
1

Alexander Burger, Thorsten Jolitz

PicoLisp by Example

– 600+ Rosetta Code Tasks with Solutions –

Version 1.01
September 05, 2012

”Technology’s development proceeds
from primitive

via complicated
to simple solutions.”

(Antoine de Saint-Exupéry)

Preface

Why PicoLisp? Short answer: PicoLisp as a language is maximizing expressive
power while minimizing complexity

PicoLisp is a very simple and succinct, yet expressive language – and it is free
(MIT/X11 License). Furthermore, PicoLisp has two characteristic features which
are not found to that extent in other languages:

1. An integrated database

2. Equivalence of code and data

These two features alone, and how they are used in combination, make it worth to
take a closer look at PicoLisp.

Integrated Database Database functionality is built into the core of the language.
PicoLisp is a database query and manipulation language.

Database entities are first class objects. They are called “external symbols”,
because they are automatically fetched from database files when accessed, but
otherwise behave like normal symbols.

This fetching from external files is completely transparent, the symbols “are just
there”, and there is no need (or even a function) to read or write them explicitly.
Pilog (a built-in Prolog engine) is used as a query language.

It is possible with PicoLisp to build large multi-user databases, distributed
across many machines or in a cloud. Such a database system can be optimally
fine-tuned, because all its levels are under the developer’s control.

Equivalence of Code and Data This is actually a feature of Lisp in general. How-
ever, PicoLisp really lives it. It makes it easy to write things like the HTML,
PostScript or TeX libraries, exploring a syntax of nested function calls. This
results in very succinct and precisely expressed programs.

For a closer explanation, see the article The Equivalence of Code and Data.

vii

http://software-lab.de/doc/ref.html#dbase
http://software-lab.de/doc/ref.html#pilog

viii Preface

Expressiveness PicoLisp is a very expressive language. Programs are often much
shorter and concise than equivalent programs written in other languages.

Examples of various programming tasks and their solutions, originally pub-
lished at rosettacode.org, can be found in this book.

Efficiency PicoLisp uses (at least when compared to other Lisps) very little mem-
ory, on disk as well as in memory (heap space).

For example, the installation size in the OpenWRT distribution is only 575 kB
(uncompressed), where the statically linked interpreter with 296 kB takes the
largest part. Yet, it includes the full runtime system with interpreter, database,
HTTP server, XHTML and JavaScript application framework, watchdog, and
the debugger, PostScript and XML libraries.

PicoLisp has no compiler, everything starts up very quickly, and code dynam-
ically loaded at runtime (e.g. GUI pages) is immediately ready. Yet, the inter-
preter is quite fast, usually three times a fast as Python, for example. See also
the article Need For Speed.

Langweid, August 2012 Alexander Burger
Berlin, August 2012 Thorsten Jolitz

http://rosettacode.org/wiki/Category:PicoLisp

Acknowledgements

This book was produced using the following software tools:

• Archlinux

• GNU Emacs (AucTex)

• LaTeX

• Git

• Pandoc

• Gimp

• PicoLisp

The book-layout is based on the freely available Springer LaTeX template for
monographs (svmono).

The first part of the book (99 Lisp Problems) is based on a Prolog problem list by
werner.hett@hti.bfh.ch. The original is at

https://prof.ti.bfh.ch/hew1/informatik3/prolog/p-99.

The core part of the book (Rosetta Code Tasks) is based on the programming tasks
published on http://rosettacode.org/wiki/Rosetta Code. These some-
times quite elaborated task descriptions have been contributed by members of the
Rosetta Code community. A task description might be the work of one or several
community members. Often one person1 delivers the initial task, that is then dis-
cussed and refined by the community.

At the time of this writing, it is technically challenging to correctly credit the task
authors for their work. Therefore we added links to the original webpages for all of

1 as an outstanding example for the great work of the Rosetta Code community, Mr. Donald Mc-
Carthy (aka Paddy3118) alone has contributed 117 initial task descriptions (accessed online: 05
Sept. 2012)

ix

http://www.springer.com/authors/book+authors?SGWID=0-154102-12-970131-0
https://prof.ti.bfh.ch/hew1/informatik3/prolog/p-99
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/User:Paddy3118

x Acknowledgements

the more than 600 Rosetta Code tasks included in this book (see Appendix). When
visiting a task page on http://rosettacode.org/wiki/Rosetta Code,
the reader can chose the View History tab and scroll through the sometimes long list
of contributions to the page. Most likely, the oldest entry in the history list shows
the original contributor of the task description, but other contributions to the task
description might be buried in the many pages of ’diffs’ (that include all changes to
the hundreds of task solutions too).

The Rosetta Code community is currently engaged in improving the visibility of the
task description authors on the site:

http://rosettacode.org/wiki/Task Description Authors

Future versions of this book will include or link-to the results of this community
process in order to better credit the members of the Rosetta Code community for
their impressive voluntary contributions.

While the Rosetta Code task descriptions are the work of many people, all the Pi-
coLisp solutions presented in this book are written by one single person: Alexander
Burger, the creator of PicoLisp.

The source code for this book can be found on Github (https://github.com/
tj64/picolisp-by-example

http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Task_Description_Authors
https://github.com/tj64/picolisp-by-example
https://github.com/tj64/picolisp-by-example
https://github.com/tj64/picolisp-by-example
https://github.com/tj64/picolisp-by-example

