Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can be used to evaluate unsupervised models on the IMDb dataset using prompts.
"""
import argparse
import math
import openai
import torch
from tqdm import tqdm
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForCausalLM
from utils import DatasetEntry
class CausalLMWrapper:
"""A wrapper for a causal language model (like GPT-2)"""
def __init__(self, model_name: str, use_cuda: bool = True):
self._device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
self._tokenizer = AutoTokenizer.from_pretrained(model_name)
self._model = AutoModelForCausalLM.from_pretrained(model_name)
if use_cuda:
self._model.parallelize()
def get_token_probabilities(self, input_text: str, prompt: str) -> torch.Tensor:
input_text = input_text + prompt
inputs = self._tokenizer.batch_encode_plus([input_text], truncation=True, return_tensors='pt')
inputs = {key: val.to(self._device) for key, val in inputs.items()}
output = self._model(**inputs)['logits']
return output[:, -1, :]
class MaskedLMWrapper:
"""A wrapper for a masked language model (like BERT)"""
def __init__(self, model_name: str, use_cuda: bool = True):
self._device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
self._tokenizer = AutoTokenizer.from_pretrained(model_name)
self._model = AutoModelForMaskedLM.from_pretrained(model_name).to(self._device)
def get_token_probabilities(self, input_text: str, prompt: str) -> torch.Tensor:
text_ids = self._tokenizer.encode(input_text, truncation=True, add_special_tokens=False)
prompt_ids = self._tokenizer.encode(prompt, truncation=False, add_special_tokens=False)
max_len = self._tokenizer.model_max_length
max_len_for_text_ids = max_len - len(prompt_ids) - self._tokenizer.num_special_tokens_to_add(False)
text_ids = text_ids[:max_len_for_text_ids]
input_ids = text_ids + prompt_ids
input_ids = torch.tensor([self._tokenizer.build_inputs_with_special_tokens(input_ids)], device=self._device)
assert sum(1 for id_ in input_ids[0] if id_ == self._tokenizer.mask_token_id) == 1, \
f"Input text must contain exactly one mask token ('{self._tokenizer.mask_token}'). Got '{input_text}'."
scores = self._model(input_ids)['logits']
mask_positions = (input_ids == self._tokenizer.mask_token_id)
return scores[mask_positions]
class GPT3Wrapper:
"""A wrapper around OpenAI's GPT-3 API"""
def __init__(self, engine: str):
self.engine = engine
def get_scores(self, prompt: str):
response = openai.Completion.create(engine=self.engine, prompt=prompt, max_tokens=1, logprobs=100)
top_logprobs = response['choices'][0]['logprobs']['top_logprobs'][0]
positive_score = max([top_logprobs.get(" good", -math.inf)])
negative_score = max([top_logprobs.get(" bad", -math.inf)])
return positive_score, negative_score
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", choices=["causal", "masked", "gpt3"], required=True,
help="The type of the model to evaluate. One of 'causal' (for causal language models like GPT-2), 'masked' (for "
"masked language models like BERT), and 'gpt3' (for GPT-3 models accessed via OpenAI's API)")
parser.add_argument("--model_name", type=str, required=True,
help="The name of the pretrained model to use (e.g., 'roberta-large')")
parser.add_argument("--openai_api_key", type=str,
help="An optional key for OpenAI's API (only if --model_type is gpt3)")
parser.add_argument("--test_file", type=str,
help="An optional path to a jsonl file of dataset entries. If not given, the entire IMDb dataset is used.")
parser.add_argument("--no_cuda", action='store_true',
help="If set to true, inference is done on CPU only")
args = parser.parse_args()
if args.test_file:
print(f"Evaluating on entries from '{args.test_file}'")
dataset = DatasetEntry.read_list(args.test_file)
print(f"Done loading {len(dataset)} examples from '{args.test_file}'")
else:
print("Evaluating on the entire IMDb test set")
dataset = load_dataset('imdb')['test']
dataset = [DatasetEntry(text_a=text, text_b=None, label=label) for text, label in zip(dataset['text'], dataset['label'])]
print(f"Done loading {len(dataset)} examples")
if args.openai_api_key:
openai.api_key = args.openai_api_key
predictions, labels = [], []
if args.model_type == "causal":
model = CausalLMWrapper(args.model_name, use_cuda=not args.no_cuda)
prompt = "\nQuestion: Is this movie good or bad?\nAnswer: It is"
elif args.model_type == "masked":
model = MaskedLMWrapper(args.model_name, use_cuda=not args.no_cuda)
prompt = "\nQuestion: Is this movie good or bad?\nAnswer: It is <mask>."
elif args.model_type == "gpt3":
model = GPT3Wrapper(args.model_name)
prompt = "\nQuestion: Is this movie good or bad?\nAnswer: It is"
else:
raise ValueError()
dataset_iterator = tqdm(dataset)
for ds_entry in dataset_iterator:
if args.model_type == "gpt3":
instance_prompt = ds_entry.text_a + prompt
positive_score, negative_score = model.get_scores(instance_prompt)
else:
token_probabilities = model.get_token_probabilities(input_text=ds_entry.text_a, prompt=prompt)[0].detach()
positive_score = token_probabilities[model._tokenizer.convert_tokens_to_ids("Ġgood")]
negative_score = token_probabilities[model._tokenizer.convert_tokens_to_ids("Ġbad")]
labels.append(int(ds_entry.label))
predictions.append(1 if positive_score > negative_score else 0)
dataset_iterator.set_description(f"Texts (acc={100 * sum(1 for x, y in zip(labels, predictions) if x == y) / len(labels):5.2f})")
dataset_iterator.refresh()
print(f"Final accuracy: {sum(1 for x, y in zip(labels, predictions) if x == y) / len(labels)} (total: {len(labels)})")