GLIA: Graph Learning Library for Image Analysis
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
code
LICENSE
README.md
contributors.txt

README.md

GLIA: Graph Learning Library for Image Analysis

What?

A C++11 library for efficient hierarchical image segmentation.

Please cite the following papers accordingly if you use the code:

  • T. Liu, C. Jones, M. Seyedhosseini, T. Tasdizen. A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods, 226, pp. 88--102, 2014.

  • T. Liu, E. Jurrus, M. Seyedhosseini, T. Tasdizen. Watershed merge tree classification for electron microscopy image segmentation. ICPR 2012.

  • T. Liu, M. Seyedhosseini, T. Tasdizen. Image segmentation using hierarchical merge tree. IEEE Transactions on Image Processing, 25, pp. 4596--4607, 2016.

  • T. Liu, M. Zhang, M. Javanmardi, N. Ramesh, T. Tasdizen. SSHMT: Semi-supervised hierarchical merge tree for electron microscopy image segmentation. ECCV 2016.

How?

Use a modern compiler with C++11 support, e.g., GCC-4.8 or higher and Apple LLVM 6.

Dependencies:

  • InsightToolkit (ITK).
  • Boost C++ libraries.
  • Eigen.

Instructions:

  • Use '-DCMAKE_CXX_FLAGS=-std=c++11' for the first time ITK CMake configuration.
  • Turn on 'ITKReview' module for ITK.
  • Enable C++11 for Boost libraries.

CMake configurations:

  • Turn on 'GLIA_MT' to use OpenMP parallelization.
  • Work on 3D/2D images with 'GLIA_3D' turned on/off.
  • Turn on 'GLIA_BUILD_{HMT,SSHMT,LINK3D,GADGET,ML_RF}' modules accordingly.
  • The random forest classifier used in our code is based on Abhishek Jaiantilal's R-to-MATLAB migration (https://github.com/ajaiantilal/randomforest-matlab) of random forest. To use the related functionalities, please turn on 'GLIA_BUILD_ML_RF' and 'GLIA_HMT_USE_RF', and set 'RF_SRC_DIR' as the path to 'RF_Class_C/src/' folder in their code.

Who?