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e Atmospheric effects
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Coping with weather




Atmospheric structure
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Boundary layers
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Kelvin-Helmholtz instability —>

turbulence



Wavefront perturbations
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Planar wavefronts:
. A
Resolution D



Wavefront perturbations

Perturbed wavefronts:
. A
Resolution 5
(long exposure on a

large telescope)
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Ground: Subaru (8m) Space: HST (2.4m)

GOODS North, Subaru @ 0.8” seeing Hubble UDF



Q High spatial resolution astronomy
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Why bother?



Exoplanets

[]

Fomalhaut b Planet

Fomalhaut System
Hubble Space Telescope - ACS/HRC

NASA, ESA, and P. Kalas (University of California, Berkeley) STScl-PRC08-39a




Exoplanets

Keck II - AO using angular differential imaging

November 1, 2009 L'-band

HR8799 — Marois et al., 2010
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Dark Matter Ring in Cl 0024+17 (ZwCl 0024+1652) HST+«ACS/WFC
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NASA, ESA, and M.J. Jee (Johns Hopkins University)

STScl-PRCO7-17b




The cost of space astronomy

HST:

~ $2 billion at launch
(1990)

$9.6 billion lifetime cost,
including servicing
missions

Image: ESA
Source: NY Times: “Refurbishments Complete, Astronauts Let Go of Hubble” J




Ground based astronomy

VLT:

$330 M£ to build
$16.9 M€ annual
running costs

‘Expensive’ is relative

Image: ESA
Source: www.eso.org J
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e Adaptive optics
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AO: The basic idea




Guide stars and sky coverage

+

sources

Isoplanatic patch = area
for which perturbations
roughly the same

Require rpag < 10 star
within 5” — 40”, depending
on observation
wavelength and
atmospheric conditions

- .: turbulence

aperture

See e.g. Racine, 2006 )
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Laser guide stars

Image: G. Hudepohl / ESO




Laser guide stars
*

Apparent
position
of LGS

of LGS

Pojééted laser, Atmospheric “wedge”

Adaptive optics system
Image: R. Tyson - An introduction to AO (2000)



Laser guide stars

7

Davies et al., 2008
Ellerbroek and Tyler, 1998

Still require a tip-tilt NGS of
I'mag < 14 within ~ 40” of
science target.

Good quality sky coverage
~ 10% at 30° galactic latitude.
(Strehl > 0.3, J band)




(Strehl?)

@ The ratio of peak intensity compared to a perfect
telescope (0 to 1)

@ HST Strehl near 1, but suffers pixellation effects.
@ AOQ Strehl usually varies from around 0.2 — 0.6

@ Seeing “Strehl” depends on the telescope, but is
typically ~ 0.01 on medium size telescopes in
the visible.
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o Lucky imaging
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Seeing isn’t stable

8000 10000 12000 14000

How often will we get a ‘good’ frame?
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Fried’s probabilities

Probability of a lucky exposure
(near diffraction limited):

P~ 5.6exp [— 0.1557(D/ro)2}

PROBABILITY

||||||

xxxxxxxxx

Fried, 1978 J
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Fried’s probabilities

'D/ry | Probability |
0.986 + 0.006
0.765 4 0.005
0.334 4 0.014

(9.38 +£0.33) x 1072
(1.91540.084) x 1072
(2.87 £0.57) x 1073
0 | (1.07+£0.48)x10°°
5 | (3.40£0.59) x 10°1°

NOoO Ok~ WM

—

Fried, 1978 }
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How to take advantage of this?

@ Cross-correlate speckle image with an Airy psf
model

@ Cross-correlation values provide a proxy for
Strehl

@ Cross-correlation positions give a good estimate
of brightest speckle

@ Select desired frames, then shift and add.
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Early tests




Early tests

@ 2.5m Nordic Optical Telescope
@ 512 sq. pixel detector
@ 185Hz frame rate

@ 810nm observing wavelength

@ Faint limit at 6th magnitude




rly tests

Seeing width ~ 0.4”
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Baldwin et al., 2001 )
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Early tests

¢ Bootis, Seeing width ~ 0.8”

Baldwin et al., 2001

9]
+
P




Fast imaging with EMCCD’s

Cost: Around £15K

image capture area

i

storage area

o
Lo

output
Il! II! JI% II! Il! II! JI! II! Il! II! ll! !l \\ |\\| \‘l \w |5 \\ \\ \‘ \‘ \‘J_[::::>annpﬁﬁer

i High voltage electron 1
multiplying register

serial shift register
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Fast imaging with EMCCD’s

Conventional CCD:

_ M
SNR= T
EMCCD:
SNR M

B V/2M+(on/ga)?
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Fast imaging with EMCCD’s

Calibration:
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Fast imaging with EMCCD’s

Calibration:
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Fast imaging with EMCCD’s

Calibration:

-0017 -0.15 -0.011 -0.0023 0015 0048 0 017 0.es 0.51
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Fast imaging with EMCCD’s

@ Limited pixel size, 1K?

