Fast radio followup of GRBs

Tim Staley

University of Southampton

SKA-KAT Offices, Capetown, November 2012

WWW: 4pisky.org, timstaley.co.uk

COLLABORATORS

- Southampton: Rene Breton, Rob Fender, et al.
- **Cambridge:** David Titterington, Keith Grainge, Guy Pooley.
- Amsterdam: John Swinbank, Alexander van der Horst, Antonia Rowlinson.
- **Capetown:** Richard Armstrong et al.

OUTLINE

The 4 Pi Sky project

A QUICK INTRODUCTION TO GRBS

System

RESULTS

FUTURE WORK

OUTLINE

The 4 Pi Sky project

A QUICK INTRODUCTION TO GRBS

System

RESULTS

FUTURE WORK

A LITTLE BACKGROUND

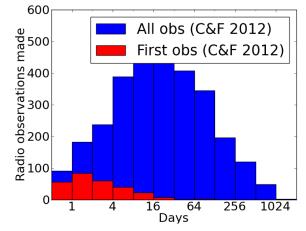
A few major producers of transient alerts dominate:

 NASA (Swift, Fermi, Integral, ...) — Gamma-ray, X-ray

A LITTLE BACKGROUND

A few major producers of transient alerts dominate:

- NASA (Swift, Fermi, Integral, ...) Gamma-ray, X-ray
- Catalina Real-Time Transient Survey (CRTS) — Optical (1 / 2 colours)


A few major producers of transient alerts dominate:

- NASA (Swift, Fermi, Integral, ...) Gamma-ray, X-ray
- Catalina Real-Time Transient Survey (CRTS) — Optical (1 / 2 colours)
- Palomar Transient Factory (PTF) Optical (1 / 2 colours, spectroscopic followup)

JLTS

FUTURE WORK

MANUAL RADIO FOLLOW UP OF GRBS

Data from Chanda and Frail, 2012. \sim 8GHz.

4 Pi Sky

- 4 Pi Sky is a collaborative project aimed at radio transient science.
- (Or to put it another way: you build the telescopes, we'll build the network.)
- Developing **discovery** and **follow up** tools.

System

RESULTS

FUTURE WORK

LOFAR (NETHERLANDS)

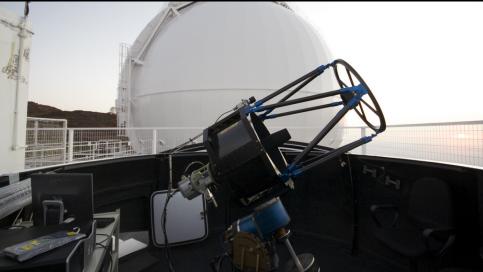
Future work

KAT7 / MEERKAT (SOUTH AFRICA)

System

RESULTS

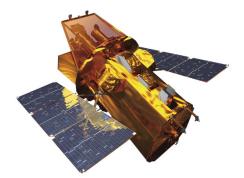
FUTURE WORK


AMI-LA (UK)

Optical followup: LT and pt5m

Optical followup: LT and pt5m (La Palma)

A prototype project: Swift-AMI



A prototype project: Swift-AMI

- 15 GHz central frequency, 4.5 GHz bandwidth
- ▶ 5.5 arcmin (~ 0.1°) primary beam (FoV)
- ▶ 30 arcsec synthesised beam (PSF FWHM)
- \approx 0.1mJy noise level, 1 hr image
- Looking for a new role.

GRBS FROM SWIFT BAT

► Good targets for AMI: ≈ 3 arcminute initial localization.

GRBS FROM SWIFT BAT

- Good targets for AMI: ≈ 3 arcminute initial localization.
- Once every 3 days or so.
- Now publishing as VOEvents.

