Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Check Yourself Before You Wreck Yourself: Assessing Discrete Choice Models Through Predictive Simulations

A case study in discrete choice model assessment with predictive simulations.

This repository contains the replication data and code for

Brathwaite, Timothy. "Check yourself before you wreck yourself: Assessing
discrete choice models through predictive simulations" arXiv preprint
arXiv:1806.02307 (2018). https://arxiv.org/abs/1806.02307.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or
│                         `make train`
│
├── README.md          <- The top-level README for developers using this
│                         project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for
│                         details
│
├── models             <- Trained and serialized models, model predictions,
│                         or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number
│                         (for ordering), the creator's initials, and a
│                         short `-` delimited description, e.g.
│                         `_01-jqp-initial-data-exploration`
│
├── references         <- Data dictionaries, manuals, key reference papers,
│                         and all other explanatory materials
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in
│                         reporting
│   └── tables         <- LaTex files for tables to be used in reporting
│   └── complete       <- LaTex files for the final report and journal
│                         submission
│
├── requirements.txt   <- The requirements file to reproduce the analysis
│                         environment, e.g. generated with
│                         `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .)
│                         so src can be imported
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   ├── get_car_data.R
│   │   └── convert_car_data_from_wide_to_long.py
│   │
│   ├── features       <- Scripts to turn raw data into modeling features
│   │   ├── build_features.py
│   │   └── build_forecast_data.py
│   │
│   ├── models         <- Scripts to train models and then use trained
│   │   │                 models to make predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results
│                         oriented visualizations
│       └── predictive_viz.py
│
└── tox.ini            <- tox settings file; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

A case study in discrete choice model assessment with predictive simulations.

Resources

License

Packages

No packages published
You can’t perform that action at this time.