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Abstract 
What attributes and settings of the Particle Swarm Optimizer constants result in a good, off-the-shelf, PSO 
implementation? There are many parameters, both explicit and implicit, associated with the Particle Swarm 
Optimizer that may affect its performance. There are the social and cognitive learning rates and magnitudes, the 
population size, the neighborhood size (including global neighborhoods), synchronous or asynchronous updates, and 
various additional controls, such as inertia and constriction factors. For any given problem, the values and choices 
for some of these parameters may have significant impact on the efficiency and reliability of the PSO, and yet 
varying other parameters may have little or no effect. What set of values, then, constitutes a good, general purpose 
PSO? While some of these factors have been investigated in the literature, others have not. In this paper we use 
existing literature and a selection of benchmark problems to determine a set of starting values suitable for an “off the 
shelf” PSO.  

Introduction
Since the introduction of the particle swarm optimizer by James Kennedy and Russ Eberhart in 1995 [8], 

numerous variations of the basic algorithm have been developed in the literature. Each researcher seems to have a 
favorite implementation - different population sizes, different neighborhood sizes, and so forth. In this paper we 
examine a variety of these choices with the goal of defining a canonical particle swarm optimizer, that is, an off-the-
shelf algorithm to be used as a good starting point for applying PSO.

The original PSO formulae defined each particle as a potential solution to a problem in D-dimensional space, 
with particle i represented Xi=(xi1,xi2,...,xiD). Each particle also maintains a memory of its previous best position, 
Pi=(pi1,pi2,...,piD), and a velocity along each dimension, represented as Vi=(vi1,vi2,...,viD). At each iteration, the P 
vector of the particle with the best fitness in the local neighborhood, designated g, and the P vector of the current 
particle are combined to adjust the velocity along each dimension, and that velocity is then used to compute a new 
position for the particle. The portion of the adjustment to the velocity influenced by the individual’s previous best 
position (P) is considered the cognition component, and the portion influenced by the best in the neighborhood is the 
social component [3,5,8]. 

In Kennedy’s early versions of the algorithm, these formulae are:
vid = vid+ϕ1*rand()*(pid - xid)+ϕ2*rand()*(pgd - xid)
xid = xid+vid

Constants ϕ1 and ϕ 2 determine the relative influence of the social and cognition components, and are often both 
set to the same value to give each component (the cognition and social learning rates ) equal weight. Angeline, in 
[1], calls this the learning rate. A constant, Vmax, was used to arbitrarily limit the velocities of the particles and 
improve the resolution of the search.

In [9] Eberhart and Shi show that PSO searches wide areas effectively, but tends to lack local search precision. 
Their solution in that paper was to introduce ω, an inertia factor, that dynamically adjusted the velocity over time, 
gradually focusing the PSO into a local search:

vid = ω*vid+ϕ1*rand()*(pid - xid)+ϕ2*rand()*(pgd - xid)
More recently, Maurice Clerc has introduced a constriction factor [2], K, that improves PSO’s ability to 

constrain and control velocities. In [4], Shi and Eberhart found that K, combined with constraints on Vmax, 
significantly improved the PSO performance. K is computed as:

K =
2

| 2 − ϕ − ϕ 2 − 4ϕ |
where ϕ=ϕ1+ϕ2,ϕ>4, and the PSO is then

vid = K(vid+ϕ1*rand()*(pid - xid)+ϕ2*rand()*(pgd - xid))
To test the various parameter settings, we start with the PSO settings Shi and Eberhart used in [4]: 30 particles, 

ϕ1 and ϕ2 both set to 2.05, Vmax set equal to Xmax, and incorporating Clerc’s constriction factor.  We assume, in 
absence of evidence otherwise, that the neighborhood is global, and particles are updated synchronously (That is, 
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gbest is determined between 
iterations). We also make use 
of the their suite of functions 
(also used by Kennedy in [7]):  
the Sphere function (De 
Jong’s F1), the Rosenbrock 
function, the generalized 
Rastrigrin function, the 
generalized Griewank 
function, and Schaffer’s F6 
function. Figure 1 shows the 
formula and parameters used 
for each function.