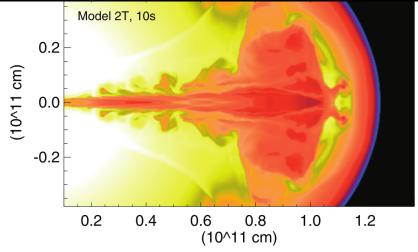
GRBS FROM SWIFT BAT

- Good targets for AMI: ≈ 3 arcminute initial localization.
- Once every 3 days or so.
- Now publishing as VOEvents.
- GRBs are interesting!

System

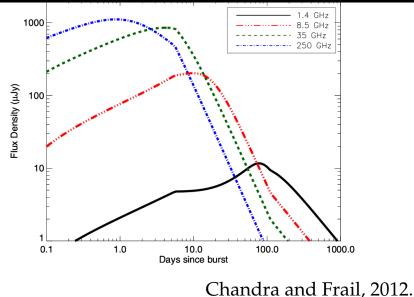
OUTLINE

THE 4 PI SKY PROJECT

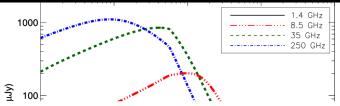

A QUICK INTRODUCTION TO GRBS

System

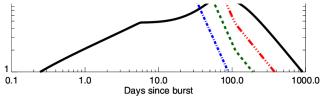
RESULTS


FUTURE WORK

The relativistic fireball model



M. Rees and P. Meszaros, 1992; W. Zhang and S. Woosley, 2004.


Synchrotron Afterglow

SYNCHROTRON AFTERGLOW

Modelling allows us to estimate the energy released, and place constraints on the density of the circumstellar medium.

Chandra and Frail, 2012.

GAMMA RAY BURST FLAVOURS

- 'Gamma Ray Burst' is a purely observational term — says nothing about the progenitor.
- But we tend to refer to the two most common progenitor classes as 'GRBs' out of convenience.

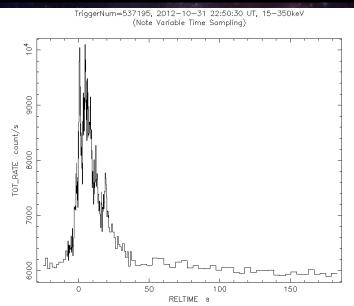
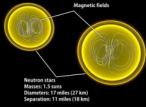

COMMON OR GARDEN LONG GRBS

Image credit: D. Berry

COMMON OR GARDEN LONG GRBS

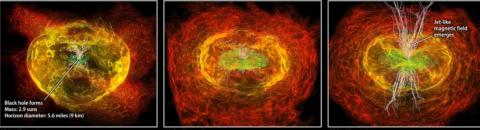
- $T_{90} > 2$ seconds.
- $E \sim 10^{51}$ ergs.
- ~ 90% of GRBs.
- Sometimes observe a supernova in days after the GRB — progenitors thought to be giant stars.


COMMON OR GARDEN LONG GRBS

System

Resul


SHORT GRBS



Simulation begins

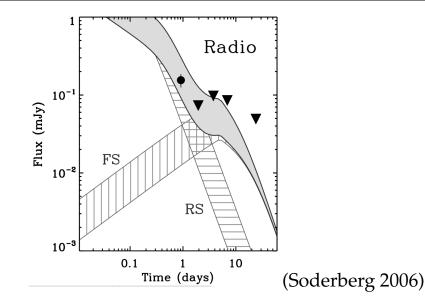
7.4 milliseconds

13.8 milliseconds

15.3 milliseconds

21.2 milliseconds

26.5 milliseconds

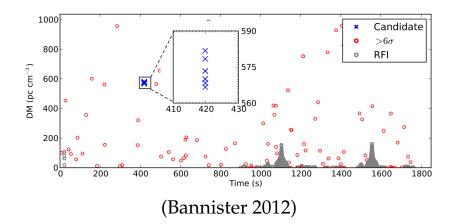

L. Rezzolla et al 2011

OTHER GRB TRIGGERS

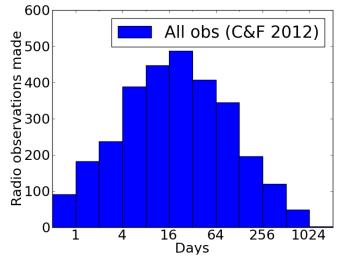
- Soft Gamma Repeaters / Magnetars
- Flare stars
- AGN flares

(Generally not referred to as 'GRBs')

EARLY RADIO EMISSION?

