How to build a TraP An image-plane transient-finding pipeline

Tim Staley & TraP contributors.

Lunchtime talk, Southampton, Jan 2015

WWW: 4pisky.org, timstaley.co.uk/talks

Outline

'Slow' radio transients

How TraP works

How do I use it?

Future work

Summary

What are we missing?

Image surveys are best for finding **'slow' transients** i.e. > 1 second timescale excludes regular pulsars, etc.

Such as...

'Slow' radio transients

How TraP works

How do I use it

Future

Summary

What are we missing? Accretion flares

Artist's impression of the microquasar GRO J1655-40. Image credit: NASA/STScI

Futun

Summary

What are we missing? 'Orphan' gamma-ray burst afterglows

Image credit: NASA's Goddard Space Flight Center

e.g. Ghirlanda 2014, http://adsabs.harvard.edu/abs/2014PASA...31...22G

'Slow' radio transients

How do I use it

Future

Summary

What are we missing?

Flare-star events

Image credit: Casey Reed/NASA

e.g. Osten 2010, http://ukads.nottingham.ac.uk/abs/2010ApJ...721..7850

What are we missing?

Image surveys are best for finding 'slow', i.e. > 1 second timescale transients (excludes regular pulsars, etc).

- AGN tidal disruption events
- Compact-object binary flares
- Orphan gamma-ray bursts
- Flare stars
- Nulling and eclipsing pulsars (e.g. J. Broderick et al, in press)
- (The unknown?)

Future

Summary

Proof of concept: ALARRM

AMI-LA Rapid Response Mode

Staley 2013, http://ukads.nottingham.ac.uk/abs/2013MNRAS.428.3114S

GRB140327A

Anderson 2014, http://adsabs.harvard.edu/abs/2014MNRAS.440.2059A van der Horst 2014, http://adsabs.harvard.edu/abs/2014MNRAS.444.3151V

DG CVn M-dwarf superflare

Fender 2014, http://adsabs.harvard.edu/abs/2014arXiv1410.1545F Osten et al (in prep)

So: Radio transients are out there. How do we find them directly?

Future

Summary

Bigger fields of view

Fut

ure work

Summary

Bigger fields of view

'Slow' radio transients

Declination

How TraP works

How do I use it

Future

Summary

Bigger fields of view

Right ascension

Future

Summary

The LOFAR 'Radio Sky Monitor'

Eight 7-beam tiles in LBAs tiles out entire zenith strip (~ 1800deg² / ~ $\frac{1}{4}$ hemisphere) Sixteen 7-beam tiles in HBAs for a narrower strip (~ 1000deg²)

Mini-summary

- There are interesting radio-transients waiting.
- Radio sensitivity / field of view is increasing by orders of magnitude.

Mini-summary

- There are interesting radio-transients waiting.
- Radio sensitivity / field of view is increasing by orders of magnitude.
- Many uninteresting pixels, and a few exciting rare events.
- $\blacktriangleright \implies$ We need tools to search this data.

Outline

'Slow' radio transients

How TraP works

How do I use it?

Future work

Summary

Future w

Summary

Step 1: PySE

Python Source Extractor - Loosely based around S-Extractor algorithms, but tuned for radio data. Written solely in Python (extensive use of Numpy).

Sourcefinding algorithms

An illustration of the island deblending method pioneered by *S-Extractor* (Bertin et al 1996).

Step 2: Load 'extractedsources' into SQL database

NB: Store extractions without cross-matching initially.

Future

Summary

Brief aside on SQL

Brief aside on SQL

- SQL is almost always the most efficient tool for searching large, well-parsed datasets.
- Are astronomers missing out?

Step 3: Cross-match with known sources a.k.a. 'association'

First calculate DeRuiter radius for candidate associations:

Step 3: Cross-match with known sources a.k.a. 'association'

First calculate DeRuiter radius for candidate associations:

Handling meridian-wrap, celestial poles, left as exercise to reader.

Step 3: Cross-match with known sources a.k.a. 'association'

Mostly we just pick the closest match, and everything works out fine. But we also try to deal with some variable-PSF issues:

Step 4: Identify bright new transients

One of the neat features of TraP is that we can tell immediately when a bright new source appears. This may sound trivial initially, but...

Future wo

Summary

Step 4: Identify bright new transients

One of the neat features of TraP is that we can tell immediately when a bright new source appears. This may sound trivial initially, but...

