable defaults, so if a component is not specified an appropriate method will be chosen automatically. | |
#' | |
#' There are a couple of limitations to note about ETS models: | |
#' | |
#' - It does not support exogenous regressors. | |
#' - It does not support missing values. You can complete missing values in the data with imputed values (e.g. with [tidyr::fill()], or by fitting a different model type and then calling [fabletools::interpolate()]) before fitting the model. | |
#' | |
#' \subsection{error}{ | |
#' The `error` special is used to specify the form of the error term. | |
#' \preformatted{ | |
#' error(method = c("A", "M")) | |
#' } | |
#' | |
#' \tabular{ll}{ | |
#' `method` \tab The form of the error term: either additive ("A") or multiplicative ("M"). If the error is multiplicative, the data must be non-negative. All specified methods are tested on the data, and the one that gives the best fit (lowest `ic`) will be kept. | |
#' } | |
#' } | |
#' | |
#' \subsection{trend}{ | |
#' The `trend` special is used to specify the form of the trend term and associated parameters. | |
#' \preformatted{ | |
#' trend(method = c("N", "A", "Ad"), | |
#' alpha = NULL, alpha_range = c(1e-04, 0.9999), | |
#' beta = NULL, beta_range = c(1e-04, 0.9999), | |
#' phi = NULL, phi_range = c(0.8, 0.98)) | |
#' } | |
#' | |
#' \tabular{ll}{ | |
#' `method` \tab The form of the trend term: either none ("N"), additive ("A"), multiplicative ("M") or damped variants ("Ad", "Md"). All specified methods are tested on the data, and the one that gives the best fit (lowest `ic`) will be kept.\cr | |
#' `alpha` \tab The value of the smoothing parameter for the level. If `alpha = 0`, the level will not change over time. Conversely, if `alpha = 1` the level will update similarly to a random walk process. \cr | |
#' `alpha_range` \tab If `alpha=NULL`, `alpha_range` provides bounds for the optimised value of `alpha`.\cr | |
#' `beta` \tab The value of the smoothing parameter for the slope. If `beta = 0`, the slope will not change over time. Conversely, if `beta = 1` the slope will have no memory of past slopes. \cr | |
#' `beta_range` \tab If `beta=NULL`, `beta_range` provides bounds for the optimised value of `beta`.\cr | |
#' `phi` \tab The value of the dampening parameter for the slope. If `phi = 0`, the slope will be dampened immediately (no slope). Conversely, if `phi = 1` the slope will not be dampened. \cr | |
#' `phi_range` \tab If `phi=NULL`, `phi_range` provides bounds for the optimised value of `phi`. | |
#' } | |
#' } | |
#' | |
#' \subsection{season}{ | |
#' The `season` special is used to specify the form of the seasonal term and associated parameters. To specify a nonseasonal model you would include `season(method = "N")`. | |
#' \preformatted{ | |
#' season(method = c("N", "A", "M"), period = NULL, | |
#' gamma = NULL, gamma_range = c(1e-04, 0.9999)) | |
#' } | |
#' | |
#' \tabular{ll}{ | |
#' `method` \tab The form of the seasonal term: either none ("N"), additive ("A") or multiplicative ("M"). All specified methods are tested on the data, and the one that gives the best fit (lowest `ic`) will be kept.\cr | |
#' `period` \tab The periodic nature of the seasonality. This can be either a number indicating the number of observations in each seasonal period, or text to indicate the duration of the seasonal window (for example, annual seasonality would be "1 year"). \cr | |
#' `gamma` \tab The value of the smoothing parameter for the seasonal pattern. If `gamma = 0`, the seasonal pattern will not change over time. Conversely, if `gamma = 1` the seasonality will have no memory of past seasonal periods. \cr | |
#' `gamma_range` \tab If `gamma=NULL`, `gamma_range` provides bounds for the optimised value of `gamma`. | |