In every experiment, 
each function was run for 20 
repetitions, with an upper limit 
of 100,000 iterations. For each 
set of repetitions we captured 
the success rate, the average 
and median iterations for successful runs, and the average and median counts of calls to the evaluation function. The 
latter is a measure of the actual work performed by the algorithm within the set of runs.

Experiment 1: Population Size
For the initial experiment, we elected to explore the effects of changing the population size. In [10] Shi and 

Eberhart  reported that “PSO is not sensitive to the population size.” We found this to be generally true in terms of 
performance, but not in terms of cost. We ran the PSO for all five functions using the best performance parameters 
from Shi and Eberhart’s recent paper [4], that is, using Clerc’s constriction factor K computed with ϕ set to 4.1 
(social learning rate = cognitive learning rate = 2.05), and Vmax set equal to Xmax. We varied the population from 5 
to 200 in steps of five and compared the success rates, median iterations, and median evaluations.

PSO was 100% successful in solving the Griewank function in all cases, even when the population was as 
small as five particles. PSO was 100% successful in solving the Rosenbrock function at populations of 10 or more, 
and reliably solved the Sphere function at populations above 25. PSO did not solve Schaffer’s F6 with  100% 
consistently until the population reached 95, but was consistently at 85% or better starting at 30. The Rastrigrin 
function was never solved consistently 100%, but the success rate did stay at 75% or above beginning at a 
population of 30.

When we considered the median iterations required to find a solution (Figure 2), it is obvious that all the 
swarms had a reduction in the number of 
iterations required to solve all the functions 
(except the Griewank function) as the 
population increased.  We would expect that, 
in general, more particles would search more 
space, and a solution would then be found 
sooner. However, as the population increases, 
each iteration represents a greater cost, as 
more particles call upon the evaluation 
function. In Figure 3 we graph the median 
evaluations (costs) to population and it 
becomes clear that the increase in cost more 
than offsets the reduction in iterations.

Conclusion: A population size of 30 
appears to be a good choice. It is small 
enough to be efficient, yet large enough to 
produce reliable results. 

Figure 1. Functions in the test suite
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Experiment 2: Neighborhood Size
The neighborhood size for a swarm is 

the number of neighboring particles that 
influence a particular particle’s movement. In 
[3], Eberhart and Kennedy conclude that a 
small local neighborhood is better at avoiding 
local minima, and that a global neighborhood 
converges faster. P. N. Suganthan, in [11], 
gradually increased the neighborhood size 
from small to global with encouraging, yet 
ultimately inconclusive, results. In this 
experiment we use a population of 30, as 
decided in our previous experiment, and vary 
the neighborhood size from 2 to global in 
steps of 2. We found that PSO was 100% 
successful in solving Sphere, Rosenbrock, 
and Griewank functions for all neighborhood 
sizes. The the success rate for solving both Rastrigrin and Schaffer F6 became inconsistent after the neighborhood 
size grew above 8, with solutions to Schaffer F6 showing more fluctuation than solutions to Rastrigrin. Both of these 
functions have many local minima, so their 
performance is in keeping with Eberhart and 
Kennedy’s observation. For both functions 
the success rates stayed at or above 70%, 
with the sole exception of a 50% rate when 
solving Schaffer F6 at a neighborhood size 
of 28.

When we consider the median 
evaluation calls required for each success 
(Figure 4), with the exception of the wildly 
fluctuating success rates for solving Schaffer 
F6, increasing the neighborhood size does no 
harm, and significantly improves some 
performance (solving functions Sphere, 
Rosenbrock, and Rastrigrin).

Conclusion: The Global neighborhood 
appears to be a better general choice, as it 
seems to require less work for the same 
results.

Experiment 3: Synch or Async Updates
In the usual implementation of the PSO algorithm, particles can be thought of as being in a circular linked list, 

and a particle’s  local neighborhood is a sliding window stretching some distance to each side of the particle. It 
seems natural that the local best (lbest) is computed asynchronously, that is, as each particle is about to be moved, 
the best neighbor is determined and that influence is applied to the particle’s motion. Conversely, it also seems 
natural that the evaluation of the global best (gbest) is done synchronously, between iterations, so that all particles 
are moved in parallel, then the best particle in the population is selected as the gbest, and the next iteration is run.