General Contents

Part I Ninety-Nine Lisp Problems

1 Ninety-Nine Lisp Problems . 3

Part II Rosetta Code

2 Rosetta Code Tasks starting with Numbers . 47

3 Rosetta Code Tasks starting with A . 53

4 Rosetta Code Tasks starting with B . 109

5 Rosetta Code Tasks starting with C . 149

6 Rosetta Code Tasks starting with D . 239

7 Rosetta Code Tasks starting with E . 293

8 Rosetta Code Tasks starting with F . 329

9 Rosetta Code Tasks starting with G . 381

10 Rosetta Code Tasks starting with H . 409

11 Rosetta Code Tasks starting with I . 447

12 Rosetta Code Tasks starting with J . 469

13 Rosetta Code Tasks starting with K . 479

14 Rosetta Code Tasks starting with L . 497

15 Rosetta Code Tasks starting with M . 541

xi

xii General Contents

16 Rosetta Code Tasks starting with N . 593

17 Rosetta Code Tasks starting with O . 621

18 Rosetta Code Tasks starting with P . 639

19 Rosetta Code Tasks starting with Q . 707

20 Rosetta Code Tasks starting with R . 713

21 Rosetta Code Tasks starting with S . 781

22 Rosetta Code Tasks starting with T . 931

23 Rosetta Code Tasks starting with U . 977

24 Rosetta Code Tasks starting with V . 991

25 Rosetta Code Tasks starting with W . 1005

26 Rosetta Code Tasks starting with X . 1021

27 Rosetta Code Tasks starting with Y . 1029

28 Rosetta Code Tasks starting with Z . 1035

Part III Function Reference

29 Symbols starting with A . 1043

30 Symbols starting with B . 1059

31 Symbols starting with C . 1067

32 Symbols starting with D . 1085

33 Symbols starting with E . 1103

34 Symbols starting with F . 1115

35 Symbols starting with G . 1129

36 Symbols starting with H . 1135

37 Symbols starting with I . 1141

38 Symbols starting with J . 1151

39 Symbols starting with K . 1153

General Contents xiii

40 Symbols starting with L . 1155

41 Symbols starting with M . 1169

42 Symbols starting with N . 1183

43 Symbols starting with O . 1193

44 Symbols starting with P . 1199

45 Symbols starting with Q . 1217

46 Symbols starting with R . 1221

47 Symbols starting with S . 1237

48 Symbols starting with T . 1261

49 Symbols starting with U . 1275

50 Symbols starting with V . 1285

51 Symbols starting with W . 1289

52 Symbols starting with X . 1295

53 Symbols starting with Y . 1297

54 Symbols starting with Z . 1299

Part IV Appendix

A GNU Free Documentation License . 1305

B Links to original Rosetta Code Tasks . 1315

Detailed Contents

Part I Ninety-Nine Lisp Problems

1 Ninety-Nine Lisp Problems . 3

Working with lists . 3

Arithmetic . 16

Logic and Codes . 23

Miscellaneous Problems . 24

Part II Rosetta Code

2 Rosetta Code Tasks starting with Numbers . 47

100 doors . 47

24 game . 48

24 game/Solve . 51

99 Bottles of Beer . 52

3 Rosetta Code Tasks starting with A . 53

A+B . 53

Abstract type . 54

Accumulator factory . 56

Ackermann function . 58

Active Directory/Connect . 59

xv

xvi General Contents

Active Directory/Search for a user . 60

Active object . 61

Add a variable to a class instance at runtime . 63

Address of a variable . 64

Align columns . 65

Amb . 67

Anagrams . 69

Anagrams/Deranged anagrams . 70

Animate a pendulum. 71

Animation . 72

Anonymous recursion . 75

Apply a callback to an array . 76

Arbitrary-precision integers (included) . 77

Arena storage pool . 78

Arithmetic evaluation . 79

Arithmetic-geometric mean . 81

Arithmetic/Complex . 82

Arithmetic/Rational . 84

Arithmetic/Integer . 86

Array concatenation . 87

Arrays . 88

Assertions . 90

Associative arrays/Creation . 91

Associative arrays/Iteration . 92

Atomic updates . 93

Averages/Arithmetic mean . 97

Averages/Mean angle . 98

Averages/Mean time of day . 100

Averages/Median . 101

Averages/Mode . 102

General Contents xvii

Averages/Pythagorean means . 103

Averages/Root mean square . 105

Averages/Simple moving average . 106

4 Rosetta Code Tasks starting with B . 109

Balanced brackets . 109

Best shuffle . 111

Binary digits . 113

Binary search . 114

Binary strings . 120

Bitmap . 122

Bitmap/Bézier curves/Cubic . 123

Bitmap/Bézier curves/Quadratic . 125

Bitmap/Bresenham’s line algorithm . 126

Bitmap/Flood fill . 127

Bitmap/Histogram . 129

Bitmap/Midpoint circle algorithm . 130

Bitmap/PPM conversion through a pipe . 131

Bitmap/Read a PPM file . 132

Bitmap/Read an image through a pipe . 133

Bitmap/Write a PPM file . 134

Bitwise IO . 135

Bitwise operations . 137

Boolean values . 139

Boxing the compass . 140

Break OO privacy . 143

Brownian tree . 145

Bulls and cows/Player . 146

xviii General Contents

5 Rosetta Code Tasks starting with C . 149

Caesar cipher . 149

Calendar . 151

Calendar - for ”real” programmers . 153

Call a foreign-language function . 155

Call a function . 158

Call a function from a foreign language . 160

Call a function in a shared library . 162

Call an object method . 164

Case-sensitivity of identifiers . 165

Catalan numbers . 166

Character codes . 168

Character matching . 169

Chat server . 171

Checkpoint synchronization . 173

Chess player . 176

Cholesky decomposition . 193

Classes . 197

Closest-pair problem . 198

Closures/Variable capture . 201

Collections . 202

Color of a screen pixel . 203

Colour bars/Display . 204

Colour pinstripe/Display . 205

Colour pinstripe/Printer . 206

Combinations . 208

Combinations with repetitions . 209

Command-line arguments . 211

Comments . 213

Compile-time calculation . 214

General Contents xix

Compound data type . 215

Concurrent computing . 216

Conditional structures . 217

Constrained Random Points on a Circle . 219

Constrained genericity . 221

Conway’s Game of Life . 223

Copy a string . 226

Count occurrences of a substring . 227

Count the Coins . 228

Counting in Factors . 230

Counting in octal . 232

Create a file . 233

Create a two-dimensional array at runtime . 234

Create an HTML table . 235

Create an object at a given address . 236

CSV to HTML translation . 237

6 Rosetta Code Tasks starting with D . 239

Date format . 239

Date manipulation . 240

Day of the week . 241

Deal cards for FreeCell . 242

Decision tables . 245

Deconvolution/1D . 248

Deepcopy . 251

Define a primitive data type . 254

Delegates . 256

Delete a file . 258

Detect division by zero . 259

Determine if a string is numeric . 260

Determine if only one instance is running . 261

xx General Contents

Digital root . 262

Dijkstra’s algorithm . 263

Dinesman’s multiple-dwelling problem . 266

Dining philosophers . 268

Discordian date . 271

Distributed programming . 272

DNS query . 273

Documentation . 274

Dot product . 275

Doubly-linked list/Definition . 276

Doubly-linked list/Element definition . 277

Doubly-linked list/Element insertion . 278

Doubly-linked list/Traversal . 279

Dragon curve . 280

Draw a clock . 282

Draw a cuboid . 285

Draw a sphere . 289

Dutch national flag problem . 290

Dynamic variable names . 291

7 Rosetta Code Tasks starting with E . 293

EBNF parser . 293

Echo server . 295

Element-wise operations . 296

Empty program . 297

Empty string . 298

Ensure that a file exists . 299

Enumerations . 300

Environment variables . 301

Equilibrium index . 302

Ethiopian multiplication . 303

General Contents xxi

Euler Method . 305

Evaluate binomial coefficients . 309

Even or odd . 310

Events . 311

Evolutionary algorithm . 312

Exceptions . 314

Exceptions/Catch an exception thrown in a nested call 315

Executable library . 316

Execute Brain**** . 318

Execute HQ9+ . 321

Execute a Markov algorithm . 322

Execute a system command . 324

Exponentiation operator . 325

Extend your language . 326

Extreme floating point values . 328

8 Rosetta Code Tasks starting with F . 329

Factorial . 329

Factors of a Mersenne number . 330

Factors of an integer . 333

Fast Fourier transform . 334

Fibonacci n-step number sequences . 336

Fibonacci sequence . 339

File IO . 341

File modification time . 342

File size . 343

Filter . 344

Find Common Directory Path . 345

Find first and last set bit of a long integer . 346

Find limit of recursion . 348

Find the missing permutation . 349

xxii General Contents

First class environments . 351

First-class functions . 353

First-class functions/Use numbers analogously . 355

Five weekends . 357

FizzBuzz . 359

Flatten a list . 360

Flow-control structures . 361

Floyd’s triangle . 363

Forest fire . 365

Fork . 367

Formal power series . 368

Formatted numeric output . 371

Forward difference . 372

Four bit adder . 373

Fractal tree . 375

Function composition . 376

Function definition . 377

Function frequency . 378

9 Rosetta Code Tasks starting with G . 381

GUI component interaction . 381

GUI enabling/disabling of controls . 383

Galton box animation . 384

Gamma function . 387

Generator . 389

Generic swap . 391

Globally replace text in several files . 392

Go Fish . 393

Gray code . 397

Grayscale image . 399

Greatest common divisor . 401

General Contents xxiii

Greatest element of a list . 402

Greatest subsequential sum . 403

Greyscale bars/Display . 404

Guess the number . 405

Guess the number/With Feedback . 406

Guess the number/With Feedback (Player) . 407

10 Rosetta Code Tasks starting with H . 409

HTTP . 409

HTTPS . 410

HTTPS/Authenticated . 411

HTTPS/Client-authenticated . 412

Hailstone sequence . 413

Hamming numbers . 414

Handle a signal . 415

Happy numbers . 416

Hash from two arrays . 417

Haversine formula . 418

Hello world/Graphical . 419

Hello world/Line printer . 420

Hello world/Newline omission . 421

Hello world/Standard error . 422

Hello world/Text . 423

Hello world/Web server . 424

Here document . 425

Higher-order functions . 426

History variables . 427

Hofstadter Figure-Figure sequences . 429

Hofstadter Q sequence . 431

Hofstadter-Conway $10,000 sequence . 433

Holidays related to Easter . 437

xxiv General Contents

Horizontal sundial calculations . 439

Horner’s rule for polynomial evaluation . 441

Host introspection . 442

Hostname . 443

Huffman coding . 444

11 Rosetta Code Tasks starting with I . 447

IPC via named pipe . 447

Identity matrix . 449

Image convolution . 450

Image Noise . 452

Include a file . 454

Increment a numerical string . 455

Infinity . 456

Inheritance/Multiple . 457

Inheritance/Single . 458

Input loop . 460

Integer comparison . 461

Integer sequence . 462

Interactive programming . 463

Introspection . 464

Inverted index . 465

Inverted syntax . 467

12 Rosetta Code Tasks starting with J . 469

JSON . 469

Jensen’s Device . 472

Joystick position . 474

Jump anywhere . 476

General Contents xxv

13 Rosetta Code Tasks starting with K . 479

Kaprekar numbers . 479

Keyboard macros . 481

Knapsack problem/0-1 . 482

Knapsack problem/Bounded . 485

Knapsack problem/Continuous . 488

Knapsack problem/Unbounded . 490

Knight’s tour . 492

Knuth’s algorithm S . 494

Knuth shuffle . 496

14 Rosetta Code Tasks starting with L . 497

LZW compression . 497

Last Fridays of year . 499

Last letter-first letter . 501

Leap year . 503

Least common multiple . 504

Letter frequency . 505

Levenshtein distance . 506

Linear congruential generator . 508

List comprehensions . 510

Literals/Floating point . 513

Literals/Integer . 514

Literals/String . 515

Logical operations . 516

Long multiplication . 517

Longest common subsequence . 518

Longest string challenge . 519

Look-and-say sequence . 523

Loop over multiple arrays simultaneously . 525

Loops/Break . 526

xxvi General Contents

Loops/Continue . 527

Loops/Do-while . 528

Loops/Downward for . 529

Loops/For . 530

Loops/For with a specified step . 531

Loops/Foreach . 532

Loops/Infinite . 533

Loops/N plus one half . 534

Loops/Nested . 535

Loops/While . 536

Lucas-Lehmer test . 537

Luhn test of credit card numbers . 539

15 Rosetta Code Tasks starting with M . 541

MD5 . 541

MD5/Implementation . 542

Make a backup file . 547

Man or boy test . 548

Mandelbrot set . 551

Map range . 552

Matrix multiplication . 553

Matrix transposition . 554

Matrix-exponentiation operator . 555

Maze generation . 556

Maze solving . 559

Median filter . 561

Memory allocation . 562

Memory layout of a data structure . 563

Menu . 565

Metaprogramming . 566

Metered concurrency . 567

General Contents xxvii

Metronome . 568

Miller-Rabin primality test . 569

Minesweeper game . 572

Modular exponentiation . 575

Monte Carlo methods . 576

Monty Hall problem . 577

Morse code . 579

Mouse position . 581

Multiline shebang . 582

Multiple distinct objects . 583

Multiple regression . 584

Multiplication tables . 587

Multisplit . 588

Mutex . 590

Mutual recursion . 591

16 Rosetta Code Tasks starting with N . 593

N-queens problem . 593

Named parameters . 595

Narcissist . 597

Natural sorting . 598

Non-continuous subsequences . 606

Non-decimal radices/Convert . 607

Non-decimal radices/Input . 609

Non-decimal radices/Output . 610

Nth root . 611

Number names . 612

Number reversal game . 613

Numeric error propagation . 614

Numerical integration . 619

xxviii General Contents

17 Rosetta Code Tasks starting with O . 621

Object serialization . 621

Odd word problem . 623

Old lady swalllowed a fly . 625

One of n lines in a file . 627

One-dimensional cellular automata . 629

OpenGL . 631

Optional parameters . 633

Order two numerical lists . 635

Ordered Partitions . 636

Ordered words . 638

18 Rosetta Code Tasks starting with P . 639

Palindrome detection . 639

Pangram checker . 641

Parallel calculations . 642

Parametric polymorphism . 644

Parametrized SQL statement . 647

Parse an IP Address . 648

Parsing command-line arguments . 651

Parsing/RPN calculator algorithm . 652

Parsing/RPN to infix conversion . 654