#' } | |
#' } | |
#' | |
#' @return A model specification. | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ETS(log(value) ~ season("A"))) | |
#' @seealso | |
#' [Forecasting: Principles and Practices, Exponential smoothing (chapter 8)](https://otexts.com/fpp3/expsmooth.html) | |
#' | |
#' | |
#' @references Hyndman, R.J., Koehler, A.B., Snyder, R.D., and Grose, S. (2002) | |
#' "A state space framework for automatic forecasting using exponential | |
#' smoothing methods", \emph{International J. Forecasting}, \bold{18}(3), | |
#' 439--454. | |
#' | |
#' Hyndman, R.J., Akram, Md., and Archibald, B. (2008) "The admissible | |
#' parameter space for exponential smoothing models". \emph{Annals of | |
#' Statistical Mathematics}, \bold{60}(2), 407--426. | |
#' | |
#' Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) | |
#' \emph{Forecasting with exponential smoothing: the state space approach}, | |
#' Springer-Verlag. \url{http://www.exponentialsmoothing.net}. | |
#' | |
#' @export | |
ETS <- function(formula, opt_crit = c("lik", "amse", "mse", "sigma", "mae"), | |
nmse = 3, bounds = c("both", "usual", "admissible"), | |
ic = c("aicc", "aic", "bic"), restrict = TRUE, ...) { | |
opt_crit <- match.arg(opt_crit) | |
bounds <- match.arg(bounds) | |
ic <- match.arg(ic) | |
ets_model <- new_model_class("ETS", | |
train = train_ets, specials = specials_ets, | |
check = all_tsbl_checks | |
) | |
new_model_definition(ets_model, !!enquo(formula), | |
opt_crit = opt_crit, nmse = nmse, | |
bounds = bounds, ic = ic, restrict = restrict, ... | |
) | |
} | |
#' @inherit forecast.ARIMA | |
#' | |
#' @param simulate If `TRUE`, prediction intervals are produced by simulation rather than using analytic formulae. | |
#' @param times The number of sample paths to use in estimating the forecast distribution if simulated intervals are used. | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' forecast() | |
#' @export | |
forecast.ETS <- function(object, new_data, specials = NULL, simulate = FALSE, bootstrap = FALSE, times = 5000, ...) { | |
errortype <- object$spec$errortype | |
trendtype <- object$spec$trendtype | |
seasontype <- object$spec$seasontype | |
damped <- object$spec$damped | |
laststate <- as.numeric(object$states[NROW(object$states), measured_vars(object$states)]) | |
fc_class <- if (errortype == "A" && trendtype %in% c("A", "N") && seasontype %in% c("N", "A")) { | |
ets_fc_class1 | |
} else if (errortype == "M" && trendtype %in% c("A", "N") && seasontype %in% c("N", "A")) { | |
ets_fc_class2 | |
} else if (errortype == "M" && trendtype != "M" && seasontype == "M") { | |
ets_fc_class3 | |
} else { | |
simulate <- TRUE | |
} | |
if (simulate || bootstrap) { | |
sim <- map(seq_len(times), function(x) generate(object, new_data, times = times, bootstrap = bootstrap)[[".sim"]]) %>% | |
transpose() %>% | |
map(as.numeric) | |
distributional::dist_sample(sim) | |
} | |
else { | |
fc <- fc_class( | |
h = NROW(new_data), | |
last.state = laststate, | |
trendtype, seasontype, damped, object$spec$period, object$fit$sigma2, | |
set_names(object$par$estimate, object$par$term) | |
) | |
distributional::dist_normal(fc$mu, sqrt(fc$var)) | |
} | |
} | |
#' Generate new data from a fable model | |
#' | |
#' Simulates future paths from a dataset using a fitted model. Innovations are | |
#' sampled by the model's assumed error distribution. If `bootstrap` is `TRUE`, | |
#' innovations will be sampled from the model's residuals. If `new_data` | |
#' contains the `.innov` column, those values will be treated as innovations. | |
#' | |
#' @inheritParams forecast.ETS | |
#' @param x A fitted model. | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ETS(log(value) ~ season("A"))) %>% | |
