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Aims

É Help identify problem that can be
solved.

É Introduce basic concepts of version
control.

É Explain why various technologies
exist, and which you should choose.
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When you need version
control

É Complex documents, built up over
time.

É Multiple collaborators (or even just
multiple machines).

É Multiple versions which ‘co-evolve.’

É Reproducibility (‘snapshots’).
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Four Evolutionary Stages



The problem No backup Manual copies Centralised VCS Distributed VCS

Stage 0: Not backing up

DON’T DO THIS
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Stage 1: Manual copies
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Stage 1: Manual copies

Flaws:
É Manual = fallible.

É Backup: Copies of copies.

É Labelling.

We need metadata - datestamps,
annotations, attribution.
And tools - make this stuff quick and
easy!
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Aside: ‘Cloudy’ technologies

Trade off — convenience vs control.
Good for:
É Small docs, frequently updated across

multiple locations (e.g. to-do list).
É Basic backups of items unlikely to

evolve (photos, etc).
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Aside: ‘Cloudy’ technologies

Problems:
É Versioning is all automated - can’t

choose sensible ‘checkpoints’ to mark
out.

É Collaboration is still broken, unless
you’re working on very simple docs.

NEED MORE METADATA
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Stage Two
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Centralised version control

e.g.
É ‘Concurrent Versions System’ (CVS,

now defunct).
É ‘Subversion’ (SVN).
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Basic concepts, 1

Record an annotated history of change
sets.

É Trunk, branch
É Parents, ancestors
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Basic concepts, 2
Centralized⇔Master copy

É Repository
É Checkout
É Commit / Revision
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Basic concepts, 3

Merging
In simple cases, merges are automatic!
Tree-records allows us to build the new
combined version.
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Basic concepts, 3
Manual merging: When conflicts exist,
we have the info and tools to manually
resolve them.
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Distributed VCS

1986 – early 2000’s: Why would you
make this any more complex? This works.

INTERWEBS
(See e.g. visualised history of Python,
https://www.youtube.com/watch?v=
cNBtDstOTmA)

https://www.youtube.com/watch?v=cNBtDstOTmA
https://www.youtube.com/watch?v=cNBtDstOTmA
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Centralised doesn’t scale

É Many collaborators.
É Cannot check-in half-finished work to

master.
É Cannot keep track of a branch for

every collaborator.

É Resort back to hybrid of central copy
under version control, with many
local, manual backups for
intermediate work.
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The distributed model
Stage 3: Distribute!

É Everyone has their own mirror, or
clone of the repository.

É Changes are distributed via pushes
and pulls.
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Distribute!

Benefits for you:
É More flexible. Allows different

workflows and collaborative behaviour
etc.

É Can commit offline, sync later.

É Talk to me later if you want the details.
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So which should I use?

At this stage, git and mercurial are
functionally equivalent — but git has won
the majority mindshare, therefore: better
support, better chance of collaborators
using same system, etc.
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Summary

É Version control helps with:
É Backups
É Reproducibility
É Comparing arbitrary historical versions.
É Maintaining multiple live versions.

É Lots of free services and material
online to help you out.

É Bit of a learning curve at first - but
payoff is large in long-run. (And now
you have a headstart!)
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Advanced Reading

To start, google ‘git intro’, etc. Then. . .
É Git for Computer Scientists
http://eagain.net/articles/
git-for-computer-scientists/

É Understanding Git Conceptually
http://www.sbf5.com/~cduan/
technical/git/

É Understanding the Git Workflow
https://sandofsky.com/blog/
git-workflow.html

http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.sbf5.com/~cduan/technical/git/
http://www.sbf5.com/~cduan/technical/git/
https://sandofsky.com/blog/git-workflow.html
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