Parsing/Shunting-yard algorithm . 657

Partial function application . 660

Pascal’s triangle . 662

Pascal’s triangle/Puzzle . 663

Pattern matching . 665

Percentage difference between images . 667

Perfect numbers . 669

Permutation test . 670

Permutations . 673

General Contents xxix

Permutations/Derangements . 674

Pi . 676

Pick random element . 677

Pinstripe/Display . 678

Pinstripe/Printer . 679

Play recorded sounds . 680

Playing cards . 681

Plot coordinate pairs . 682

Pointers and references . 684

Polynomial long division . 686

Polymorphic copy . 690

Polymorphism . 692

Power set . 693

Pragmatic directives . 694

Price Fraction . 695

Primality by trial division . 697

Prime decomposition . 698

Priority queue . 699

Probabilistic choice . 701

Program termination . 703

Pythagorean triples . 704

19 Rosetta Code Tasks starting with Q . 707

Queue/Definition . 707

Queue/Usage . 709

Quine . 710

20 Rosetta Code Tasks starting with R . 713

RSA code . 713

Random number generator (device) . 716

Random number generator (included) . 717

xxx General Contents

Random numbers . 718

Range expansion . 719

Range extraction . 720

Rate counter . 722

Ray-casting algorithm . 724

Read a configuration file . 730

Read a specific line from a file . 732

Read entire file . 733

Read a file line by line . 734

Real constants and functions . 735

Record sound . 737

Reduced row echelon form . 738

Regular expressions . 740

Remote agent/Agent interface . 741

Remote agent/Agent logic . 742

Remote agent/Simulation . 748

Remove duplicate elements . 752

Remove lines from a file . 753

Remove the first and last characters from a string/Top and tail 754

Rename a file . 755

Rendezvous . 756

Repeat a string . 758

Respond to an unknown method call . 759

Return multiple values . 760

Reverse a string . 761

Rock-paper-scissors . 762

Roman numerals/Encode . 763

Roman numerals/Decode . 764

Roots of a function . 765

Roots of a quadratic function . 766

General Contents xxxi

Roots of unity . 768

Rosetta Code/Count examples . 769

Rosetta Code/Find unimplemented tasks . 770

Rosetta Code/Fix code tags . 771

Rosetta Code/Rank languages by popularity . 772

Rot-13 . 774

Run as a daemon or service . 775

Run-length encoding . 776

Runtime evaluation . 778

Runtime evaluation/In an environment . 779

21 Rosetta Code Tasks starting with S . 781

S-Expressions . 781

SEDOLs . 784

SHA-1 . 786

Safe addition . 787

Same Fringe . 788

Scope modifiers . 790

Script name . 792

Scripted Main . 793

Search a list . 794

Secure temporary file . 795

Self-describing numbers . 796

Self-referential sequence . 797

Send an unknown method call . 800

Send email . 801

Sequence of non-squares . 802

Set . 804

Set consolidation . 808

Seven-sided dice from five-sided dice . 810

Shell one-liner . 811

xxxii General Contents

Short-circuit evaluation . 812

Show the epoch . 814

Sierpinski carpet . 815

Sierpinski triangle . 817

Sieve of Eratosthenes . 818

Simple database . 819

Simple quaternion type and operations . 822

Simple windowed application . 826

Simulate input/Keyboard . 827

Simulate input/Mouse . 828

Singleton . 829

Singly-linked list/Element definition . 830

Singly-linked list/Element insertion . 831

Singly-linked list/Traversal . 832

Sleep . 833

Sockets . 834

Sokoban . 835

Solve a Hidato puzzle . 839

Sort an array of composite structures . 843

Sort an integer array . 844

Sort disjoint sublist . 845

Sort stability . 846

Sort using a custom comparator . 847

Sorting algorithms/Bead sort . 848

Sorting algorithms/Bogosort . 849

Sorting algorithms/Bubble sort . 850

Sorting algorithms/Cocktail sort . 852

Sorting algorithms/Comb sort . 854

Sorting algorithms/Counting sort . 856

Sorting algorithms/Gnome sort . 858

General Contents xxxiii

Sorting algorithms/Heapsort . 859

Sorting algorithms/Insertion sort . 862

Sorting algorithms/Pancake sort . 863

Sorting algorithms/Permutation sort . 865

Sorting algorithms/Radix sort . 866

Sorting algorithms/Selection sort . 867

Sorting algorithms/Shell sort . 868

Sorting algorithms/Sleep sort . 869

Sorting algorithms/Stooge sort . 871

Sorting algorithms/Strand sort . 872

Soundex . 873

Special variables . 874

Speech synthesis . 875

Special characters . 876

Spiral matrix . 877

Stable marriage problem . 878

Stack . 882

Stack traces . 884

Stair-climbing puzzle . 887

Standard deviation . 888

State name puzzle . 889

Statistics/Basic . 892

Stem-and-leaf plot . 895

Straddling checkerboard . 897

String case . 899

String concatenation . 900

String interpolation (included) . 901

String length . 902

Strip a set of characters from a string . 903

Strip block comments . 904

xxxiv General Contents

Strip comments from a string . 906

Strip control codes and extended characters from a string 907

Strip whitespace from a string/Top and tail . 909

Subset sum problem . 910

Substring . 913

Subtractive generator . 915

Sudoku . 918

Sum and product of an array . 921

Sum digits of an integer . 922

Sum of a series . 923

Sum of squares . 924

Symmetric difference . 925

Synchronous concurrency . 927

System time . 929

22 Rosetta Code Tasks starting with T . 931

Table creation . 931

Table creation/Postal addresses . 933

Take notes on the command line . 935

Terminal Control/Dimensions . 936

Terminal control/Coloured text . 937

Terminal control/Cursor movement . 938

Terminal control/Preserve screen . 939

Terminal Control/Unicode output . 940

Ternary logic . 941

Test a function . 947

Text processing/1 . 948

Text processing/2 . 951

Text processing/3 . 953

Thiele’s interpolation formula . 954

Three Dogs . 957

General Contents xxxv

Tic-tac-toe . 958

Time a function . 961

Top rank per group . 962

Topological sort . 964

Towers of Hanoi . 966

Trabb PardoKnuth algorithm . 967

Tree traversal . 969

Trigonometric functions . 971

Truncatable primes . 972

Truncate a file . 973

Truth table . 974

23 Rosetta Code Tasks starting with U . 977

URL decoding . 977

URL encoding . 978

Unbias a random generator . 980

Undefined values . 982

Unicode strings . 983

Unicode variable names . 984

Update a configuration file . 985

User input/Graphical . 989

User input/Text . 990

24 Rosetta Code Tasks starting with V . 991

Van der Corput sequence . 991

Variable size/Get . 995

Variable size/Set . 996

Variable-length quantity . 997

Variables . 998

Variadic function . 999

Vector products . 1000

xxxvi General Contents

Verify distribution uniformity/Naive . 1002

Vigenre Cipher . 1004

25 Rosetta Code Tasks starting with W . 1005

Walk a directory/Non-recursively . 1005

Walk a directory/Recursively . 1006

Web scraping . 1007

Window creation . 1008

Window creation/X11 . 1009

Window management . 1011

Wireworld . 1013

Word wrap . 1016

Write float arrays to a text file . 1017

Write to Windows event log . 1019

26 Rosetta Code Tasks starting with X . 1021

XML/DOM serialization . 1021

XML/Input . 1022

XML/Output . 1023

XML/XPath . 1025

Xiaolin Wu’s line algorithm . 1027

27 Rosetta Code Tasks starting with Y . 1029

Y combinator . 1029

Yahoo! Search . 1031

Yin and yang . 1032

28 Rosetta Code Tasks starting with Z . 1035

Zebra puzzle . 1035

Zig-zag matrix . 1038

Part III Function Reference

General Contents xxxvii

29 Symbols starting with A . 1043

*Adr . 1043

(adr ’var) -> num . 1043

*Allow . 1044

+Alt . 1044

+Any . 1044

+Aux . 1045

(abort ’cnt . prg) -> any . 1045

(abs ’num) -> num . 1045

(accept ’cnt) -> cnt | NIL . 1046

(accu ’var ’any ’num) . 1046

(acquire ’sym) -> flg . 1046

(alarm ’cnt . prg) -> cnt . 1047

(align ’cnt ’any) -> sym . 1047

(all [’T | ’0]) -> lst . 1047

(allow ’sym [’flg]) -> sym . 1048

(allowed lst [sym ..]) . 1048

(and ’any ..) -> any . 1049

(any ’sym) -> any . 1049

(append ’lst ..) -> lst . 1049

append/3 . 1049

(apply ’fun ’lst [’any ..]) -> any 1050

(arg [’cnt]) -> any . 1050

(args) -> flg . 1051

(argv [var ..] [. sym]) -> lst|sym 1051

(as ’any1 . any2) -> any2 | NIL . 1052

(asoq ’any ’lst) -> lst . 1052

(assert exe ..) -> prg | NIL . 1053

(asserta ’lst) -> lst . 1053

asserta/1 . 1054

xxxviii General Contents

(assertz ’lst) -> lst . 1054

assertz/1 . 1055

(assoc ’any ’lst) -> lst . 1055

(at ’(cnt1 . cnt2|NIL) . prg) -> any 1056

(atom ’any) -> flg . 1056

(aux ’var ’cls [’hook] ’any ..) -> sym 1056

30 Symbols starting with B . 1059

*Blob . 1059

*Bye . 1059

+Bag . 1059

+Blob . 1060

+Bool . 1060

(balance ’var ’lst [’flg]) . 1060

(basename ’any) -> sym . 1061

(be sym . any) -> sym . 1061

(beep) -> any . 1062

(bench . prg) -> any . 1062

(bin ’num [’num]) -> sym . 1062

(bind ’sym|lst . prg) -> any . 1063

(bit? ’num ..) -> num | NIL . 1063

(blob ’obj ’sym) -> sym . 1064

(blob! ’obj ’sym ’file) . 1064

(bool ’any) -> flg . 1064

bool/3 . 1065

(box ’any) -> sym . 1065

(box? ’any) -> sym | NIL . 1065

(by ’fun1 ’fun2 ’lst ..) -> lst . 1066

(bye ’cnt—NIL) . 1066

General Contents xxxix

31 Symbols starting with C . 1067

*Class . 1067

(cache ’var ’sym . prg) -> any . 1067

(call ’any ..) -> flg . 1068

call/1 . 1068

(can ’msg) -> lst . 1069

(car ’var) -> any . 1070

(c[ad]*ar ’var) -> any . 1070

(case ’any (any1 . prg1) (any2 . prg2) ..) -> any 1070

(catch ’any . prg) -> any . 1070

(cd ’any) -> sym . 1071

(cdr ’lst) -> any . 1071

(center ’cnt|lst ’any ..) -> sym . 1071

(chain ’lst ..) -> lst . 1072

(char) -> sym . 1072

(chdir ’any . prg) -> any . 1073

(chkTree ’sym [’fun]) -> num . 1073

(chop ’any) -> lst . 1074

(circ ’any ..) -> lst . 1074

(circ? ’any) -> any . 1074

(class sym . typ) -> obj . 1075

(clause ’(sym . any)) -> sym . 1075

clause/2 . 1076

(clip ’lst) -> lst . 1076

(close ’cnt) -> cnt | NIL . 1076

(cmd [’any]) -> sym . 1077

(cnt ’fun ’lst ..) -> cnt . 1077

(collect ’var ’cls [’hook] [’any|beg [’end [var
..]]]) . 1077

(commit [’any] [exe1] [exe2]) -> T 1078

xl General Contents

(con ’lst ’any) -> any . 1078

(conc ’lst ..) -> lst . 1079

(cond (’any1 . prg1) (’any2 . prg2) ..) -> any 1079

(connect ’any1 ’any2) -> cnt | NIL 1079

(cons ’any [’any ..]) -> lst . 1080

(copy ’any) -> any . 1080

(co ’sym [. prg]) -> any . 1080

(count ’tree) -> num . 1081

(ctl ’sym . prg) -> any . 1081

(ctty ’sym|pid) -> flg . 1082

(curry lst . fun) -> fun . 1082

(cut ’cnt ’var) -> lst . 1083

32 Symbols starting with D . 1085

*DB . 1085

*Dbg . 1086

*Dbs . 1086

+Date . 1086

+Dep . 1087

(d) -> T . 1087

(daemon ’sym . prg) -> fun . 1087

(dat$ ’dat [’sym]) -> sym . 1088

(datStr ’dat [’flg]) -> sym . 1088

(datSym ’dat) -> sym . 1089

(date [’T]) -> dat . 1089

(day ’dat [’lst]) -> sym . 1090

(db ’var ’cls [’hook] ’any [’var ’any ..]) ->
sym | NIL . 1090

db/3 . 1091

(db: cls ..) -> num . 1092

(dbSync) -> flg . 1092

General Contents xli

(dbck [’cnt] ’flg) -> any . 1092

(dbs . lst) . 1093

(dbs+ ’num . lst) . 1093

(de sym . any) -> sym . 1094

(debug ’sym) -> T . 1094

(dec ’num) -> num . 1095

(def ’sym ’any) -> sym . 1096

(default var ’any ..) -> any . 1096

(del ’any ’var) -> lst . 1097

(delete ’any ’lst) -> lst . 1097

delete/3 . 1098

(delq ’any ’lst) -> lst . 1098

(dep ’cls) -> cls . 1098

(depth ’lst) -> (cnt1 . cnt2) . 1099

(diff ’lst ’lst) -> lst . 1099

different/2 . 1099

(dir [’any] [’flg]) -> lst . 1100

(dirname ’any) -> sym . 1100

(dm sym . fun|cls2) -> sym . 1100

(do ’flg|num [’any | (NIL ’any . prg) | (T ’any
. prg) ..]) -> any . 1101

(doc [’sym1] [’sym2]) . 1101

33 Symbols starting with E . 1103

*Err . 1103

*Ext . 1103

+Entity . 1104

(e . prg) -> any . 1105

(echo [’cnt [’cnt]] | [’sym ..]) -> sym 1106

(edit ’sym ..) -> NIL . 1106

(env [’lst] | [’sym ’val] ..) -> lst 1107

xlii General Contents

(eof [’flg]) -> flg . 1108

(eol) -> flg . 1108

equal/2 . 1108

(err ’sym . prg) -> any . 1109

(errno) -> cnt . 1109

(eval ’any [’cnt [’lst]]) -> any . 1109

(expDat ’sym) -> dat . 1110

(expTel ’sym) -> sym . 1111

(expr ’sym) -> fun . 1112

(ext ’cnt . prg) -> any . 1112

(ext? ’any) -> sym | NIL . 1112

(extend cls) -> cls . 1113

(extern ’sym) -> sym | NIL . 1113

(extra [’any ..]) -> any . 1113

(extract ’fun ’lst ..) -> lst . 1114

34 Symbols starting with F . 1115

*Fork . 1115

+Fold . 1115

(fail) -> lst . 1115

fail/0 . 1116

(fetch ’tree ’any) -> any . 1116

(fifo ’var [’any ..]) -> any . 1116

(file) -> (sym1 sym2 . num) | NIL . 1117

(fill ’any [’sym|lst]) -> any . 1117

(filter ’fun ’lst ..) -> lst . 1118

(fin ’any) -> num|sym . 1118

(finally exe . prg) -> any . 1119

(find ’fun ’lst ..) -> any . 1119

(fish ’fun ’any) -> lst . 1120

(flg? ’any) -> flg . 1120

General Contents xliii

(flip ’lst [’cnt]) -> lst . 1120

(flush) -> flg . 1121

(fmt64 ’num) -> sym . 1121

(fold ’any [’cnt]) -> sym . 1122

fold/3 . 1122

(for sym ’num [’any | (NIL ’any . prg) | (T
’any . prg) ..]) -> any . 1122

(fork) -> pid | NIL . 1123

(forked) . 1124

(format ’num [’cnt [’sym1 [’sym2]]]) -> sym 1124

(free ’cnt) -> (sym . lst) . 1125

(from ’any ..) -> sym . 1126

(full ’any) -> bool . 1126

(fun? ’any) -> any . 1127

35 Symbols starting with G . 1129

(gc [’cnt]) -> cnt | NIL . 1129

(ge0 ’any) -> num | NIL . 1129

(genKey ’var ’cls [’hook [’num1 [’num2]]]) -> num 1130

(genStrKey ’sym ’var ’cls [’hook]) -> sym 1130

(get ’sym1|lst [’sym2|cnt ..]) -> any 1130

(getd ’any) -> fun | NIL . 1131

(getl ’sym1|lst1 [’sym2|cnt ..]) -> lst 1131

(glue ’any ’lst) -> sym . 1132

(goal ’([pat ’any ..] . lst) [’sym ’any ..]) ->
lst . 1132

(group ’lst) -> lst . 1133

(gt0 ’any) -> num | NIL . 1133

xliv General Contents

36 Symbols starting with H . 1135

*Hup . 1135

+Hook . 1135

(hash ’any) -> cnt . 1135

(hax ’num) -> sym . 1136

(hd ’sym [’cnt]) -> NIL . 1136