@ Can only get 30 sqg. arcseconds Nyquist
sampled on 2.5m telescope.

@ Readout electronics are a bottleneck on the
frame rate
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2009 — LuckyCam goes wide field




2009 — LuckyCam goes wide field




2009 — LuckyCam goes wide field




2009 — LuckyCam goes wide field




2009 — LuckyCam goes W|de fleld




Wide fields of view: M13

@ 120 x 30 arcsecond FoV @ 33mas per pixel

@ Challenging data storage and processing
requirements

@ Astrometric calibration is non-trivial
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Wide fields of view: M13

Zoom — 6.7 arcseconds across this FoV

Conventional imaging  50% frame selection




Wide fields of view: M13
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Guiding on a faint reference: the
Einstein cross

Guiding on a 17th mag. star — FWHM~ 0.1”




Science at the faint limit:

thresholding

@ Read out noise still 0.1 electrons.

@ Faint limit around 23rd magnitude on a 2.5m
telescope (good seeing)

@ Thresholding eliminates read noise

@ But for now we are limited by CIC
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Science at the faint limit:
thresholding
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Science at the faint limit:
thresholding




Applications

@ Stellar binarity surveys

9 Detection limit variation with seeing

K ¢
et -

. .

-

N ’

Delta Magnitude

Run 5025 — 1.51" seeing —- 436 seconds exposure I

=+ Run 6010 --- 1.11" seeing --- 316 seconds exposure

++oo Run 7007 — 0.79" seeing —- 480 seconds exposure

S . =+ Run 7022 - 0.64" seeing --- 288 seconds exposure
I

¢ I
6.5 1.0 1.5 2.0
Radius in arcseconds
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Applications

@ High resolution surveys (e.g. microlensing in
crowded field)
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Applications

@ High resolution surveys (e.g. microlensing in
crowded field)

@ Cheap high resolution follow-up (stellar transits,
etc)
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Applications

@ High resolution surveys (e.g. microlensing in
crowded field)
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@ Potentially better faint limits that conventional
imagers in future? (esp. for bright sky)
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Applications

@ High resolution surveys (e.g. microlensing in
crowded field)

@ Cheap high resolution follow-up (stellar transits,
etc)

@ Planetary imaging

@ Potentially better faint limits that conventional
imagers in future? (esp. for bright sky)

But still limited to smaller telescopes.
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e Lucky imaging + AO
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Lucky + AO

Adaptive optics systems are not stable.

Gladysz et al., 2008 )




PSF 2

Strehl ratio
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Gladysz et al., 2008
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Lucky at Mt. Palomar
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Law et al., 2009



Lucky at Mt. Palomar
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Law et al., 2009



Lucky at Mt. Palomar

Field of view:




Lucky at Mt. Palomar

Comparison with HST:




Lucky at Mt. Palomar

Comparison with HST:




Lucky + AO: Applications

@ Probing binarity in GC cores
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Lucky + AO: Applications

@ Probing binarity in GC cores

@ Exoplanet direct imaging (See e.g Gladysz
2010)

69/73



Lucky + AO: Applications

@ Probing binarity in GC cores

@ Exoplanet direct imaging (See e.g Gladysz
2010)

@ Resolving close stars (Kervella 2009)

70/73



Lucky + AO: Applications

@ Probing binarity in GC cores

@ Exoplanet direct imaging (See e.g Gladysz
2010)

@ Resolving close stars (Kervella 2009)

@ Cheap visible wavelength AO on 4m class
telescopes

71/73



Lucky + AO: Applications

@ Probing binarity in GC cores

@ Exoplanet direct imaging (See e.g Gladysz
2010)

@ Resolving close stars (Kervella 2009)

@ Cheap visible wavelength AO on 4m class
telescopes

@ Expanding AO sky coverage
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@ Standard lucky imaging can now go wide and
faint

@ This gives HST class capabilities at very low
cost

@ EMCCD'’s are pretty good and still improving

@ AO astronomers should consider fast imaging to
get the most from their systems
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