Lucky Imaging Life in the visible after HST

Tim Staley

Southampton Seminar Series February 2012

WWW:timstaley.co.uk

Outline

Atmospheric effects

- Pigh spatial resolution astronomy
- Adaptive optics
- Lucky imaging
- Lucky imaging + AO

Outline

Atmospheric effects

- Bigh spatial resolution astronomy
- Adaptive optics
- Lucky imaging
- Lucky imaging + AO

Coping with weather

Atmospheric structure

Boundary layers

Kelvin-Helmholtz instability –> turbulence

Wavefront perturbations

Planar wavefronts: Resolution $\propto \frac{\lambda}{D}$

Wavefront perturbations

Perturbed wavefronts: Resolution $\propto \frac{\lambda}{r_0}$ (long exposure on a large telescope)

Ground: Subaru (8m)

Space: HST (2.4m)

GOODS North, Subaru @ 0.8" seeing

Outline

Atmospheric effects

Bigh spatial resolution astronomy

- 3 Adaptive optics
- Lucky imaging
- Lucky imaging + AO

Why bother?

Exoplanets

NASA, ESA, and P. Kalas (University of California, Berkeley)

STScI-PRC08-39a

Exoplanets

Keck II - AO using angular differential imaging

HR8799 — Marois et al., 2010

Globular clusters

HST mosaic of M53 (spot the blue stragglers!)

16/73

The cost of space astronomy

HST: \approx \$2 billion at launch (1990) \$9.6 billion lifetime cost, including servicing missions

Image: ESA Source: NY Times: "Refurbishments Complete, Astronauts Let Go of Hubble"

Ground based astronomy

VLT: \$330 M€ to build \$16.9 M€ annual running costs

'Expensive' is relative

Image: ESA Source: www.eso.org

Outline

Atmospheric effects

- Pigh spatial resolution astronomy
- Adaptive optics
- Lucky imaging
- Lucky imaging + AO

AO: The basic idea

Guide stars and sky coverage

Isoplanatic patch = area for which perturbations roughly the same

Require $r_{mag} \le 10$ star within 5" – 40", depending on observation wavelength and atmospheric conditions

See e.g. Racine, 2006

Laser guide stars

Image: G. Hudepohl / ESO

Laser guide stars

Adaptive optics system

Image: R. Tyson - An introduction to AO (2000)

Still require a tip-tilt NGS of $r_{mag} \leq 14$ within $\approx 40^{\circ}$ of science target.

Good quality sky coverage $\approx 10\%$ at 30° galactic latitude. (Strehl ≥ 0.3 , J band)

Davies et al., 2008 Ellerbroek and Tyler, 1998

- The ratio of peak intensity compared to a perfect telescope (0 to 1)
- HST Strehl near 1, but suffers pixellation effects.
- AO Strehl usually varies from around 0.2 0.6
- Seeing "Strehl" depends on the telescope, but is typically \approx 0.01 on medium size telescopes in the visible.

Outline

Atmospheric effects

- Pigh spatial resolution astronomy
- Adaptive optics
- Lucky imaging
- Lucky imaging + AO

Seeing isn't stable

How often will we get a 'good' frame?

Fried's probabilities

Probability of a lucky exposure (near diffraction limited): $P \approx 5.6 \exp \left[-0.1557 (D/r_0)^2\right]$

Fried, 1978

Fried's probabilities

D/r_0	Probability
2	0.986 ± 0.006
3	0.765 ± 0.005
4	0.334 ± 0.014
5	$(9.38\pm0.33) imes10^{-2}$
6	$(1.915\pm0.084) imes10^{-2}$
7	$(2.87\pm0.57) imes10^{-3}$
10	$(1.07 \pm 0.48) \times 10^{-6}$
15	$(3.40 \pm 0.59) \times 10^{-15}$

Fried, 1978

How to take advantage of this?

