
A brief introduction to
version control systems

Tim Staley

Astronomy Group Monday Seminar
Southampton, November 2013

WWW: timstaley.co.uk

timstaley.co.uk


The problem No backup Manual copies Centralised VCS Distributed VCS

Aims

É Help identify problem that can be
solved.

É Introduce basic concepts of version
control.

É Explain why various technologies
exist, and which you should choose.



The problem No backup Manual copies Centralised VCS Distributed VCS



The problem No backup Manual copies Centralised VCS Distributed VCS

When you need version
control

É Complex documents, built up over
time.

É Multiple collaborators (or even just
multiple machines).

É Multiple versions which ‘co-evolve.’

É Reproducibility (‘snapshots’).



The problem No backup Manual copies Centralised VCS Distributed VCS

Four Evolutionary Stages



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 0: Not backing up

DON’T DO THIS



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 0: Not backing up

DON’T DO THIS



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 1: Manual copies



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 1: Manual copies

Flaws:
É Manual = fallible.

É Backup: Copies of copies.

É Labelling.

We need metadata - datestamps,
annotations, attribution.
And tools - make this stuff quick and
easy!



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 1: Manual copies

Flaws:
É Manual = fallible.

É Backup: Copies of copies.

É Labelling.
We need metadata - datestamps,
annotations, attribution.
And tools - make this stuff quick and
easy!



The problem No backup Manual copies Centralised VCS Distributed VCS

Aside: ‘Cloudy’ technologies

Trade off — convenience vs control.
Good for:
É Small docs, frequently updated across

multiple locations (e.g. to-do list).
É Basic backups of items unlikely to

evolve (photos, etc).



The problem No backup Manual copies Centralised VCS Distributed VCS

Aside: ‘Cloudy’ technologies

Problems:
É Versioning is all automated - can’t

choose sensible ‘checkpoints’ to mark
out.

É Collaboration is still broken, unless
you’re working on very simple docs.

NEED MORE METADATA



The problem No backup Manual copies Centralised VCS Distributed VCS

Aside: ‘Cloudy’ technologies

Problems:
É Versioning is all automated - can’t

choose sensible ‘checkpoints’ to mark
out.

É Collaboration is still broken, unless
you’re working on very simple docs.

NEED MORE METADATA



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage Two



The problem No backup Manual copies Centralised VCS Distributed VCS

Centralised version control

e.g.
É ‘Concurrent Versions System’ (CVS,

now defunct).
É ‘Subversion’ (SVN).



The problem No backup Manual copies Centralised VCS Distributed VCS

Basic concepts, 1

Record an annotated history of change
sets.

É Trunk, branch
É Parents, ancestors



The problem No backup Manual copies Centralised VCS Distributed VCS

Basic concepts, 2
Centralized⇔Master copy

É Repository
É Checkout
É Commit / Revision



The problem No backup Manual copies Centralised VCS Distributed VCS

Basic concepts, 3

Merging
In simple cases, merges are automatic!
Tree-records allows us to build the new
combined version.



The problem No backup Manual copies Centralised VCS Distributed VCS

Basic concepts, 3
Manual merging: When conflicts exist,
we have the info and tools to manually
resolve them.



The problem No backup Manual copies Centralised VCS Distributed VCS

Distributed VCS

1986 – early 2000’s: Why would you
make this any more complex? This works.

INTERWEBS
(See e.g. visualised history of Python,
https://www.youtube.com/watch?v=
cNBtDstOTmA)

https://www.youtube.com/watch?v=cNBtDstOTmA
https://www.youtube.com/watch?v=cNBtDstOTmA


The problem No backup Manual copies Centralised VCS Distributed VCS

Distributed VCS

1986 – early 2000’s: Why would you
make this any more complex? This works.

INTERWEBS

(See e.g. visualised history of Python,
https://www.youtube.com/watch?v=
cNBtDstOTmA)

https://www.youtube.com/watch?v=cNBtDstOTmA
https://www.youtube.com/watch?v=cNBtDstOTmA


The problem No backup Manual copies Centralised VCS Distributed VCS

Distributed VCS

1986 – early 2000’s: Why would you
make this any more complex? This works.

INTERWEBS
(See e.g. visualised history of Python,
https://www.youtube.com/watch?v=
cNBtDstOTmA)

https://www.youtube.com/watch?v=cNBtDstOTmA
https://www.youtube.com/watch?v=cNBtDstOTmA


The problem No backup Manual copies Centralised VCS Distributed VCS

Centralised doesn’t scale

É Many collaborators.
É Cannot check-in half-finished work to

master.
É Cannot keep track of a branch for

every collaborator.

É Resort back to hybrid of central copy
under version control, with many
local, manual backups for
intermediate work.



The problem No backup Manual copies Centralised VCS Distributed VCS

Centralised doesn’t scale

É Many collaborators.
É Cannot check-in half-finished work to

master.
É Cannot keep track of a branch for

every collaborator.
É Resort back to hybrid of central copy

under version control, with many
local, manual backups for
intermediate work.



The problem No backup Manual copies Centralised VCS Distributed VCS

The distributed model
Stage 3: Distribute!

É Everyone has their own mirror, or
clone of the repository.

É Changes are distributed via pushes
and pulls.



The problem No backup Manual copies Centralised VCS Distributed VCS

Distribute!

Benefits for you:
É More flexible. Allows different

workflows and collaborative behaviour
etc.

É Can commit offline, sync later.

É Talk to me later if you want the details.



The problem No backup Manual copies Centralised VCS Distributed VCS

So which should I use?

At this stage, git and mercurial are
functionally equivalent — but git has won
the majority mindshare, therefore: better
support, better chance of collaborators
using same system, etc.



The problem No backup Manual copies Centralised VCS Distributed VCS

So which should I use?

At this stage, git and mercurial are
functionally equivalent — but git has won
the majority mindshare, therefore: better
support, better chance of collaborators
using same system, etc.



The problem No backup Manual copies Centralised VCS Distributed VCS

Summary

É Version control helps with:
É Backups
É Reproducibility
É Comparing arbitrary historical versions.
É Maintaining multiple live versions.

É Lots of free services and material
online to help you out.

É Bit of a learning curve at first - but
payoff is large in long-run. (And now
you have a headstart!)



The problem No backup Manual copies Centralised VCS Distributed VCS

Advanced Reading

To start, google ‘git intro’, etc. Then. . .
É Git for Computer Scientists
http://eagain.net/articles/
git-for-computer-scientists/

É Understanding Git Conceptually
http://www.sbf5.com/~cduan/
technical/git/

É Understanding the Git Workflow
https://sandofsky.com/blog/
git-workflow.html

http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.sbf5.com/~cduan/technical/git/
http://www.sbf5.com/~cduan/technical/git/
https://sandofsky.com/blog/git-workflow.html
https://sandofsky.com/blog/git-workflow.html

	The problem
	No backup
	Manual copies
	Centralised VCS
	Distributed VCS