There is a difference in the two methods beyond the obvious. In the synchronous update, all particles have 
moved in parallel before the best selection is made, but in the asynchronous update, the neighbors on one side of the 
particle to be adjusted have already been updated, whereas the neighbors on the other side have not. The question, 
then, is, “Does synchronization matter?”

To address this question, we ran PSO at various neighborhood sizes and applied updates both synchronously 
and asynchronously. Interestingly, synchronous updates were almost always more costly than asynchronous updates. 



Figure 5 shows the results of this experiment. We 
compared synchronously updating and 
asynchronously updating the particles of the 
swarm using three different neighborhood sizes: 2, 
14, and global. We found that in almost every 
instance, asynchronous updating found solutions 
faster than synchronous updating. In the few 
examples where synchronous updates performed 
better, the advantage was very small.

Conclusion: Asynchronous updates are 
generally less costly.

Experiment 4: Cognitive/Social Ratio
In [6], Kennedy asserts that the sum of the values of the cognitive and social components of the PSO (ϕ1 and 

ϕ2) should be about 4.0, and common usage is to set them each 2.05 each. However, in an earlier work [5], Kennedy 
also looked at models where the two components had varying values, specifically, zero for the social component 
(cognition-only model), zero for the cognitive component 
(social-only model), and setting the two equal (full 
model). In that work, he found a performance advantage to 
the social-only model.

To see what effect changing the relationship between 
the cognitive and social components had, we varied the 
cognitive rate ϕ1 from 0.0 to 4.1, and computed the 
matching social rate as ϕ2=4.1-ϕ1.

The results are rather interesting, as shown in Figure 
6. The usual settings of (ϕ1=2.05,ϕ2=2.05) did not result in 
the best performance for the swarm on any of the 
functions,  and the swarm performed better on the trig-
based functions (Rastrigrin, Griewank, and Schaffer F6) as the social component diminished. This implies that the 
social component tends to lead to more local minima trapping. The “acceptable range” shown in Figure 6 is an 
informal observation of the range of for ϕ1 and ϕ2 where PSO consistently finds solutions within a few percentage 
points of the best solution found, as shown in the “median evaluations” column.

Conclusion: A reasonable compromise for the cognitive and social component values appear to be 2.8 and 1.3, 
respectively.

Experiment 5: Magnitude of ϕ 
The previous setting of 4.1 for ϕ was based on common usage established before the introduction of Clerc’s 

constriction factor. We wondered if that value was still valid when applying the constriction factor, so we ran the 
test suite varying ϕ from 1.0 to 6.0, but maintaining the same cognitive/social ratio as above (2.8:1.3).  Essentially, 
the swarm performed best for all functions at the settings found in the experiments above (that is, ϕ=4.1) except 
Schaffer F6. Interestingly, in solving F6, the swarm  fared best in the area around ϕ=1.1, with settings of ϕ1=0.82 
and ϕ2=0.38, producing a median evaluation count of 931.5.  The reasons for this extraordinary improvement appear 
to be related to the shape of the function, and are thus very problem specific.

Conclusion: The settings from experiment 4 (ϕ=4.1) are best in the general case.

Experiment 6: Is Vmax Necessary?
Clerc’s constriction factor K should act as a damper to escalating velocities,  presumably negating the need for 

Vmax.  However, in [4] Shi and Eberhart found that reducing Vmax from a very large value to Vmax=Xmax 
significantly improved PSO performance.  It appears the influence of Vmax is related to the enforcement of Xmax. 
The functions in the test suite do not actually require setting an Xmax, as all of the functions are centered around a 
global minima. If we choose not to enforce Xmax or Vmax, so that the particles are free to fly as far and as fast a 
possible, the results are not significantly different from enforcing Xmax and setting Vmax=Xmax. The first two 
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columns of Figure 7 reflect this similarity. However, 
some problems obviously do require that Xmax be 
enforced in order to disregard solutions outside a 
specified, possibly asymmetric, search space, so the 
question arises, “If reducing Vmax to Xmax improved 
PSO performance, what effect would further reductions 
have?”

The third and forth columns of Figure 7 show the 
results of setting Vmax=Xmax/2 and Vmax=Xmax/4, 
respectively. Note that, in general, performance 
improves as Vmax shrinks. Obviously, there must be a 
lower limit to this reduction, as Vmax is the step size of 
the swarm, the maximum distance a particle can travel in an iteration. Reducing it by too much impedes the ability 
of the swarm to search.