#' generate(times = 100) | |
#' @seealso [`fabletools::generate.mdl_df`] | |
#' | |
#' @export | |
generate.ETS <- function(x, new_data, specials, bootstrap = FALSE, ...) { | |
if (!is_regular(new_data)) { | |
abort("Simulation new_data must be regularly spaced") | |
} | |
start_idx <- min(new_data[[index_var(new_data)]]) | |
start_pos <- match(start_idx - default_time_units(interval(new_data)), x$states[[index_var(x$states)]]) | |
if (is.na(start_pos)) { | |
abort("The first observation index of simulation data must be within the model's training set.") | |
} | |
initstate <- as.numeric(x$states[start_pos, measured_vars(x$states)]) | |
if (!(".innov" %in% names(new_data))) { | |
if (bootstrap) { | |
new_data$.innov <- sample(stats::na.omit(residuals(x) - mean(residuals(x), na.rm = TRUE)), | |
NROW(new_data), | |
replace = TRUE | |
) | |
} | |
else { | |
new_data$.innov <- stats::rnorm(NROW(new_data), sd = sqrt(x$fit$sigma2)) | |
} | |
} | |
if (x$spec$errortype == "M") { | |
new_data[[".innov"]] <- pmax(-1, new_data[[".innov"]]) | |
} | |
get_par <- function(par) { | |
x$par$estimate[x$par$term == par] | |
} | |
result <- transmute( | |
group_by_key(new_data), | |
".sim" := .C( | |
"etssimulate", | |
as.double(initstate), | |
as.integer(x$spec$period), | |
as.integer(switch(x$spec$errortype, "A" = 1, "M" = 2)), | |
as.integer(switch(x$spec$trendtype, "N" = 0, "A" = 1, "M" = 2)), | |
as.integer(switch(x$spec$seasontype, "N" = 0, "A" = 1, "M" = 2)), | |
as.double(get_par("alpha")), | |
as.double(ifelse(x$spec$trendtype == "N", 0, get_par("beta"))), | |
as.double(ifelse(x$spec$seasontype == "N", 0, get_par("gamma"))), | |
as.double(ifelse(!x$spec$damped, 1, get_par("phi"))), | |
as.integer(length(!!sym(".innov"))), | |
as.double(numeric(length(!!sym(".innov")))), | |
as.double(!!sym(".innov")), | |
PACKAGE = "fable" | |
)[[11]]) | |
if (is.na(result[[".sim"]][1])) { | |
stop("Problem with multiplicative damped trend") | |
} | |
result | |
} | |
#' Refit an ETS model | |
#' | |
#' Applies a fitted ETS model to a new dataset. | |
#' | |
#' @inheritParams refit.ARIMA | |
#' @param reinitialise If TRUE, the initial parameters will be re-estimated to suit the new data. | |
#' | |
#' @examples | |
#' lung_deaths_male <- as_tsibble(mdeaths) | |
#' lung_deaths_female <- as_tsibble(fdeaths) | |
#' | |
#' fit <- lung_deaths_male %>% | |
#' model(ETS(value)) | |
#' | |
#' report(fit) | |
#' | |
#' fit %>% | |
#' refit(lung_deaths_female, reinitialise = TRUE) %>% | |
#' report() | |
#' @importFrom stats formula residuals | |
#' @export | |
refit.ETS <- function(object, new_data, specials = NULL, reestimate = FALSE, reinitialise = TRUE, ...) { | |
est_par <- function(par) { | |
if (any(pos <- object$par$term == par) && !reestimate) { | |
object$par$estimate[pos] | |
} else { | |
NULL | |
} | |
} | |
y <- transmute(new_data, !!parse_expr(measured_vars(object$est)[1])) | |
idx <- unclass(y)[[index_var(y)]] | |
y <- unclass(y)[[measured_vars(y)]] | |
best <- if (reinitialise) { | |
etsmodel( | |
y, | |
m = object$spec$period, | |
errortype = object$spec$errortype, trendtype = object$spec$trendtype, | |
seasontype = object$spec$seasontype, damped = object$spec$damped, | |
alpha = est_par("alpha"), beta = est_par("beta"), phi = est_par("phi"), gamma = est_par("gamma"), | |
alpharange = c(1e-04, 0.9999), betarange = c(1e-04, 0.9999), | |
gammarange = c(1e-04, 0.9999), phirange = c(0.8, 0.98), | |
opt.crit = "lik", nmse = 3, bounds = "both" | |
) | |
} | |
else { | |
init.par <- set_names(object$par$estimate, object$par$term) | |
estimate_ets( | |
y, | |
m = object$spec$period, | |
init.state = init.par[setdiff(names(init.par), c("alpha", "beta", "gamma", "phi"))], | |