(head ’cnt|lst ’lst) -> lst . 1137

head/3 . 1137

(heap ’flg) -> cnt . 1138

(hear ’cnt) -> cnt . 1138

(here [’sym]) -> sym . 1138

(hex ’num [’num]) -> sym . 1139

(host ’any) -> sym . 1140

37 Symbols starting with I . 1141

+Idx . 1141

+index . 1141

(id ’num [’num]) -> sym . 1141

(idx ’var ’any ’flg) -> lst (idx ’var ’any) ->
lst (idx ’var) -> lst . 1142

(if ’any1 ’any2 . prg) -> any . 1143

(if2 ’any1 ’any2 ’any3 ’any4 ’any5 . prg) -> any . 1144

(ifn ’any1 ’any2 . prg) -> any . 1144

(import lst) -> NIL . 1144

(in ’any . prg) -> any . 1145

(inc ’num) -> num (inc ’var [’num]) -> num 1145

(inc! ’obj ’sym [’num]) -> num . 1146

(index ’any ’lst) -> cnt | NIL . 1146

(info ’any) -> (cnt|T dat . tim) . 1147

(init ’tree [’any1] [’any2]) -> lst 1147

(insert ’cnt ’lst ’any) -> lst . 1147

General Contents xlv

(intern ’sym) -> sym . 1148

(ipid) -> pid | NIL . 1148

(isa ’cls|typ ’obj) -> obj | NIL . 1148

isa/2 . 1149

(iter ’tree [’fun] [’any1] [’any2] [’flg]) 1149

38 Symbols starting with J . 1151

+Joint . 1151

(job ’lst . prg) -> any . 1151

(journal ’any ..) -> T . 1152

39 Symbols starting with K . 1153

+Key . 1153

(key [’cnt]) -> sym . 1153

(kill ’pid [’cnt]) -> flg . 1154

40 Symbols starting with L . 1155

*Led . 1155

+Link . 1155

+List . 1156

(last ’lst) -> any . 1156

(later ’var . prg) -> var . 1156

(ld) -> any . 1156

(le0 ’any) -> num | NIL . 1157

(leaf ’tree) -> any . 1157

(length ’any) -> cnt | T . 1157

(let sym ’any . prg) -> any . 1158

(let? sym ’any . prg) -> any . 1158

(lieu ’any) -> sym | NIL . 1159

(line ’flg [’cnt ..]) -> lst|sym . 1159

(lines ’any ..) -> cnt . 1160

xlvi General Contents

(link ’any ..) -> any . 1160

(lint ’sym) -> lst . 1161

(lintAll [’sym ..]) -> lst . 1161

(lisp ’sym [’fun]) -> num . 1161

(list ’any [’any ..]) -> lst . 1162

lst/3 . 1162

(lst? ’any) -> flg . 1163

(listen ’cnt1 [’cnt2]) -> cnt | NIL 1163

(lit ’any) -> any . 1163

(load ’any ..) -> any . 1164

(loc ’sym ’lst) -> sym . 1164

(local lst) -> sym . 1165

(locale ’sym1 ’sym2 [’sym ..]) . 1165

(lock [’sym]) -> cnt | NIL . 1165

(loop [’any | (NIL ’any . prg) | (T ’any . prg)
..]) -> any . 1166

(low? ’any) -> sym | NIL . 1166

(lowc ’any) -> any . 1167

(lt0 ’any) -> num | NIL . 1167

(lup ’lst ’any) -> lst . 1167

41 Symbols starting with M . 1169

*Msg . 1169

+Mis . 1169

(macro prg) -> any . 1170

(made [’lst1 [’lst2]]) -> lst . 1170

(mail ‘any ‘cnt ‘sym1 ‘sym2|lst1 ‘sym3 ‘lst2 .
prg)’ . 1171

(make .. [(made ’lst ..)] .. [(link ’any ..)]
..) -> any . 1171

(map ’fun ’lst ..) -> lst . 1171

map/3 . 1172

General Contents xlvii

(mapc ’fun ’lst ..) -> any . 1172

(mapcan ’fun ’lst ..) -> lst . 1173

(mapcar ’fun ’lst ..) -> lst . 1173

(mapcon ’fun ’lst ..) -> lst . 1173

(maplist ’fun ’lst ..) -> lst . 1174

(maps ’fun ’sym [’lst ..]) -> any . 1174

(mark ’sym|0 [’NIL | ’T | ’0]) -> flg 1174

(match ’lst1 ’lst2) -> flg . 1175

(max ’any ..) -> any . 1175

(maxKey ’tree [’any1 [’any2]]) -> any 1176

(maxi ’fun ’lst ..) -> any . 1176

(member ’any ’lst) -> any . 1176

member/2 . 1177

(memq ’any ’lst) -> any . 1177

(meta ’obj|typ ’sym [’sym2|cnt ..]) -> any 1177

(meth ’obj [’any ..]) -> any . 1178

(method ’msg ’obj) -> fun . 1178

(min ’any ..) -> any . 1178

(minKey ’tree [’any1 [’any2]]) -> any 1179

(mini ’fun ’lst ..) -> any . 1179

(mix ’lst cnt|’any ..) -> lst . 1179

(mmeq ’lst ’lst) -> any . 1180

(money ’num [’sym]) -> sym . 1180

(more ’lst [’fun]) -> flg . 1180

(msg ’any [’any ..]) -> any . 1182

42 Symbols starting with N . 1183

+Need . 1183

+Number . 1183

(n== ‘any ..) -> flg . 1183

(n0 ’any) -> flg . 1184

xlviii General Contents

(nT ’any) -> flg . 1184

(name ’sym [’sym2]) -> sym . 1184

(nand ’any ..) -> flg . 1185

(native ’cnt1|sym1 ’cnt2|sym2 ’sym|lst ’any ..)
-> any . 1186

(need ’cnt [’lst [’any]]) -> lst . 1188

(new [’flg|num] [’typ [’any ..]]) -> obj 1188

(new! ’typ [’any ..]) -> obj . 1189

(next) -> any . 1189

(nil . prg) -> NIL . 1189

nil/1 . 1190

(noLint ’sym) . 1190

(nond (’any1 . prg1) (’any2 . prg2) ..) -> any 1190

(nor ’any ..) -> flg . 1191

(not ’any) -> flg . 1191

not/1 . 1191

(nth ’lst ’cnt ..) -> lst . 1192

(num? ’any) -> num | NIL . 1192

43 Symbols starting with O . 1193

*Once . 1193

*OS . 1193

(obj (typ var [hook] val ..) var2 val2 ..) -> obj 1193

(object ’sym ’any [’sym2 ’any2 ..]) -> obj 1194

(oct ’num [’num]) -> sym . 1194

(off var ..) -> NIL . 1195

(offset ’lst1 ’lst2) -> cnt | NIL . 1195

(on var ..) -> T . 1195

(once . prg) -> any . 1196

(one var ..) -> 1 . 1196

(onOff var ..) -> flg . 1196

General Contents xlix

(open ’any [’flg]) -> cnt | NIL . 1197

(opid) -> pid | NIL . 1197

(opt) -> sym . 1197

(or ’any ..) -> any . 1198

or/2 . 1198

(out ’any . prg) -> any . 1198

44 Symbols starting with P . 1199

*PPid . 1199

*Pid . 1199

*Prompt . 1200

(pack ’any ..) -> sym . 1200

(pad ’cnt ’any) -> sym . 1200

(pair ’any) -> any . 1201

part/3 . 1201

(pass ’fun [’any ..]) -> any . 1201

(pat? ’any) -> pat | NIL . 1202

(patch ’lst ’any . prg) -> any . 1202

(path ’any) -> sym . 1203

(peek) -> sym . 1203

permute/2 . 1204

(pick ’fun ’lst ..) -> any . 1204

pico . 1205

(pil [’any ..]) -> sym . 1205

(pilog ’lst . prg) -> any . 1205

(pipe exe) -> cnt . 1206

(place ’cnt ’lst ’any) -> lst . 1206

(poll ’cnt) -> cnt | NIL . 1206

(pool [’sym1 [’lst] [’sym2] [’sym3]]) -> T 1207

(pop ’var) -> any . 1207

(port [’T] ’cnt|(cnt . cnt) [’var]) -> cnt 1208

l General Contents

(pp ’sym) -> sym . 1208

(pr ’any ..) -> any . 1210

(prEval ’prg [’cnt]) -> any . 1210

(pre? ’any1 ’any2) -> any2 | NIL . 1210

(pretty ’any ’cnt) . 1211

(prin ’any ..) -> any . 1211

(prinl ’any ..) -> any . 1212

(print ’any ..) -> any . 1212

(println ’any ..) -> any . 1212

(printsp ’any ..) -> any . 1213

(prior ’lst1 ’lst2) -> lst | NIL . 1213

(proc ’sym ..) -> T . 1213

(prog . prg) -> any . 1214

(prog1 ’any1 . prg) -> any1 . 1214

(prog2 ’any1 ’any2 . prg) -> any2 . 1215

(prop ’sym1|lst [’sym2|cnt ..] ’sym) -> var 1215

(protect . prg) -> any . 1215

45 Symbols starting with Q . 1217

(qsym . sym) -> lst . 1217

(quote . any) -> any . 1217

(query ’lst [’lst]) -> flg . 1218

(queue ’var ’any) -> any . 1218

(quit [’any [’any]]) . 1219

46 Symbols starting with R . 1221

*Run . 1221

+Ref . 1221

+Ref2 . 1222

+relation . 1222

(rand [’cnt1 ’cnt2] | [’T]) -> cnt | flg 1222

General Contents li

(range ’num1 ’num2 [’num3]) -> lst 1223

range/3 . 1223

(rank ’any ’lst [’flg]) -> lst . 1224

(raw [’flg]) -> flg . 1224

(rc ’sym ’any1 [’any2]) -> any . 1224

(rd [’sym]) -> any . 1225

(read [’sym1 [’sym2]]) -> any . 1226

(recur fun) -> any . 1226

(redef sym . fun) -> sym . 1227

(rel var lst [any ..]) -> any . 1229

(release ’sym) -> NIL . 1229

remote/2 . 1229

(remove ’cnt ’lst) -> lst . 1231

(repeat) -> lst . 1231

repeat/0 . 1231

(replace ’lst ’any1 ’any2 ..) -> lst 1232

(request ’typ ’var [’hook] ’val ..) -> obj 1232

(rest) -> lst . 1233

(retract) -> lst . 1233

retract/1 . 1233

(reverse ’lst) -> lst . 1234

(rewind) -> flg . 1234

(rollback) -> T . 1235

(root ’tree) -> (num . sym) . 1235

(rot ’lst [’cnt]) -> lst . 1235

(round ’num1 ’num2) -> sym . 1235

(rules ’sym ..) -> sym . 1236

(run ’any [’cnt [’lst]]) -> any . 1236

lii General Contents

47 Symbols starting with S . 1237

*Scl . 1237

*Sig1 . 1237

*Solo . 1238

+Sn . 1238

+String . 1239

+Symbol . 1239

same/3 . 1239

(scan ’tree [’fun] [’any1] [’any2] [’flg]) 1240

(scl ’num) -> num . 1240

(script ’any ..) -> any . 1241

(sect ’lst ’lst) -> lst . 1241

(seed ’any) -> cnt . 1242

(seek ’fun ’lst ..) -> lst . 1242

(select [var ..] cls [hook|T] [var val ..]) ->
obj | NIL . 1242

select/3 . 1243

(send ’msg ’obj [’any ..]) -> any . 1244

(seq ’cnt|sym1) -> sym | NIL . 1244

(set ’var ’any ..) -> any . 1245

(set! ’obj ’any) -> any . 1245

(setq var ’any ..) -> any . 1245

(show ’any [’sym|cnt ..]) -> any . 1245

show/1 . 1246

(sigio [’cnt [. prg]]) -> cnt | prg 1246

(size ’any) -> cnt . 1247

(skip [’any]) -> sym . 1248

(solve ’lst [. prg]) -> lst . 1248

(sort ’lst [’fun]) -> lst . 1248

(space [’cnt]) -> cnt . 1249

General Contents liii

(sp? ’any) -> flg . 1249

(split ’lst ’any ..) -> lst . 1249

(sqrt ’num [’flg]) -> num . 1250

(stack [’cnt]) -> cnt | (.. sym . cnt) 1250

(stamp [’dat ’tim]|[’T]) -> sym . 1251

(state ’var (sym|lst exe [. prg]) ..) -> any 1251

(stem ’lst ’any ..) -> lst . 1252

(step ’lst [’flg]) -> any . 1253

(store ’tree ’any1 ’any2 [’(num1 . num2)]) 1253

(str ’sym [’sym1]) -> lst . 1253

(strDat ’sym) -> dat . 1254

(strip ’any) -> any . 1254

(str? ’any) -> sym | NIL . 1255

(sub? ’any1 ’any2) -> any2 | NIL . 1255

(subr ’sym) -> num . 1255

(sum ’fun ’lst ..) -> num . 1256

(super [’any ..]) -> any . 1256

(sym ’any) -> sym . 1257

(sym? ’any) -> flg . 1257

(symbols) -> sym . 1257

(sync) -> flg . 1258

(sys ’any [’any]) -> sym . 1259

48 Symbols starting with T . 1261

*Tmp . 1261

*Tsm . 1261

+Time . 1262

T . 1262

This . 1262

(t . prg) -> T . 1263

(tab ’lst ’any ..) -> NIL . 1263

liv General Contents

(tail ’cnt|lst ’lst) -> lst . 1264

(task ’num [’num] [sym ’any ..] [. prg]) -> lst . . . 1264

(telStr ’sym) -> sym . 1265

(tell [’cnt] ’sym [’any ..]) -> any 1265

(test ’any . prg) . 1266

(text ’any1 ’any ..) -> sym . 1266

(tim$ ’tim [’flg]) -> sym . 1267

(timeout [’num]) . 1267

(throw ’sym ’any) . 1267

(tick (cnt1 . cnt2) . prg) -> any . 1268

(till ’any [’flg]) -> lst|sym . 1268

(time [’T]) -> tim . 1269

(tmp [’any ..]) -> sym . 1269

tolr/3 . 1270

(touch ’sym) -> sym . 1270

(trace ’sym) -> sym . 1271

(traceAll [’lst]) -> sym . 1271

(tree ’var ’cls [’hook]) -> tree . 1272

(trim ’lst) -> lst . 1272

true/0 . 1272

(try ’msg ’obj [’any ..]) -> any . 1272

(type ’any) -> lst . 1273

49 Symbols starting with U . 1275

*Uni . 1275

+UB . 1275

(u) -> T . 1277

(udp ’any1 ’any2 ’any3) -> any . 1277

(ultimo ’y ’m) -> cnt . 1277

(unbug ’sym) -> T . 1278

(undef ’sym) -> fun . 1278

General Contents lv

(unify ’any) -> lst . 1279

(uniq ’lst) -> lst . 1279

uniq/2 . 1279

(unless ’any . prg) -> any . 1280

(until ’any . prg) -> any . 1280

(untrace ’sym) -> sym . 1281

(up [cnt] sym [’val]) -> any . 1281

(upd sym ..) -> lst . 1281

(update ’obj [’var]) -> obj . 1282

(upp? ’any) -> sym | NIL . 1282

(uppc ’any) -> any . 1283

(use sym . prg) -> any . 1283

(useKey ’var ’cls [’hook]) -> num . 1283

(usec) -> num . 1284

50 Symbols starting with V . 1285

(val ’var) -> any . 1285

val/3 . 1285

(var sym . any) -> any . 1286

(var: sym) -> any . 1286

(version [’flg]) -> lst . 1287

(vi ’sym) -> sym . 1287

(view ’lst [’T]) -> any . 1287

51 Symbols starting with W . 1289

(wait [’cnt] . prg) -> any . 1289

(week ’dat) -> num . 1290

(when ’any . prg) -> any . 1290

(while ’any . prg) -> any . 1290

(what ’sym) -> lst . 1291

(who ’any) -> lst . 1291

lvi General Contents

(wipe ’sym|lst) -> sym|lst . 1291

(with ’sym . prg) -> any . 1292

(wr ’cnt ..) -> cnt . 1292

(wrap ’cnt ’lst) -> sym . 1293

52 Symbols starting with X . 1295

(xchg ’var ’var ..) -> any . 1295

(xor ’any ’any) -> flg . 1295

(x| ’num ..) -> num . 1296

53 Symbols starting with Y . 1297

(yield ’any [’sym]) -> any . 1297

(yoke ’any ..) -> any . 1297

54 Symbols starting with Z . 1299

*Zap . 1299

(zap ’sym) -> sym . 1299

(zapTree ’sym) . 1300

(zap) . 1300

(zero var ..) -> 0 . 1301

Part IV Appendix

A GNU Free Documentation License . 1305

0. PREAMBLE . 1305

1. APPLICABILITY AND DEFINITIONS . 1306

2. VERBATIM COPYING . 1307

3. COPYING IN QUANTITY . 1308

4. MODIFICATIONS . 1309

5. COMBINING DOCUMENTS . 1311

6. COLLECTIONS OF DOCUMENTS . 1311

7. AGGREGATION WITH INDEPENDENT WORKS 1311

General Contents lvii

8. TRANSLATION . 1312

9. TERMINATION . 1312

10. FUTURE REVISIONS OF THIS LICENSE . 1313

B Links to original Rosetta Code Tasks . 1315

Part I

Ninety-Nine Lisp Problems

Based on a Prolog problem list by werner.hett@hti.bfh.ch. The original is at

https://prof.ti.bfh.ch/hew1/informatik3/prolog/p-99.

Work in progress! Until now, only about half of the problems are solved. Another
possibility, of course, would be translating the Prolog solutions to Pilog ;-)

https://prof.ti.bfh.ch/hew1/informatik3/prolog/p-99

Chapter 1

Ninety-Nine Lisp Problems

Working with lists

P01 (*) Find the last box of a list.

(de my-last (Lst)
(tail 1 Lst))

: (my-last ’(a b c d))
-> (d)

P02 (*) Find the last but one box of a list.

(de my-but-last (Lst)
(tail 2 Lst))

: (my-but-last ’(a b c d))
-> (c d)

3

4 1 Ninety-Nine Lisp Problems

P03 (*) Find the K’th element of a list.

The first element in the list is number 1.

(de element-at (Lst N)
(get Lst N))

: (element-at ’(a b c d e) 3)
-> c

P04 (*) Find the number of elements of a list.

(def ’comprimento length)

P05 (*) Reverse a list.

(def ’inverte reverse)

P06 (*) Find out whether a list is a palindrome.

A palindrome can be read forward or backward; e.g. (x a m a x).

(de palin (Lst)
(= Lst (reverse Lst)))

1 Ninety-Nine Lisp Problems 5

P07 (**) Flatten a nested list structure.

Transform a list, possibly holding lists as elements into a ‘flat’ list by replacing each
list with its elements (recursively).

(de flatten (Lst)
(fish atom Lst))

: (my-flatten ’(a (b (c d) e)))
-> (a b c d e)

P08 (**) Eliminate consecutive duplicates of list elements.

If a list contains repeated elements they should be replaced with a single copy of the
element. The order of the elements should not be changed.

(de compress (Lst)
(mapcon

’((L)
(unless (= (car L) (cadr L))

(cons (car L))))
Lst))

: (compress ’(a a a a b c c a a d e e e e))
-> (a b c a d e)

6 1 Ninety-Nine Lisp Problems

P09 (**) Pack consecutive duplicates of list elements into sublists.