The advantage to reducing Vmax is greatest on particles “pinned” to the Xmax wall. As Vmax shrinks, so does 
the pressure exerted by the particle’s velocity, allowing the particle’s memory of its best location and that of the 
neighborhood best to pull the particle back into the search region. 

As an alternative to trying to fine tune Vmax, we considered “unpinning” a particle at Xmax by resetting its 
velocity to zero. In that way, the pull of the particle’s best location memory and that of the neighborhood best 
immediately begins drawing the particle back into the search space. The right-most column in Figure 7 show the 
outcome of that adjustment. The results, while not as good as fine tuning Vmax, are quite acceptable, given that it 
allows the removal of yet another parameter.

Conclusion: For problems where Xmax must be enforced, when a particle reaches Xmax, set its velocity to 
zero. If Xmax is not enforced, Vmax need not be enforced, either.

Summary: The Off-The-Shelf PSO
For a general purpose, off-the-shelf PSO we recommend the following settings: a swarm of 30 particles using 

Clerc’s constriction formula, setting ϕ 1=2.8 and ϕ2=1.3, with a global neighborhood updated asynchronously, and, if 
Xmax is enforced, setting the velocity of particles at Xmax to zero. No single set of parameters is perfect for every 
problem, and even within this limited test suite, these settings produce, in some cases, noticeably less than optimal 
performance, but overall these settings provide a good starting point for tailoring the PSO to a particular problem.

As a final test, we compare four sets of parameters run against our test suite. The first, labeled Set A in Figure 
8, is a traditional PSO configuration: 30 particles, neighborhood of 2, asynchronous updates,Vmax set small (0.01), 
and ϕ=(2.05,2.05). The second set, Set B, is the same, but with a global neighborhood and synchronous updates. As 
a third set, Set C, we use the settings with which we started this paper:  30 particles, global neighborhood with 
synchronous, Clerc’s constriction factor, Vmax=Xmax, and ϕ=(2.05,2.05). Finally, for Set D, we use the settings we 
derived during these experiments: 30 particles, global neighborhood, asynchronous updates, Clerc’s constriction 
factor, no Vmax, Xmax enforced with the velocity of particles at Xmax set to zero, and ϕ=(2.8,1.3).  All runs were 
repeated 20 times, and all limited to 100,000 iterations. 

The results, shown 
in Figure 8, clearly 
indicate the considerable 
improvement gained by 
implementing Clerc’s 
constriction factor, and 
the consistent, but 
somewhat lesser, 
improvement of our 
recommended settings 
over previously used 
combinations. Figure 8 Comparison of different parameter settings
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Our recommendation, then, for the canonical particle swarm optimizer is:

K(vid+ϕ1*rand()*(pid - xid) +ϕ2*rand()*(pgd - xid)), Xmin<xid<Xmax
0 otherwise

xid+vid, Xmin<(xid+vid)<Xmax
Xmax, (xid+vid)>Xmax
Xmin, Xmin<(xid+vid)

where
K =

2
| 2 − ϕ − ϕ 2 − 4ϕ |

ϕ=ϕ1+ϕ2, and ϕ1=2.8, ϕ2 =1.3.
and a populations size of 30, global neighborhood, with updates applied asynchronously.

In this paper we have tried to distill the best general PSO parameter settings from the pioneering work by 
James Kennedy, Russ Eberhart, Yuhui Shi, Maurice Clerc, and the other researchers who are furthering the 
evolution of the Particle Swarm Optimizer, as well as add our own small contributions. Our goal was to define a 
simple, general purpose PSO swarm, to be used as the base swarm description, so that only exceptions to this swarm 
definition would need to be stated. Picking out the particulars of a researcher’s implementation of PSO can be 
difficult, and often details are omitted. We hope that declaring the canonical swarm would simplify discerning the 
particulars. Swarm descriptions could read, “I used the canonical swarm, but with a population size of 50,” or “We 
implemented the canonical swarm, but reduced ϕ1 and ϕ2 to 1.95 each.”  Whether this terminology will become 
common among PSO devotees remains to be seen.
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