errortype = object$spec$errortype, trendtype = object$spec$trendtype, | |
seasontype = object$spec$seasontype, damped = object$spec$damped, | |
alpha = est_par("alpha"), beta = est_par("beta"), phi = est_par("phi"), gamma = est_par("gamma"), | |
nmse = 3, np = NROW(object$par) | |
) | |
} | |
structure( | |
list( | |
par = tibble(term = names(best$par) %||% chr(), estimate = unname(best$par) %||% dbl()), | |
est = mutate( | |
new_data, | |
.fitted = best$fitted, | |
.resid = best$residuals | |
), | |
fit = tibble( | |
sigma2 = sum(best$residuals^2, na.rm = TRUE) / (length(y) - length(best$par)), | |
log_lik = best$loglik, AIC = best$aic, AICc = best$aicc, BIC = best$bic, | |
MSE = best$mse, AMSE = best$amse, MAE = best$mae | |
), | |
states = tsibble( | |
!!!set_names(list(seq(idx[[1]] - default_time_units(interval(new_data)), | |
by = default_time_units(interval(new_data)), | |
length.out = NROW(best$states) | |
)), index_var(new_data)), | |
!!!set_names(split(best$states, col(best$states)), colnames(best$states)), | |
index = !!index(new_data) | |
), | |
spec = object$spec | |
), | |
class = "ETS" | |
) | |
} | |
#' @inherit fitted.ARIMA | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' fitted() | |
#' @export | |
fitted.ETS <- function(object, ...) { | |
object$est[[".fitted"]] | |
} | |
#' @export | |
hfitted.ETS <- function(object, h, ...) { | |
errortype <- object$spec$errortype | |
trendtype <- object$spec$trendtype | |
seasontype <- object$spec$seasontype | |
damped <- object$spec$damped | |
fc_class <- if (errortype == "A" && trendtype %in% c("A", "N") && seasontype %in% c("N", "A")) { | |
ets_fc_class1 | |
} else if (errortype == "M" && trendtype %in% c("A", "N") && seasontype %in% c("N", "A")) { | |
ets_fc_class2 | |
} else if (errortype == "M" && trendtype != "M" && seasontype == "M") { | |
ets_fc_class3 | |
} else { | |
abort(sprintf("Multi-step fits for %s%s%s%s ETS models is not supported."), | |
errortype, trendtype, if(damped) "d" else "", seasontype) | |
} | |
n <- nrow(object$states)-1 | |
fits <- rep_len(NA_real_, n) | |
for(i in seq_len(n-h+1)) { | |
fits[i + h - 1] <- fc_class( | |
h = h, | |
last.state = as.numeric(object$states[i, measured_vars(object$states)]), | |
trendtype, seasontype, damped, object$spec$period, object$fit$sigma2, | |
set_names(object$par$estimate, object$par$term) | |
)$mu[h] | |
} | |
fits | |
} | |
#' @inherit residuals.ARIMA | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' residuals() | |
#' @export | |
residuals.ETS <- function(object, ...) { | |
object$est[[".resid"]] | |
} | |
#' Glance an ETS model | |
#' | |
#' Construct a single row summary of the ETS model. | |
#' | |
#' Contains the variance of residuals (`sigma2`), the log-likelihood (`log_lik`), | |
#' and information criterion (`AIC`, `AICc`, `BIC`). | |
#' | |
#' @inheritParams generics::glance | |
#' | |
#' @return A one row tibble summarising the model's fit. | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' glance() | |
#' @export | |
glance.ETS <- function(x, ...) { | |
x$fit | |
} | |
#' @inherit tidy.ARIMA | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' tidy() | |
#' @export | |
tidy.ETS <- function(x, ...) { | |
length(measured_vars(x$states)) | |
init <- initial_ets_states(x) | |
n_coef <- nrow(x$par) - (ncol(init)-(x$spec$seasontype!="N")) | |
dplyr::bind_rows( | |
x$par[seq_len(n_coef),], | |
tidyr::pivot_longer(init, seq_along(init), names_to = "term", values_to = "estimate") | |
) | |
} | |
#' Extract estimated states from an ETS model. | |
#' | |
#' @param object An estimated model. | |
#' @param ... Unused. | |
#' | |
#' @return A [fabletools::dable()] containing estimated states. | |
#' | |
#' @examples | |
#' as_tsibble(USAccDeaths) %>% | |