If a list contains repeated elements they should be placed in separate sublists.

(de consecDups (Lst)
(make

(let Last NIL
(for X Lst

(if (= X (car Last))
(conc Last (cons X))
(link (setq Last (cons X))))))))

: (consecDups ’(a a a a b c c a a d e e e e))
-> ((a a a a) (b) (c c) (a a) (d) (e e e e))

P10 (*) Run-length encoding of a list.

Use the result of problem P09 to implement the so-called run-length encoding data
compression method. Consecutive duplicates of elements are encoded as lists (N E)
where N is the number of duplicates of the element E.

(load "p09.l")

(de encode (Lst)
(mapcar

’((X) (list (length X) (car X)))
(consecDups Lst)))

: (encode ’(a a a a b c c a a d e e e e))
-> ((4 a) (1 b) (2 c) (2 a) (1 d)(4 e))

1 Ninety-Nine Lisp Problems 7

P11 (*) Modified run-length encoding.

Modify the result of problem P10 in such a way that if an element has no duplicates
it is simply copied into the result list. Only elements with duplicates are transferred
as (N E) lists.

(load "p09.l")

(de encode-modified (Lst)
(mapcar

’((X)
(if (cdr X)

(list (length X) (car X))
(car X)))

(consecDups Lst)))

: (encode-modified ’(a a a a b c c a a d e e e e))
-> ((4 a) b (2 c) (2 a) d (4 e))

P12 (**) Decode a run-length encoded list.

Given a run-length code list generated as specified in problem P11. Construct its
uncompressed version.

(de decode (Lst)
(make

(for X Lst
(if (atom X)

(link X)
(do (car X) (link (cadr X)))))))

: (decode ’((4 a) b (2 c) (2 a) d (4 e)))
-> (a a a a b c c a a d e e e e)

8 1 Ninety-Nine Lisp Problems

P13 (**) Run-length encoding of a list (direct solution).

Implement the so-called run-length encoding data compression method directly. I.e.
don’t explicitly create the sublists containing the duplicates, as in problem P09,
but only count them. As in problem P11, simplify the result list by replacing the
singleton lists (1 X) by X.

(de encode-direct (Lst)
(make

(while Lst
(let (N 1 X)

(while (= (setq X (pop ’Lst)) (car Lst))
(inc ’N))

(link (if (= 1 N) X (list N X)))))))

: (encode-direct ’(a a a a b c c a a d e e e e))
-> ((4 a) b (2 c) (2 a) d (4 e))

P14 (*) Duplicate the elements of a list.

(de dupli (Lst)
(mapcan list Lst Lst))

: (dupli ’(a b c c d))
-> (a a b b c c c c d d)

1 Ninety-Nine Lisp Problems 9

P15 (**) Replicate the elements of a list a given number of times.

(de repli (Lst N)
(mapcan ’((X) (need N NIL X)) Lst))

: (repli ’(a b c) 3)
-> (a a a b b b c c c)

P16 (**) Drop every N’th element from a list.

(de drop (Lst N)
(make

(for (I . X) Lst
(unless (=0 (% I N))

(link X)))))

: (drop ’(a b c d e f g h i k) 3)
-> (a b d e g h k)

P17 (*) Split a list into two parts; the length of the first part is given.

Do not use any predefined predicates.

(de splitAt (Lst N)
(list (cut N ’Lst) Lst))

: (splitAt ’(a b c d e f g h i k) 3)
-> ((a b c) (d e f g h i k))

10 1 Ninety-Nine Lisp Problems

P18 (**) Extract a slice from a list.

Given two indices, I and K, the slice is the list containing the elements between the
I’th and K’th element of the original list (both limits included). Start counting the
elements with 1.

(de slice (Lst I K)
(head (inc (- K I)) (nth Lst I)))

: (slice ’(a b c d e f g h i k) 3 7)
-> (c d e f g)

P19 (**) Rotate a list N places to the left.

(de rotate (Lst N)
(setq Lst (copy Lst))
(do

(if (lt0 N)
(- N)
(- (length Lst) N))

(rot Lst)))

: (rotate ’(a b c d e f g h) 3)
-> (d e f g h a b c)

: (rotate ’(a b c d e f g h) -2)
-> (g h a b c d e f)

Hint: Use the predefined functions length and append, as well as the result of prob-
lem P17.

1 Ninety-Nine Lisp Problems 11

P20 (*) Remove the K’th element from a list.

(de remove-at (Lst N)
(remove N Lst))

: (remove-at ’(a b c d) 2)
-> (a c d)

P21 (*) Insert an element at a given position into a list.

(de insert-at (X Lst N)
(insert N Lst X))

: (insert-at ’alfa ’(a b c d) 2)
-> (a alfa b c d)

P22 (*) Create a list containing all integers within a given range.

If first argument is smaller than second, produce a list in decreasing order.

’range’ is built-in
A simplified implementation might be

(de my-range (A B)
(let S (if (> B A) 1 -1)

(make
(until (= A B)

(link A)
(inc ’A S)))))

: (range 4 9)
-> (4 5 6 7 8 9)

12 1 Ninety-Nine Lisp Problems

P23 (**) Extract a given number of randomly selected elements
from a list.

The selected items shall be returned in a list.

(de rnd-select (Lst N)
(make

(until (=0 N)
(when (>= N (rand 1 (length Lst)))

(link (car Lst))
(dec ’N))

(pop ’Lst))))

: (rnd-select ’(a b c d e f g h) 3)
-> (e d a)

Hint: Use the built-in random number generator and the result of problem P20.

P24 (*) Lotto: Draw N different random numbers from the set 1..M.

The selected numbers shall be returned in a list.

(load "p23.l")

(de lotto-select (Cnt Max)
(rnd-select (range 1 Max) Cnt))

: (lotto-select 6 49)
-> (23 1 17 33 21 37)

Hint: Combine the solutions of problems P22 and P23.

1 Ninety-Nine Lisp Problems 13

P25 (*) Generate a random permutation of the elements of a list.

(de rnd-permu (Lst)
(by ’(NIL (rand)) sort Lst))

: (rnd-permu ’(a b c d e f))
-> (b a d c e f)

Hint: Use the solution of problem P23.

P26 (**) Generate the combinations of K distinct objects chosen
from the N elements of a list

In how many ways can a committee of 3 be chosen from a group of 12 people? We
all know that there are C(12,3) = 220 possibilities (C(N,K) denotes the well-known
binomial coefficients). For pure mathematicians, this result may be great. But we
want to really generate all the possibilities in a list.

(de combination (N Lst)
(cond

((=0 N) ’(NIL))
((not Lst))
(T

(conc
(mapcar

’((X) (cons (car Lst) X))
(combination (dec N) (cdr Lst)))

(combination N (cdr Lst))))))

: (combination 3 ’(a b c d e f))
-> ((a b c) (a b d) (a b e) ...)

14 1 Ninety-Nine Lisp Problems

P27 (**) Group the elements of a set into disjoint subsets.

a) In how many ways can a group of 9 people work in 3 disjoint subgroups of 2, 3
and 4 persons? Write a function that generates all the possibilities and returns them
in a list.

: (group3 ’(aldo beat carla david evi flip gary hugo ida))
-> (((aldo beat) (carla david evi) (flip gary hugo ida))
...)

b) Generalize the above predicate in a way that we can specify a list of group sizes
and the predicate will return a list of groups.

: (subsets ’(aldo beat carla david evi flip gary hugo ida) ’(2 2 5))
-> (((aldo beat) (carla david) (evi flip gary hugo ida))
...)

Note that we do not want permutations of the group members; i.e. ((aldo beat) . . .)
is the same solution as ((beat aldo) . . .). However, we make a difference between
((aldo beat) (carla david) . . .) and ((carla david) (aldo beat) . . .).

You may find more about this combinatorial problem in a good book on discrete
mathematics under the term “multinomial coefficients”.

(load "p26.l")

(de subsets (Set Lst)
(if (cdr Lst)

(mapcan
’((C)

(mapcar
’((S) (cons C S))
(subsets (diff Set C) (cdr Lst))))

(combination (car Lst) Set))
(cons (cons Set))))

1 Ninety-Nine Lisp Problems 15

P28 (**) Sorting a list of lists according to length of sublists

a) We suppose that a list contains elements that are lists themselves. The objective is
to sort the elements of this list according to their length. E.g. short lists first, longer
lists later, or vice versa.

: (lsort ’((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))
-> ((o) (d e) (d e) (m n) (a b c) (f g h) (i j k l))

b) Again, we suppose that a list contains elements that are lists themselves. But
this time the objective is to sort the elements of this list according to their length
frequency; i.e., in the default, where sorting is done ascendingly, lists with rare
lengths are placed first, others with a more frequent length come later.

: (lfsort ’((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))
-> ((i j k l) (o) (a b c) (f g h) (d e) (d e) (m n))

Note that in the above example, the first two lists in the result have length 4 and 1,
both lengths appear just once. The third and forth list have length 3 which appears
twice (there are two list of this length). And finally, the last three lists have length 2.
This is the most frequent length.

(de lsort (Lst)
(by length sort Lst))

(de lfsort (Lst)
(by

’((X)
(cnt

’((L) (= (length L) (length X)))
Lst))

sort Lst))

16 1 Ninety-Nine Lisp Problems

Arithmetic

P31 (**) Determine whether a given integer number is prime.

(de is-prime (N)
(or

(= N 2)
(and

(> N 1)
(bit? 1 N)
(for (D 3 T (+ D 2))

(T (> D (sqrt N)) T)
(T (=0 (% N D)) NIL)))))

: (is-prime 7)
-> T

P32 (**) Determine the greatest common divisor of two positive
integer numbers.

Use Euclid’s algorithm.

(de gcd (A B)
(until (=0 B)

(let M (% A B)
(setq A B B M)))

(abs A))

: (gcd 36 63)
-> 9

1 Ninety-Nine Lisp Problems 17

P33 (*) Determine whether two positive integer numbers are
coprime.

Two numbers are coprime if their greatest common divisor equals 1.

(load "p32.l")

(de coprime (A B)
(= 1 (gcd A B)))

: (coprime 35 64)
-> T

P34 (**) Calculate Euler’s totient function phi(m).

Euler’s so-called totient function phi(m) is defined as the number of positive integers
r (1 <= r < m) that are coprime to m.

Example: m = 10: r = 1,3,7,9; thus phi(m) = 4. Note the special case: phi(1) = 1.

: (totient-phi 10)
-> 4

Find out what the value of phi(m) is if m is a prime number. Euler’s totient func-
tion plays an important role in one of the most widely used public key cryptography
methods (RSA). In this exercise you should use the most primitive method to calcu-
late this function (there are smarter ways that we shall discuss later).

(load "p33.l")

(de totient-phi (N)
(cnt

’((R) (coprime R N))
(range 1 N)))

18 1 Ninety-Nine Lisp Problems

P35 (**) Determine the prime factors of a given positive integer.

Construct a flat list containing the prime factors in ascending order.

(de prime-factors (N)
(make

(let (D 2 L (1 2 2 . (4 2 4 2 4 6 2 6 .)) M (sqrt N))
(while (>= M D)

(if (=0 (% N D))
(setq M (sqrt (setq N (/ N (link D)))))
(inc ’D (pop ’L))))

(link N))))

: (prime-factors 315)
-> (3 3 5 7)

P36 (**) Determine the prime factors of a given positive integer (2).

Construct a list containing the prime factors and their multiplicity.

(load "p09.l")
(load "p35.l")

(de prime-factors-mult (N)
(mapcar

’((X) (list (car X) (length X)))
(consecDups (prime-factors N))))

: (prime-factors-mult 315)
-> ((3 2) (5 1) (7 1))

Hint: The problem is similar to problem P13.

1 Ninety-Nine Lisp Problems 19

P37 (**) Calculate Euler’s totient function phi(m) (improved).

See problem P34 for the definition of Euler’s totient function. If the list of the prime
factors of a number m is known in the form of problem P36 then the function phi(m)
can be efficiently calculated as follows:

Let ((p1 m1) (p2 m2) (p3 m3) . . .) be the list of prime factors (and their multi-
plicities) of a given number m. Then phi(m) can be calculated with the following
formula:

(load "p36.l")

(de totient-phi (N)
(sum # The spec seems wrong, Euler’s function needs ’*’ instead of ’+’

’((X) # Better use (apply * (mapcar ’((X) ..) (prime-factors-mult N)))
(*

(dec (car X))
(** (car X) (dec (cadr X)))))

(prime-factors-mult N)))

phi(m) = (p1 - 1) * p1 ** (m1 - 1) + (p2 - 1) * p2 ** (m2 - 1) +
(p3 - 1) * p3 ** (m3 - 1) + ...

Note that a ** b stands for the b’th power of a.

P38 (*) Compare the two methods of calculating Euler’s totient
function.

Use the solutions of problems P34 and P37 to compare the algorithms. Take the
number of logical inferences as a measure for efficiency. Try to calculate phi(10090)
as an example.

(load "p34.l")
(bench (do 100 (totient-phi 10090)))

(undef ’totient-phi)

(load "p37.l")
(bench (do 100 (totient-phi 10090)))

20 1 Ninety-Nine Lisp Problems

P39 (*) A list of prime numbers.

Given a range of integers by its lower and upper limit, construct a list of all prime
numbers in that range.

Sieve of Eratosthenes
(de primes (A B)

(let Sieve (range 1 B)
(set Sieve)
(for I (cdr Sieve)

(when I
(for (S (nth Sieve (* I I)) S (nth (cdr S) I))

(set S))))
(filter ’((N) (>= N A)) Sieve)))

P40 (**) Goldbach’s conjecture.

Goldbach’s conjecture says that every positive even number greater than 2 is the
sum of two prime numbers. Example: 28 = 5 + 23. It is one of the most famous facts
in number theory that has not been proved to be correct in the general case. It has
been numerically confirmed up to very large numbers. Write a predicate to find the
two prime numbers that sum up to a given even integer.