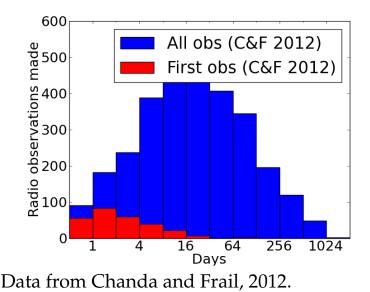


System

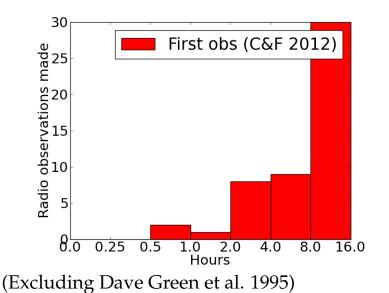

Results

FUTURE WORK

EARLY RADIO EMISSION?



PRIOR RADIO OBSERVATIONS



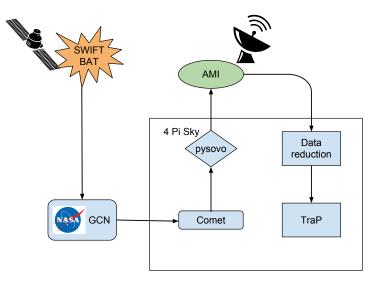
Data from Chanda and Frail, 2012. \sim 8GHz.

PRIOR RADIO OBSERVATIONS

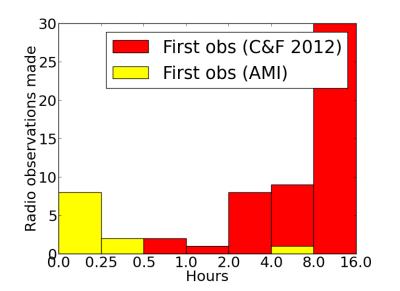
PRIOR RADIO OBSERVATIONS

OUTLINE

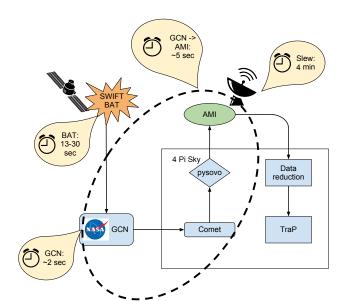
The 4 Pi Sky project


A QUICK INTRODUCTION TO GRBS

System


Results

FUTURE WORK


System Components

FASTER RESPONSE TIMES

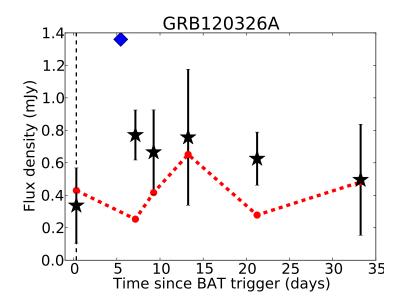
System timescales breakdown

OUTLINE

The 4 Pi Sky project

A QUICK INTRODUCTION TO GRBS

System


RESULTS

FUTURE WORK

EARLY CONSTRAINTS

GRB ID	Hours since burst	3σ upper limit (mJy)
GRB120305A	0.07	0.316
GRB120308A	0.08	0.164
GRB120311A	0.07	0.230
GRB120320A	14.32	0.196
GRB120324A	0.07	0.218
GRB120326A	7.37	0.430
GRB120403A	7.48	0.238
GRB120404A	11.32	0.223
GRB120422A	6.41	0.616
GRB120514A	50.91	0.211
GRB120521C	0.24	0.302

GRB120326A LIGHTCURVE

RESULTS

SOFTWARE TOOLS DEVELOPED

- Comet: A VOEvent node. (John Swinbank)
- Pysovo: VOEvent handling / triggering tools (TS).
- AMI-casapy-reduce: Meta-pipeline for automated imaging of AMI data (TS).
- TraP: Transients detection and classification pipeline (LOFAR-TKP).