#' model(ets = ETS(log(value) ~ season("A"))) %>% | |
#' components() | |
#' @export | |
components.ETS <- function(object, ...) { | |
spec <- object$spec | |
m <- spec$period | |
idx <- index(object$states) | |
response <- measured_vars(object$est)[[1]] | |
cmp <- match(c(expr_text(idx), "l", "b", "s1"), colnames(object$states)) | |
out <- object$states[, stats::na.exclude(cmp)] | |
colnames(out) <- c(index_var(object$states), "level", "slope", "season")[!is.na(cmp)] | |
if (spec$seasontype != "N") { | |
seasonal_init <- tsibble( | |
!!expr_text(idx) := object$states[[index_var(object$states)]][[1]] - rev(seq_len(m - 1)) * default_time_units(interval(object$states)), | |
season = rev(as.numeric(object$states[1, paste0("s", seq_len(m - 1) + 1)])), | |
index = !!idx | |
) | |
out <- dplyr::bind_rows(seasonal_init, out) | |
seasonalities <- list(season = list(period = m, base = NA_real_)) | |
} | |
else { | |
seasonalities <- list() | |
} | |
est_vars <- transmute( | |
object$est, | |
!!sym(response), | |
remainder = !!sym(".resid") | |
) | |
out <- left_join(out, est_vars, by = index_var(object$states)) | |
out <- select(out, intersect(c(expr_text(idx), response, "level", "slope", "season", "remainder"), colnames(out))) | |
eqn <- expr(lag(!!sym("level"), 1)) | |
if (spec$trendtype == "A") { | |
if (spec$damped) { | |
phi <- object$par$estimate[object$par$term == "phi"] | |
eqn <- expr(!!eqn + !!phi * lag(!!sym("slope"), 1)) | |
} | |
else { | |
eqn <- expr(!!eqn + lag(!!sym("slope"), 1)) | |
} | |
} else if (spec$trendtype == "M") { | |
if (spec$damped) { | |
phi <- object$par$estimate[object$par$term == "phi"] | |
eqn <- expr(!!eqn * lag(!!sym("slope"), 1)^!!phi) | |
} | |
else { | |
eqn <- expr(!!eqn * lag(!!sym("slope"), 1)) | |
} | |
} | |
if (spec$seasontype == "A") { | |
eqn <- expr(!!eqn + lag(!!sym("season"), !!m)) | |
} else if (spec$seasontype == "M") { | |
eqn <- expr((!!eqn) * lag(!!sym("season"), !!m)) | |
} | |
if (spec$errortype == "A") { | |
eqn <- expr(!!eqn + !!sym("remainder")) | |
} else { | |
eqn <- expr((!!eqn) * (1 + !!sym("remainder"))) | |
} | |
fabletools::as_dable(out, | |
resp = !!sym(response), method = model_sum(object), | |
seasons = seasonalities, aliases = list2(!!response := eqn) | |
) | |
} | |
#' @export | |
model_sum.ETS <- function(x) { | |
with(x$spec, paste("ETS(", errortype, ",", trendtype, ifelse(damped, "d", ""), ",", seasontype, ")", sep = "")) | |
} | |
#' @export | |
report.ETS <- function(object, ...) { | |
ncoef <- length(measured_vars(object$states)) | |
get_par <- function(par) { | |
object$par$estimate[object$par$term == par] | |
} | |
cat(" Smoothing parameters:\n") | |
cat(paste(" alpha =", format(get_par("alpha")), "\n")) | |
if (object$spec$trendtype != "N") { | |
cat(paste(" beta =", format(get_par("beta")), "\n")) | |
} | |
if (object$spec$seasontype != "N") { | |
cat(paste(" gamma =", format(get_par("gamma")), "\n")) | |
} | |
if (object$spec$damped) { | |
cat(paste(" phi =", format(get_par("phi")), "\n")) | |
} | |
cat("\n Initial states:\n") | |
print.data.frame(initial_ets_states(object), row.names = FALSE) | |
cat("\n sigma^2: ") | |
cat(round(object$fit$sigma2, 4)) | |
if (!is.null(object$fit$AIC)) { | |
stats <- c(AIC = object$fit$AIC, AICc = object$fit$AICc, BIC = object$fit$BIC) | |
cat("\n\n") | |
print(stats) | |
} | |
} | |
initial_ets_states <- function(object) { | |
states_init <- object$states[1, measured_vars(object$states)] | |
states_type <- substring(colnames(states_init), 1, 1) | |
states_names <- lapply( | |
split(states_type, states_type), | |
function(x) paste0(x, "[", seq(0, by = -1, along = x), "]") | |
) | |
colnames(states_init) <- unsplit(states_names, states_type) | |
states_init | |
} |