(load "p31.l")

(de goldbach (N)
(unless (bit? 1 N)

(for (X 3 (>= N (* 2 X)) (+ 2 X))
(T (and (is-prime X) (is-prime (- N X)))

(list X (- N X))))))

: (goldbach 28)
-> (5 23)

1 Ninety-Nine Lisp Problems 21

P41 (**) A list of Goldbach compositions.

Given a range of integers by its lower and upper limit, print a list of all even numbers
and their Goldbach composition.

: (goldbach-list 9 20)
10 = 3 + 7
12 = 5 + 7
14 = 3 + 11
16 = 3 + 13
18 = 5 + 13
20 = 3 + 17

In most cases, if an even number is written as the sum of two prime numbers, one of
them is very small. Very rarely, the primes are both bigger than say 50. Try to find
out how many such cases there are in the range 2..3000.

Example (for a print limit of 50):

: (goldbach-list 1 2000 50)
992 = 73 + 919
1382 = 61 + 1321
1856 = 67 + 1789
1928 = 61 + 1867

22 1 Ninety-Nine Lisp Problems

(load "p40.l")

(de goldbach-list (N Max Lim)
(while (>= Max N)

(let? G (goldbach N)
(when (>= (car G) Lim)

(prinl N " = " (glue " + " G))))
(inc ’N)))

NIL

: (goldbach-list 9 20)
10 = 3 + 7
12 = 5 + 7
14 = 3 + 11
16 = 3 + 13
18 = 5 + 13
20 = 3 + 17
-> 21

: (goldbach-list 1 2000 50)
992 = 73 + 919
1382 = 61 + 1321
1856 = 67 + 1789
1928 = 61 + 1867
-> 2001

1 Ninety-Nine Lisp Problems 23

Logic and Codes

P46(**) Truth tables for logical expressions.

Define a function that takes a logical expression (a function of two variables) and
prints the truth table.

(de truthTable (Fun)
(for X ’(T NIL)

(for Y ’(T NIL)
(println X Y (Fun X Y)))))

: (truthTable ’((A B) (and A (or A B))))
T T T
T NIL T
NIL T NIL
NIL NIL NIL

24 1 Ninety-Nine Lisp Problems

Miscellaneous Problems

P90(**) Eight queens problem

This is a classical problem in computer science. The objective is to place eight
queens on a chessboard so that no two queens are attacking each other; i.e., no two
queens are in the same row, the same column, or on the same diagonal.

Hint: Represent the positions of the queens as a list of numbers 1..N.

Example: (4 2 7 3 6 8 5 1) means that the queen in the first column is in row 4, the
queen in the second column is in row 2, etc. Use the generate-and-test paradigm.

(de queens (N)
(let (R (range 1 N) L (copy R) X L)

(recur (X) # Permute
(if (cdr X)

(do (length X)
(recurse (cdr X))
(rot X))

(or
(seek # Direct check for duplicates

’((L) (member (car L) (cdr L)))
(mapcar + L R))

(seek
’((L) (member (car L) (cdr L)))
(mapcar - L R))

(println L))))))

1 Ninety-Nine Lisp Problems 25

P91 (**) Knight’s tour

Another famous problem is this one: How can a knight jump on an NxN chessboard
in such a way that it visits every square exactly once?

Hints: Represent the squares by pairs of their coordinates of the form X/Y, where
both X and Y are integers between 1 and N. (Note that ‘/’ is just a convenient functor,
not division!) Define the relation jump(N,X/Y,U/V) to express the fact that a knight
can jump from X/Y to U/V on a NxN chessboard. And finally, represent the solution
of our problem as a list of N*N knight positions (the knight’s tour).

(load "@lib/simul.l")

(grid 8 8)

Generate legal moves for a given position
(de moves (Tour)

(extract
’((Jump)

(let? Pos (Jump (car Tour))
(unless (memq Pos Tour)

Pos)))
(quote # (taken from "games/chess.l")

((This) (: 0 1 1 0 -1 1 0 -1 1)) # South Southwest
((This) (: 0 1 1 0 -1 1 0 1 1)) # West Southwest
((This) (: 0 1 1 0 -1 -1 0 1 1)) # West Northwest
((This) (: 0 1 1 0 -1 -1 0 -1 -1)) # North Northwest
((This) (: 0 1 -1 0 -1 -1 0 -1 -1)) # North Northeast
((This) (: 0 1 -1 0 -1 -1 0 1 -1)) # East Northeast
((This) (: 0 1 -1 0 -1 1 0 1 -1)) # East Southeast
((This) (: 0 1 -1 0 -1 1 0 -1 1))))) # South Southeast

Build a list of moves, using Warnsdorff’s algorithm
: (let Tour ’(b1) # Start at b1

(while
(mini

’((P) (length (moves (cons P Tour))))
(moves Tour))

(push ’Tour @))
(flip Tour))

-> (b1 a3 b5 a7 c8 b6 a8 c7 a6 b8 d7 f8 h7 g5 h3 g1 e2 c1 a2 b4 c2
a1 b3 a5 b7 d8 c6 d4 e6 c5 a4 c3 d1 b2 c4 d2 f1 h2 f3 e1 d3 e5 f7
h8 g6 h4 g2 f4 d5 e7 g8 h6 g4 e3 f5 d6 e8 g7 h5 f6 e4 g3 h1 f2)

26 1 Ninety-Nine Lisp Problems

P92 (***) Von Koch’s conjecture

Several years ago I met a mathematician who was intrigued by a problem for which
he didn’t know a solution. His name was Von Koch, and I don’t know whether the
problem has been solved since.

Anyway the puzzle goes like this: Given a tree with N nodes (and hence N-1 edges).
Find a way to enumerate the nodes from 1 to N and, accordingly, the edges from 1
to N-1 in such a way, that for each edge K the difference of its node numbers equals
to K. The conjecture is that this is always possible.

For small trees the problem is easy to solve by hand. However, for larger trees, and
14 is already very large, it is extremely difficult to find a solution. And remember,
we don’t know for sure whether there is always a solution!

Write a predicate that calculates a numbering scheme for a given tree. What is the
solution for the larger tree pictured above?

We represent the tree as nested lists in the form

edge: number
node: (number . name)
tree: (edge node [tree ..])

For example, the representation of the first example’s solution is

(7 (7 . a)
(4 (3 . b)

(3 (6 . c))
(2 (5 . e)

(1 (4 . f))))
(6 (1 . d))
(5 (2 . g)))

The function ’kochConjecture’ iterates a tree skeleton like

(0 (0 . a)
(0 (0 . b)

(0 (0 . c))
(0 (0 . e)

(0 (0 . f))))
(0 (0 . d))
(0 (0 . g))))

to obtain solutions like the one above.

1 Ninety-Nine Lisp Problems 27

(de kochConjecture (Tree)
(let

(Cnt # Calculate number of nodes
(recur (Tree)

(if Tree
(inc (sum recurse (cddr Tree)))
0))

Edges (range 1 (dec Cnt)) # List of edge numbers
Nodes (range 1 Cnt) # List of node numbers
L Nodes)

(set Tree Cnt) # Set top edge (just for symmetry)
(unless

(recur (L) # Generate node number permutations
(if (cdr L)

(do (length L)
(NIL (recurse (cdr L)))
(rot L))

(use Nodes # Try next node number permutation
(recur (Tree)

(set (cadr Tree) (pop ’Nodes))
(mapc recurse (cddr Tree))))

(use Edges # Try to fit edges
(recur (Tree)

(let N (caadr Tree) # Node number
(find

’((X)
(let E (abs (- N (caadr X))) # Calculate edge

(or
(not (member E Edges))
(prog

(del E ’Edges)
(set X E)
(recurse X)))))

(cddr Tree)))))))
Tree)))

28 1 Ninety-Nine Lisp Problems

Test run (using ’pretty’ to pretty-print the result):

(pretty
(kochConjecture

(0 (0 . a)
(0 (0 . b))
(0 (0 . c)

(0 (0 . d)
(0 (0 . k)))

(0 (0 . e)
(0 (0 . q)

(0 (0 . m))
(0 (0 . n)

(0 (0 . p)))))
(0 (0 . f)))

(0 (0 . g))
(0 (0 . h))
(0 (0 . i)))))

This returns as the first solution

(14
(1 . a)
(1 (2 . b))
(13

(14 . c)
(11 (3 . d) (9 (12 . k)))
(3

(11 . e)
(6

(5 . q)
(2 (7 . m))
(5 (10 . n) (4 (6 . p)))))

(10 (4 . f)))
(7 (8 . g))
(8 (9 . h))
(12 (13 . i)))

1 Ninety-Nine Lisp Problems 29

P93 (***) An arithmetic puzzle

Given a list of integer numbers, find a correct way of inserting arithmetic signs (op-
erators) such that the result is a correct equation. Example: With the list of numbers
(2 3 5 7 11) we can form the equations 2-3+5+7 = 11 or 2 = (3*5+7)/11 (and ten
others!).

(de infix (E)
(if (atom E)

E
(list

(infix (cadr E))
(car E)
(infix (caddr E)))))

(de expressions (X)
(if (cdr X)

(mapcan
’((I)

(mapcan
’((A)

(mapcan
’((B)

(mapcar
’((Op) (list Op A B))
’(+ - * /)))

(expressions (tail (- I) X))))
(expressions (head I X))))

(range 1 (dec (length X))))
(list (car X))))

30 1 Ninety-Nine Lisp Problems

(de equations (Lst)
(use /

(redef / (A B)
(and (n0 B) (=0 (% A B)) (/ A B)))

(for (I 1 (> (length Lst) I) (inc I))
(for A (expressions (head I Lst))

(for B (expressions (tail (- I) Lst))
(let? N (eval A)

(when (= N (eval B))
(println (infix A) ’= (infix B)))))))))

Test:

: (equations (2 3 5 7 11))
2 = (3 - (5 + (7 - 11)))
2 = (3 - ((5 + 7) - 11))
2 = ((3 - 5) - (7 - 11))
2 = ((3 - (5 + 7)) + 11)
2 = (((3 - 5) - 7) + 11)
2 = (((3 * 5) + 7) / 11)
(2 * (3 - 5)) = (7 - 11)
(2 - (3 - (5 + 7))) = 11
(2 - ((3 - 5) - 7)) = 11
((2 - 3) + (5 + 7)) = 11
((2 - (3 - 5)) + 7) = 11
(((2 - 3) + 5) + 7) = 11
-> NIL

1 Ninety-Nine Lisp Problems 31

P95 (**) English number words

On financial documents, like cheques, numbers must sometimes be written in full
words. Example: 175 must be written as “one hundred seventy-five”. Write a func-
tion ‘fullWords’ to return (non-negative) integer numbers in full words.

(de fullWords (N)
(cond

((=0 N) "zero")
((> 14 N)

(get
’("one" "two" "three" "four" "five" "six" "seven" "eight"
"nine" "ten" "eleven" "twelve" "thirteen")

N))
((= 15 N) "fifteen")
((= 18 N) "eighteen")
((> 20 N) (pack (fullWords (% N 10)) "teen"))
((> 100 N)

(pack
(get

’("twen" "thir" "for" "fif" "six" "seven" "eigh" "nine")
(dec (/ N 10)))

"ty"
(unless (=0 (% N 10))

(pack "-" (fullWords (% N 10))))))
((rank N ’((100 . "hundred") (1000 . "thousand") (1000000 . "million")))

(pack (fullWords (/ N (car @))) " " (cdr @) " " (fullWords (% N (car @)))))))

32 1 Ninety-Nine Lisp Problems

P96 (**) Syntax checker

In a certain programming language (Ada) identifiers are defined by the syntax dia-
gram (railroad chart) opposite. Transform the syntax diagram into a system of syn-
tax gndiagrams which do not contain loops; i.e. which are purely recursive. Using
these modified diagrams, write a function ‘identifier’ that can check whether or not
a given string is a legal identifier.

(de identifier (Str)
(and

(>= "z" (lowc (car (setq Str (chop Str)))) "a")
(not

(find
’((C)

(nor
(= "_" C)
(>= "9" C "0")
(>= "z" (lowc C) "a")))

(cdr Str)))))

1 Ninety-Nine Lisp Problems 33

P97 (**) Sudoku

Sudoku puzzles go like this:

Problem statement Solution

. . 4 | 8 . . | . 1 7 9 3 4 | 8 2 5 | 6 1 7
| | | |

6 7 . | 9 . . | . . . 6 7 2 | 9 1 4 | 8 5 3
| | | |

5 . 8 | . 3 . | . . 4 5 1 8 | 6 3 7 | 9 2 4
--------+---------+-------- --------+---------+--------
3 . . | 7 4 . | 1 . . 3 2 5 | 7 4 8 | 1 6 9

| | | |
. 6 9 | . . . | 7 8 . 4 6 9 | 1 5 3 | 7 8 2

| | | |
. . 1 | . 6 9 | . . 5 7 8 1 | 2 6 9 | 4 3 5
--------+---------+-------- --------+---------+--------
1 . . | . 8 . | 3 . 6 1 9 7 | 5 8 2 | 3 4 6

| | | |
. . . | . . 6 | . 9 1 8 5 3 | 4 7 6 | 2 9 1

| | | |
2 4 . | . . 1 | 5 . . 2 4 6 | 3 9 1 | 5 7 8

Every spot in the puzzle belongs to a (horizontal) row and a (vertical) column, as
well as to one single 3x3 square (which we call “square” for short). At the beginning,
some of the spots carry a single-digit number between 1 and 9. The problem is to
fill the missing spots with digits in such a way that every number between 1 and 9
appears exactly once in each row, in each column, and in each square.