SOFTWARE TOOLS DEVELOPED: TKP-WEB

LOFAR transients database

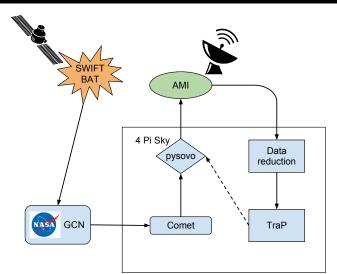
Datasets

id	description	in name	Reprocessing step #	Processing finished	Number of transients
1	None	GRB120422	0	2012-06-11T13:54:17	0
2	None	GRB120404	0	2012-06-11T13:55:58	0
3	None	GRB120514	0	2012-06-11T13:57:10	0
4	None	GRB120403	0	2012-06-11T13:58:56	0
5	None	GRB120320	0	2012-06-11T13:59:54	0
6	None	GRB120326	0	2012-06-11T14:01:24	1
7	None	GRB120324	0	2012-06-11T14:03:35	0
8	None	GRB120422	1	2012-06-11T14:04:05	0
9	None	GRB120404	1	2012-06-11T14:04:33	0
10	None	GRB120308	0	2012-06-11T14:06:15	0
11	None	GRB120305	0	2012-06-11T14:10:48	0
12	None	GRB120311	0	2012-06-11T14:13:20	0
13	None	GRB120422	2	2012-06-11T15:55:10	0
14	None	GRB120422	2	2012-06-11T15:56:06	0
15	None	GRB120422	3	2012-06-11T15:59:18	0
16	None	GRB120422	4	2012-06-11T16:07:00	0

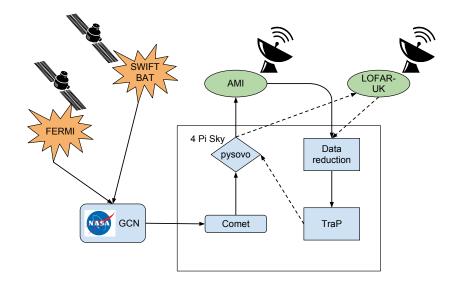
2

OUTLINE

The 4 Pi Sky project

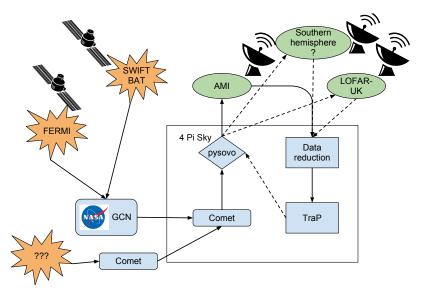

A QUICK INTRODUCTION TO GRBS

System


Results

FUTURE WORK

FULLY AUTOMATED DATA REDUCTION


LOFAR-UK: TIME MACHINE

LOFAR-UK: TIME MACHINE

LOFAR stations include 'transient buffer boards', these allow us a 'look-back' functionality akin to BBC nature's rolling buffer cameras, e.g. https://www.youtube.com/watch?v= n-t2ayKadD0

Networking

WIDER ADOPTION OF VOEVENTS?

• GRB notices could be easily automated.

WIDER ADOPTION OF VOEVENTS?

- GRB notices could be easily automated.
- We need this for smart automated follow-up of GRBs!

SUMMARY

- It's a great time to be a radio astronomer.
- Doubly so if you're into transients.
- Transient software is out there, talk to us if you're interested!