- Cross-correlate speckle image with an Airy psf model
- Cross-correlation values provide a proxy for Strehl
- Cross-correlation positions give a good estimate of brightest speckle
- Select desired frames, then shift and add.

- 2.5m Nordic Optical Telescope
- 512 sq. pixel detector
- 185Hz frame rate
- 810nm observing wavelength
- Faint limit at 6th magnitude

Seeing width $\approx 0.4"$

ζ Bootis, Seeing width \approx 0.8"

Baldwin et al., 2001

Fast imaging with EMCCD's

Fast imaging with EMCCD's

Conventional CCD:
SNR=
$$\frac{M}{\sqrt{M+\sigma_N^2}}$$

Calibration:

Calibration:

Calibration:

- Limited pixel size, $1K^2$
- Can only get 30 sq. arcseconds Nyquist sampled on 2.5m telescope.
- Readout electronics are a bottleneck on the frame rate

Wide fields of view: M13

- 120 x 30 arcsecond FoV @ 33mas per pixel
- Challenging data storage and processing requirements
- Astrometric calibration is non-trivial

Wide fields of view: M13

Zoom — 6.7 arcseconds across this FoV

Conventional imaging

50% frame selection

Wide fields of view: M13

48/73

Guiding on a faint reference: the Einstein cross

Guiding on a 17th mag. star — FWHM ≈ 0.1 "

Science at the faint limit: thresholding

- Read out noise still 0.1 electrons.
- Faint limit around 23rd magnitude on a 2.5m telescope (good seeing)
- Thresholding eliminates read noise
- But for now we are limited by CIC

Science at the faint limit: thresholding

Science at the faint limit: thresholding

Applications

• Stellar binarity surveys

Applications

 High resolution surveys (e.g. microlensing in crowded field)

- High resolution surveys (e.g. microlensing in crowded field)
- Cheap high resolution follow-up (stellar transits, etc)

- High resolution surveys (e.g. microlensing in crowded field)
- Cheap high resolution follow-up (stellar transits, etc)
- Planetary imaging

- High resolution surveys (e.g. microlensing in crowded field)
- Cheap high resolution follow-up (stellar transits, etc)
- Planetary imaging
- Potentially better faint limits that conventional imagers in future? (esp. for bright sky)

- High resolution surveys (e.g. microlensing in crowded field)
- Cheap high resolution follow-up (stellar transits, etc)
- Planetary imaging
- Potentially better faint limits that conventional imagers in future? (esp. for bright sky)

But still limited to smaller telescopes.

Outline

Atmospheric effects

- Pigh spatial resolution astronomy
- Adaptive optics
- Lucky imaging

Adaptive optics systems are not stable.

Gladysz et al., 2008

Lucky + AO

Gladysz et al., 2008

Lucky + AO

Law et al., 2009

• 5m Palomar "200 inch" Hale telescope

512 sq. pixel EMCCD detector

First generation AO system (since upgraded)

Law et al., 2009

Field of view:

Comparison with HST:

Comparison with HST:

Probing binarity in GC cores

- Probing binarity in GC cores
- Exoplanet direct imaging (See e.g Gladysz 2010)

- Probing binarity in GC cores
- Exoplanet direct imaging (See e.g Gladysz 2010)
- Resolving close stars (Kervella 2009)

- Probing binarity in GC cores
- Exoplanet direct imaging (See e.g Gladysz 2010)
- Resolving close stars (Kervella 2009)
- Cheap visible wavelength AO on 4m class telescopes

- Probing binarity in GC cores
- Exoplanet direct imaging (See e.g Gladysz 2010)
- Resolving close stars (Kervella 2009)
- Cheap visible wavelength AO on 4m class telescopes
- Expanding AO sky coverage

- Standard lucky imaging can now go wide and faint
- This gives HST class capabilities at very low cost
- EMCCD's are pretty good and still improving
- AO astronomers should consider fast imaging to get the most from their systems