34 1 Ninety-Nine Lisp Problems

(load "@lib/simul.l")

Fields/Board
val lst

(setq

*Board (grid 9 9)

*Fields (apply append *Board))

Init values to zero (empty)
(for L *Board

(for This L
(=: val 0)))

Build lookup lists
(for (X . L) *Board

(for (Y . This) L
(=: lst

(make
(let A (* 3 (/ (dec X) 3))

(do 3
(inc ’A)
(let B (* 3 (/ (dec Y) 3))

(do 3
(inc ’B)
(unless (and (= A X) (= B Y))

(link
(prop (get *Board A B) ’val)))))))

(for Dir ’(‘west ‘east ‘south ‘north)
(for (This (Dir This) This (Dir This))

(unless (memq (:: val) (made))
(link (:: val)))))))))

Cut connections (for display only)
(for (X . L) *Board

(for (Y . This) L
(when (member X (3 6))

(con (car (val This))))
(when (member Y (4 7))

(set (cdr (val This))))))

1 Ninety-Nine Lisp Problems 35

Display board
(de display ()

(disp *Board 0
’((This)

(if (=0 (: val))
" "
(pack " " (: val) " ")))))

Initialize board
(de main (Lst)

(for (Y . L) Lst
(for (X . N) L

(put *Board X (- 10 Y) ’val N)))
(display))

Find solution
(de go ()

(unless
(recur (*Fields)

(with (car *Fields)
(if (=0 (: val))

(loop
(NIL

(or
(assoc (inc (:: val)) (: lst))
(recurse (cdr *Fields))))

(T (= 9 (: val)) (=: val 0)))
(recurse (cdr *Fields)))))

(display)))

36 1 Ninety-Nine Lisp Problems

Usage
: (main

(quote
(0 0 4 8 0 0 0 1 7)
(6 7 0 9 0 0 0 0 0)
(5 0 8 0 3 0 0 0 4)
(3 0 0 7 4 0 1 0 0)
(0 6 9 0 0 0 7 8 0)
(0 0 1 0 6 9 0 0 5)
(1 0 0 0 8 0 3 0 6)
(0 0 0 0 0 6 0 9 1)
(2 4 0 0 0 1 5 0 0)))

+---+---+---+---+---+---+---+---+---+
9 | 4 | 8 | 1 7 |

+ + + + + + + + + +
8 | 6 7 | 9 | |

+ + + + + + + + + +
7 | 5 8 | 3 | 4 |

+---+---+---+---+---+---+---+---+---+
6 | 3 | 7 4 | 1 |

+ + + + + + + + + +
5 | 6 9 | | 7 8 |

+ + + + + + + + + +
4 | 1 | 6 9 | 5 |

+---+---+---+---+---+---+---+---+---+
3 | 1 | 8 | 3 6 |

+ + + + + + + + + +
2 | | 6 | 9 1 |

+ + + + + + + + + +
1 | 2 4 | 1 | 5 |

+---+---+---+---+---+---+---+---+---+
a b c d e f g h i

-> NIL

1 Ninety-Nine Lisp Problems 37

: (go)
+---+---+---+---+---+---+---+---+---+

9 | 9 3 4 | 8 2 5 | 6 1 7 |
+ + + + + + + + + +

8 | 6 7 2 | 9 1 4 | 8 5 3 |
+ + + + + + + + + +

7 | 5 1 8 | 6 3 7 | 9 2 4 |
+---+---+---+---+---+---+---+---+---+

6 | 3 2 5 | 7 4 8 | 1 6 9 |
+ + + + + + + + + +

5 | 4 6 9 | 1 5 3 | 7 8 2 |
+ + + + + + + + + +

4 | 7 8 1 | 2 6 9 | 4 3 5 |
+---+---+---+---+---+---+---+---+---+

3 | 1 9 7 | 5 8 2 | 3 4 6 |
+ + + + + + + + + +

2 | 8 5 3 | 4 7 6 | 2 9 1 |
+ + + + + + + + + +

1 | 2 4 6 | 3 9 1 | 5 7 8 |
+---+---+---+---+---+---+---+---+---+

a b c d e f g h i
-> NIL

38 1 Ninety-Nine Lisp Problems

P98 (***) Nonograms

Around 1994, a certain kind of puzzles was very popular in England. The “Sunday
Telegraph” newspaper wrote: “Nonograms are puzzles from Japan and are currently
published each week only in The Sunday Telegraph. Simply use your logic and skill
to complete the grid and reveal a picture or diagram.” As a PicoLisp programmer,
you are in a better situation: you can have your computer do the work! Just write a
little program ;-).

The puzzle goes like this: Essentially, each row and column of a rectangular bitmap
is annotated with the respective lengths of its distinct strings of occupied cells. The
person who solves the puzzle must complete the bitmap given only these lengths.

Problem statement: Solution:

|_|_|_|_|_|_|_|_| 3 |_|X|X|X|_|_|_|_| 3
|_|_|_|_|_|_|_|_| 2 1 |X|X|_|X|_|_|_|_| 2 1
|_|_|_|_|_|_|_|_| 3 2 |_|X|X|X|_|_|X|X| 3 2
|_|_|_|_|_|_|_|_| 2 2 |_|_|X|X|_|_|X|X| 2 2
|_|_|_|_|_|_|_|_| 6 |_|_|X|X|X|X|X|X| 6
|_|_|_|_|_|_|_|_| 1 5 |X|_|X|X|X|X|X|_| 1 5
|_|_|_|_|_|_|_|_| 6 |X|X|X|X|X|X|_|_| 6
|_|_|_|_|_|_|_|_| 1 |_|_|_|_|X|_|_|_| 1
|_|_|_|_|_|_|_|_| 2 |_|_|_|X|X|_|_|_| 2
1 3 1 7 5 3 4 3 1 3 1 7 5 3 4 3
2 1 5 1 2 1 5 1

For the example above, the problem can be stated as the two lists ((3) (2 1) (3 2)
(2 2) (6) (1 5) (6) (1) (2)) and ((1 2) (3 1) (1 5) (7 1) (5) (3) (4) (3)) which give
the “solid” lengths of the rows and columns, top-to-bottom and left-to-right, respec-
tively. Published puzzles are larger than this example, e.g. 25 x 20, and apparently
always have unique solutions.

1 Ninety-Nine Lisp Problems 39

(de nonogram (LstX LstY)
(let Lim (** 2 (length LstY))

(_nonogX LstX)))

(de _nonogX (LstX Res)
(if LstX

(_nonogY LstX Res)
(when

(= LstY
(make

(for (I Lim (gt0 (setq I (>> 1 I))))
(link

(flip
(make

(let C NIL
(for N Res

(if2 (bit? I N) C
(inc ’C)
(one C)
(prog (link C) (off C))))

(and C (link @)))))))))
(for N (flip Res)

(for (I Lim (gt0 (setq I (>> 1 I))))
(prin "|" (if (bit? I N) "X" "_")))

(prinl "|")))))

40 1 Ninety-Nine Lisp Problems

(de _nonogY (LstX Res)
(let (Lst (mapcar ’((N) (cons 1 (** 2 N))) (car LstX)) P Lst)

(recur (P)
(ifn P

(let N 0
(for X Lst

(setq N
(+

(* 2 N (car X) (cdr X))
(* (car X) (dec (cdr X))))))

(when (> Lim N)
(_nonogX (cdr LstX) (cons N Res))
T))

(prog1 (recurse (cdr P))
(while

(prog
(set (car P) (* 2 (caar P)))
(recurse (cdr P))))

(set (car P) 1))))))

: (nonogram
’((3) (2 1) (3 2) (2 2) (6) (1 5) (6) (1) (2))
’((1 2) (3 1) (1 5) (7 1) (5) (3) (4) (3)))

_	X	X	X	_	_	_	_
X	X	_	X	_	_	_	_
_	X	X	X	_	_	X	X
_	_	X	X	_	_	X	X
_	_	X	X	X	X	X	X
X	_	X	X	X	X	X	_
X	X	X	X	X	X	_	_
_	_	_	_	X	_	_	_
_	_	_	X	X	_	_	_
-> T

1 Ninety-Nine Lisp Problems 41

P99 (***) Crossword puzzle

Given an empty (or almost empty) framework of a crossword puzzle and a set of
words. The problem is to place the words into the framework.

The particular crossword puzzle is specified in a text file which first lists the words
(one word per line) in an arbitrary order. Then, after an empty line, the crossword
framework is defined. In this framework specification, an empty character location
is represented by a dot (.). In order to make the solution easier, character locations
can also contain predefined character values. The puzzle opposite is defined in the
file p99a.dat, other examples are p99b.dat and p99d.dat. There is also an example of
a puzzle (p99c.dat) which does not have a solution.

Words are strings (character lists) of at least two characters. A horizontal or vertical
sequence of character places in the crossword puzzle framework is called a site.

Our problem is to find a compatible way of placing words onto sites.

42 1 Ninety-Nine Lisp Problems

(load "@lib/simul.l")

(de crossword (File)
(use (Words Data Grid Slots Org)

(in File
(setq

Words (flip (by length sort (make (while (line) (link (trim @))))))
Data (flip (make (while (line) (link (trim @))))) # Read data
Len (apply max (mapcar length Data))
Grid (grid Len (length Data)))) # Create grid

(for Col Grid # Set initial data
(use Data

(for This Col
(let C (pop Data)

(=: char (unless (sp? C) C)))
(pop ’Data))))

(setq Slots
(mapcar

’((L) (cons (length (car L)) L))
(by length group

(make
(for Col Grid # Init slots

(for This Col
(when (: char)

(and # Check horizontal slot
(not (; (west This) char))
(; (east This) char)
(; (east (east This)) char)
(link

(make
(for (This This (: char) (east This))

(link This)))))
(and # Check vertical slot

(not (; (north This) char))
(; (south This) char)
(; (south (south This)) char)
(link

(make
(for (This This (: char) (south This))

(link This))))))))))))

1 Ninety-Nine Lisp Problems 43

(recur (Words)
(if Words

(for Slot (cdr (assoc (length (car Words)) Slots))
(unless

(find
’((This C) (nor (= C (: char)) (= "." (: char))))
Slot
(car Words))

(let Org (mapcar get Slot ’(char .))
(mapc put Slot ’(char .) (car Words))
(recurse (cdr Words))
(mapc put Slot ’(char .) Org))))

(disp Grid T # Found a solution: Display it
’((This)

(if (: char)
(pack " " @ " ")
"###")))))))

: (crossword "p99a.dat")

+---+---+---+---+---+---+---+---+---+
6 | P | R | O | L | O | G |###|###| E |

+---+---+---+---+---+---+---+---+---+
5 | E |###| N |###|###| N |###|###| M |

+---+---+---+---+---+---+---+---+---+
4 | R |###| L | I | N | U | X |###| A |

+---+---+---+---+---+---+---+---+---+
3 | L |###| I |###| F |###| M | A | C |

+---+---+---+---+---+---+---+---+---+
2 |###|###| N |###| S | Q | L |###| S |

+---+---+---+---+---+---+---+---+---+
1 |###| W | E | B |###|###|###|###|###|

+---+---+---+---+---+---+---+---+---+
a b c d e f g h i

44 1 Ninety-Nine Lisp Problems

Hints:

(1) The problem is not easy. You will need some time to thoroughly understand it.
So, don’t give up too early! And remember that the objective is a clean solution, not
just a quick-and-dirty hack!

(2) Reading the data file is a tricky problem (in Prolog?).

(3) For efficiency reasons it is important, at least for larger puzzles, to sort the words
and the sites in a particular order. For this part of the problem, the solution of P28
may be very helpful.

Part II

Rosetta Code

Rosetta Code (http://rosettacode.org/wiki/Rosetta Code) is a programming chrestomathy
site. The idea is to present solutions to the same task in as many different languages
as possible, to demonstrate how languages are similar and different, and to aid a
person with a grounding in one approach to a problem in learning another. Rosetta
Code currently1 has 600 tasks, 97 draft tasks, and is aware of 471 languages.

1 accessed online 21-08-2012

http://rosettacode.org/wiki/Rosetta_Code

Chapter 2

Rosetta Code Tasks starting with Numbers

100 doors

Problem: You have 100 doors in a row that are all initially closed. You make 100
passes by the doors. The first time through, you visit every door and toggle the door
(if the door is closed, you open it; if it is open, you close it). The second time you
only visit every 2nd door (door #2, #4, #6, . . .). The third time, every 3rd door (door
#3, #6, #9, . . .), etc, until you only visit the 100th door.

Question: What state are the doors in after the last pass? Which are open, which are
closed?

Alternate: As noted in this page’s discussion page, the only doors that remain open
are whose numbers are perfect squares of integers. Opening only those doors is an
optimization that may also be expressed.

unoptimized

(let Doors (need 100)
(for I 100

(for (D (nth Doors I) D (cdr (nth D I)))
(set D (not (car D)))))

(println Doors))

optimized

(let Doors (need 100)
(for I (sqrt 100)

(set (nth Doors (* I I)) T))
(println Doors))

47

48 2 Rosetta Code Tasks starting with Numbers

24 game

The 24 Game tests one’s mental arithmetic.

Write a program that randomly chooses and displays four digits, each from one to
nine, with repetitions allowed. The program should prompt for the player to enter
an equation using just those, and all of those four digits. The program should check
then evaluate the expression. The goal is for the player to enter an expression that
evaluates to 24.

• Only multiplication, division, addition, and subtraction operators/functions are
allowed.

• Division should use floating point or rational arithmetic, etc, to preserve remain-
ders.

• Brackets are allowed, if using an infix expression evaluator.

• Forming multiple digit numbers from the supplied digits is disallowed. (So an
answer of 12+12 when given 1, 2, 2, and 1 is wrong).

• The order of the digits when given does not have to be preserved.

Note:

• The type of expression evaluator used is not mandated. An RPN evaluator is
equally acceptable for example.

• The task is not for the program to generate the expression, or test whether an
expression is even possible.