Futur

Summary

Step 4: Identify new sources

Tracking fields of view

Future v

Summary

Step 4: Identify new sources

Future v

Summary

Step 4: Identify new sources

Future

Summary

Step 4: Identify new sources

Future w

Summary

Step 4: Identify new sources

Future w

Summary

Step 4: Identify new sources

Future v

Summary

Step 4: Identify new sources

Future

Summary

Step 5: Force measurement of any missing known sources

Future

Summary

Step 5: Force measurement of any missing known sources

Step 6: Analyse lightcurves

We keep a running aggregate (i.e. only need to include additional data, no recalculation of previous timesteps) for:

• Regular and weighted mean fluxes, μ & ξ

$$\xi_{x_{N+1}} = \frac{W_{x_N}\xi_{x_N} + w_{x_{N+1}}x_{N+1}}{W_{x_N} + w_{x_{N+1}}}$$
(1)
(2)

Step 6: Analyse lightcurves

We keep a running aggregate (i.e. only need to include additional data, no recalculation of previous timesteps) for:

• Regular and weighted mean fluxes, μ & ξ

$$\xi_{x_{N+1}} = \frac{W_{x_N}\xi_{x_N} + w_{x_{N+1}}x_{N+1}}{W_{x_N} + w_{x_{N+1}}}$$
(1)
(2)

- 'Coefficient of variation', $V = \sigma/\mu$
- Calculate reduced χ-squared value (η), against fit to straight line at level of weighted-mean ξ.

Outline

'Slow' radio transients

How TraP works

How do I use it?

Future work

Summary

- TraP can be run on a laptop. But ...
- Makes heavy use of SQL database (most astronomers not familiar)
- Expected to be run on large datasets

- TraP can be run on a laptop. But ...
- Makes heavy use of SQL database (most astronomers not familiar)
- Expected to be run on large datasets
- Solution: Web-interface. Displays data in user-friendly fashion, works extremely well in server-client model.

	How do I use it?	Summary

Demo

\implies Demo.

- ~20,000 lines of code, ~350 unit tests, 26K lines of docs
- ▶ 4 core developers, plus ~4 testers, 3 continents
- Remote, collaborative, development model
- Issue tracking

Facts

Open (going forward)

Development Implications

- (/ Ruminations)
 - Astronomy -> More software intensive
 - Getting anything done requires better code re-use
 - Core software efforts are larger, require ongoing effort from many contributors. (cf http://astropy.org!)

Development Implications

- (/ Ruminations)
 - Astronomy -> More software intensive
 - Getting anything done requires better code re-use
 - Core software efforts are larger, require ongoing effort from many contributors. (cf http://astropy.org!)
 - You don't have to be part of it, **but**, you should be aware of it
 - Get to know the latest tools, maybe submit a bugfix here and there if you can
 - Do better science, faster (hopefully!)

Outline

'Slow' radio transients

How TraP works

How do I use it?

Future work

Summary

Different approaches

Two main approaches to image-based transient surveys:

- Cataloguing: Extract source representations, store in database, analyze lightcurve catalogue.
- Difference image analysis a.k.a. image subtraction

Lightcurve cataloguing

- Basic concept easily understood 'just' glue together source extraction and lightcurve analysis.
- However, blind source extraction typically requires good signal to noise - will miss marginal sources.
- Crowded fields are also a problem.

Future work

Summary

Difference image analysis

 Better at picking out faint sources in clean data, much better in crowded fields.

Alard & Lupton 1997, http://adsabs.harvard.edu/abs/1998ApJ...503..325A Wyrzykowski et al, 2014, http://adsabs.harvard.edu/abs/2014AcA....64..197W

Optical survey characteristics Which technique should we employ?

Most transient surveys to date are optical:

- Fields often crowded or even confusion limited (best places to look for stellar flares, microlensing)
- PSF usually quite well behaved (smooth)
- Pixel noise usually uncorrelated / varies on a different scale to the PSF (dependent on sampling)
- $\blacktriangleright \implies$ DIA is usually best approach.

Radio survey characteristics: (Contrast with optical)

- Fields usually quite sparsely populated, at least with current generation of instruments.
- Noise is correlated on beam-width scale.
- Dirty beam / PSF may vary significantly from image to image. May be well modelled, but this depends on system characterisation.
- (Phased arrays e.g. LOFAR) May see artifacts due to side lobes from out-of-field bright sources.
- ► ⇒ DIA would cause many false positives, better to stick to high SNR cataloguing.

Outline

'Slow' radio transients

How TraP works

How do I use it?

Future work

Summary

TraP:

- Good for (wide-field) sparsely populated surveys.
- Can be used for real-time transient detection.
- Produces catalogue of all sources.

TraP:

- Good for (wide-field) sparsely populated surveys.
- Can be used for real-time transient detection.
- Produces catalogue of all sources.
- Server-based / web-interface reduction model well suited to large, challenging datasets.
- Open-source Python / SQL, with comprehensive test-suite and documentation.
- http://ascl.net/1412.011