C.f: 24 game Player

Reference

1. The 24 Game on h2g2.

http://www.bbc.co.uk/dna/h2g2/A933121

2 Rosetta Code Tasks starting with Numbers 49

(de checkExpression (Lst Exe)
(make

(when (diff Lst (fish num? Exe))
(link "Not all numbers used"))

(when (diff (fish num? Exe) Lst)
(link "Using wrong number(s)"))

(when (diff (fish sym? Exe) ’(+ - * /))
(link "Using illegal operator(s)"))))

(loop
(setq Numbers (make (do 4 (link (rand 1 9)))))
(prinl

"Please enter a Lisp expression using (,), +, -, *, / and "
(glue ", " Numbers))

(prin "Or a single dot ’.’ to stop: ")
(T (= "." (setq Reply (catch ’(NIL) (in NIL (read)))))

(bye))
(cond

((str? Reply)
(prinl "-- Input error: " Reply))

((checkExpression Numbers Reply)
(prinl "-- Illegal Expression")
(for S @

(space 3)
(prinl S)))

((str? (setq Result (catch ’(NIL) (eval Reply))))
(prinl "-- Evaluation error: " @))

((= 24 Result)
(prinl "++ Congratulations! Correct result :-)"))

(T (prinl "Sorry, this gives " Result)))
(prinl))

50 2 Rosetta Code Tasks starting with Numbers

Output:

Please enter a Lisp expression using (,), +, -, *, / and 1, 3, 3, 5
Or a single dot ’.’ to stop: (* (+ 3 1) (+ 5 1))
++ Congratulations! Correct result :-)

Please enter a Lisp expression using (,), +, -, *, / and 8, 4, 7, 1
Or a single dot ’.’ to stop: (* 8 (\% 7 3) 9)
-- Illegal Expression

Not all numbers used
Using wrong number(s)
Using illegal operator(s)

Please enter a Lisp expression using (,), +, -, *, / and 4, 2, 2, 3
Or a single dot ’.’ to stop: (/ (+ 4 3) (- 2 2))
-- Evaluation error: Div/0

Please enter a Lisp expression using (,), +, -, *, / and 8, 4, 5, 9
Or a single dot ’.’ to stop: .

2 Rosetta Code Tasks starting with Numbers 51

24 game/Solve

Write a function that given four digits subject to the rules of the 24 game, computes
an expression to solve the game if possible.

Show examples of solutions generated by the function

C.F: Arithmetic Evaluator

We use Pilog (PicoLisp Prolog) to solve this task

(be play24 (@Lst @Expr) # Define Pilog rule
(permute @Lst (@A @B @C @D))
(member @Op1 (+ - * /))
(member @Op2 (+ - * /))
(member @Op3 (+ - * /))
(or

((equal @Expr (@Op1 (@Op2 @A @B) (@Op3 @C @D))))
((equal @Expr (@Op1 @A (@Op2 @B (@Op3 @C @D))))))

(@ = 24 (catch ’("Div/0") (eval (-> @Expr)))))

(de play24 (A B C D) # Define PicoLisp function
(pilog

(quote
@L (list A B C D)
(play24 @L @X))

(println @X)))

(play24 5 6 7 8) # Call ’play24’ function

Output:

(* (+ 5 7) (- 8 6))
(* 6 (+ 5 (- 7 8)))
(* 6 (- 5 (- 8 7)))
(* 6 (- 5 (/ 8 7)))
(* 6 (+ 7 (- 5 8)))
(* 6 (- 7 (- 8 5)))
(* 6 (/ 8 (- 7 5)))
(/ (* 6 8) (- 7 5))
(* (+ 7 5) (- 8 6))
(* (- 8 6) (+ 5 7))
(* (- 8 6) (+ 7 5))
(* 8 (/ 6 (- 7 5)))
(/ (* 8 6) (- 7 5))

52 2 Rosetta Code Tasks starting with Numbers

99 Bottles of Beer

In this puzzle, write code to print out the entire “99 bottles of beer on the wall” song.
For those who do not know the song, the lyrics follow this form:

X bottles of beer on the wall
X bottles of beer
Take one down, pass it around
X-1 bottles of beer on the wall

X-1 bottles of beer on the wall
...
Take one down, pass it around
0 bottles of beer on the wall

Where X and X-1 are replaced by numbers of course. Grammatical support for “1
bottle of beer” is optional. As with any puzzle, try to do it in as creative/concise/comical
a way as possible (simple, obvious solutions allowed, too).

See also: http://99-bottles-of-beer.net/

(de bottles (N)
(case N

(0 "No more beer")
(1 "One bottle of beer")
(T (cons N " bottles of beer"))))

(for (N 99 (gt0 N))
(prinl (bottles N) " on the wall,")
(prinl (bottles N) ".")
(prinl "Take one down, pass it around,")
(prinl (bottles (dec ’N)) " on the wall.")
(prinl))

http://99-bottles-of-beer.net/

Chapter 3

Rosetta Code Tasks starting with A

A+B

A+B - in programming contests, classic problem, which is given so contestants can
gain familiarity with online judging system being used.

Problem statement: Given 2 integer numbers, A and B. One needs to find their
sum.

Input data: Two integer numbers are written in the input stream, separated by
space.

Output data: The required output is one integer: the sum of A and B.

Example:

Input Output

2 2 4
3 2 5

(+ (read) (read))
3 4
-> 7

53

54 3 Rosetta Code Tasks starting with A

Abstract type

Abstract type is a type without instances or without definition.

For example in object-oriented programming using some languages, abstract types
can be partial implementations of other types, which are to be derived there-from.
An abstract type may provide implementation of some operations and/or compo-
nents. Abstract types without any implementation are called interfaces. In the lan-
guages that do not support multiple inheritance (Ada, Java), classes can, nonethe-
less, inherit from multiple interfaces. The languages with multiple inheritance (like
C++) usually make no distinction between partially implementable abstract types
and interfaces. Because the abstract type’s implementation is incomplete, OO lan-
guages normally prevent instantiation from them (instantiation must derived from
one of their descendant classes).

The term abstract datatype also may denote a type, with an implementation pro-
vided by the programmer rather than directly by the language (a built-in or an in-
ferred type). Here the word abstract means that the implementation is abstracted
away, irrelevant for the user of the type. Such implementation can and should be
hidden if the language supports separation of implementation and specification. This
hides complexity while allowing the implementation to change without repercus-
sions on the usage. The corresponding software design practice is said to follow the
information hiding principle.

It is important not to confuse this abstractness (of implementation) with one of the
abstract type. The latter is abstract in the sense that the set of its values is empty.
In the sense of implementation abstracted away, all user-defined types are abstract.

In some languages, like for example in Objective Caml which is strongly statically
typed, it is also possible to have abstract types that are not OO related and are not
an abstractness too. These are pure abstract types without any definition even in
the implementation and can be used for example for the type algebra, or for some
consistence of the type inference. For example in this area, an abstract type can be
used as a phantom type to augment another type as its parameter.

Task: show how an abstract type can be declared in the language. If the language
makes a distinction between interfaces and partially implemented types illustrate
both.

3 Rosetta Code Tasks starting with A 55

In PicoLisp there is no formal difference between abstract and concrete
classes, just a naming convention where abstract classes start with a
lower case character after the ’+’ (the naming convention for classes).
This tells the programmer that this class has not sufficient methods
defined to survive on its own.

(class +abstractClass)

(dm someMethod> ()
(foo)
(bar))

56 3 Rosetta Code Tasks starting with A

Accumulator factory

A problem posed by Paul Graham is that of creating a function that takes a sin-
gle (numeric) argument and which returns another function that is an accumulator.
The returned accumulator function in turn also takes a single numeric argument,
and returns the sum of all the numeric values passed in so far to that accumulator
(including the initial value passed when the accumulator was created).

The detailed rules are at http://paulgraham.com/accgensub.html and are reproduced
here for simplicity (with additions in small italic text).

Before you submit an example, make sure the function

1. Takes a number n and returns a function (lets call it g), that takes a number i, and
returns n incremented by the accumulation of i from every call of function g(i).
Although these exact function and parameter names need not be used

2. Works for any numeric type– i.e. can take both ints and floats and returns func-
tions that can take both ints and floats. (It is not enough simply to convert all
input to floats. An accumulator that has only seen integers must return integers.)
(i.e., if the language doesn’t allow for numeric polymorphism, you have to use
overloading or something like that)

3. Generates functions that return the sum of every number ever passed to them,
not just the most recent. (This requires a piece of state to hold the accumulated
value, which in turn means that pure functional languages can’t be used for this
task.)

4. Returns a real function, meaning something that you can use wherever you could
use a function you had defined in the ordinary way in the text of your program.
(Follow your language’s conventions here.)

5. Doesn’t store the accumulated value or the returned functions in a way that could
cause them to be inadvertently modified by other code. (No global variables or
other such things.)

E.g. if after the example, you added the following code (in a made-up language)
where the factory function is called foo:

x = foo(1); x(5); foo(3);print x(2.3);

It should print 8.3. (There is no need to print the form of the accumulator function
returned by foo(3); it’s not part of the task at all.)

The purpose of this task is to create a function that implements the described rules.
It need not handle any special error cases not described above. The simplest way to
implement the task as described is typically to use a closure, providing the language
supports them.

http://paulgraham.com/accgensub.html

3 Rosetta Code Tasks starting with A 57

Where it is not possible to hold exactly to the constraints above, describe the devia-
tions.

(de accumulator (Sum)
(curry (Sum) (N)

(inc ’Sum N)))

(def ’a (accumulator 7))
(a 1) # Output: -> 8
(a 2) # Output: -> 10
(a -5) # Output: -> 5

58 3 Rosetta Code Tasks starting with A

Ackermann function

The Ackermann function is a classic recursive example in computer science. It is
a function that grows very quickly (in its value and in the size of its call tree). It is
defined as follows:

Its arguments are never negative and it always terminates. Write a function which re-
turns the value of A(m,n). Arbitrary precision is preferred (since the function grows
so quickly), but not required.

(de ack (X Y)
(cond

((=0 X) (inc Y))
((=0 Y) (ack (dec X) 1))
(T (ack (dec X) (ack X (dec Y))))))

http://en.wikipedia.org/wiki/Ackermann_function

3 Rosetta Code Tasks starting with A 59

Active Directory/Connect

The task is to establish a connection to an Active Directory or Lightweight Directory
Access Protocol server.

(unless (=0 (setq Ldap (native "libldap.so" "ldap_open" ’N "example.com" 389)))
(quit "Can’t open LDAP"))

(native "libldap.so" "ldap_simple_bind_s" ’I Ldap "user" "password")

60 3 Rosetta Code Tasks starting with A

Active Directory/Search for a user

Make sure you Connect to Active Directory

(de ldapsearch (Sn)
(in

(list "ldapsearch" "-xH" "ldap://db.debian.org"
"-b" "dc=debian,dc=org"
(pack "sn=" Sn))

(list
(cons ’cn (prog (from "cn: ") (line T)))
(cons ’uid (prog (from "uid: ") (line T))))))

Test:

: (ldapsearch "Fischer")
-> ((cn . "Mika") (uid . "mf"))

3 Rosetta Code Tasks starting with A 61

Active object

In object-oriented programming an object is active when its state depends on clock.
Usually an active object encapsulates a task that updates the object’s state. To the
outer world the object looks like a normal object with methods that can be called
from outside. Implementation of such methods must have a certain synchronization
mechanism with the encapsulated task in order to prevent object’s state corruption.

A typical instance of an active object is an animation widget. The widget state
changes with the time, while as an object it has all properties of a normal widget.

The task

Implement an active integrator object. The object has an input and output. The input
can be set using the method Input. The input is a function of time. The output can
be queried using the method Output. The object integrates its input over the time
and the result becomes the object’s output. So if the input is K(t) and the output is
S, the object state S is changed to S + (K(t1) + K(t0)) * (t1 - t0) / 2, i.e. it integrates
K using the trapeze method. Initially K is constant 0 and S is 0.

In order to test the object:

1. set its input to sin (2π f t), where the frequency f =0.5Hz. The phase is irrelevant.

2. wait 2s

3. set the input to constant 0

4. wait 0.5s

Verify that now the object’s output is approximately 0 (the sine has the period of
2s). The accuracy of the result will depend on the OS scheduler time slicing and the
accuracy of the clock.

62 3 Rosetta Code Tasks starting with A

(load "@lib/math.l")

(class +Active)
inp val sum usec

(dm T ()
(unless (assoc -100 *Run) # Install timer task

(task -100 100 # Update objects every 0.1 sec
(mapc ’update> *Actives)))

(=: inp ’((U) 0)) # Set zero input function
(=: val 0) # Initialize last value
(=: sum 0) # Initialize sum
(=: usec (usec)) # and time
(push ’*Actives This)) # Install in notification list

(dm input> (Fun)
(=: inp Fun))

(dm update> ()
(let (U (usec) V ((: inp) U)) # Get current time, calculate value

(inc (:: sum)
(*/

(+ V (: val)) # (K(t[1]) + K(t[0])) *
(- U (: usec)) # (t[1] - t[0]) /
2.0)) # 2.0

(=: val V)
(=: usec U)))

(dm output> ()
(format (: sum) *Scl)) # Get result

(dm stop> ()
(unless (del This ’*Actives) # Removing the last active object?

(task -100))) # Yes: Uninstall timer task

(de integrate () # Test it
(let Obj (new ’(+Active)) # Create an active object

(input> Obj # Set input function
’((U) (sin (*/ pi U 1.0)))) # to sin(* t)

(wait 2000) # Wait 2 sec
(input> Obj ’((U) 0)) # Reset input function
(wait 500) # Wait 0.5 sec
(prinl "Output: " (output> Obj)) # Print return value
(stop> Obj))) # Stop active object

3 Rosetta Code Tasks starting with A 63

Add a variable to a class instance at runtime

Demonstrate how to dynamically add variables to an object (a class instance) at
runtime.

This is useful when the methods/variables of an instance are based on a data file
that isn’t available until runtime. Hal Fulton gives an example of creating an OO
CSV parser at An Exercise in Metaprogramming with Ruby. This is referred to as
“monkeypatching” by Pythonistas and some others.

In general, all instance variables in PicoLisp are dynamically created at
runtime.

: (setq MyObject (new ’(+MyClass))) # Create some object
-> \$385605941
: (put MyObject ’newvar ’(some value)) # Set variable
-> (some value)
: (show MyObject) # Show the object
\$385605941 (+MyClass)

newvar (some value)
-> \$385605941

http://www.devsource.com/article2/0,1759,1928562,00.asp

64 3 Rosetta Code Tasks starting with A

Address of a variable

Basic Data Operation: This is a basic data operation. It represents a fundamental
action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations: Arithmetic | Comparison

Boolean Operations: Bitwise | Logical

String Operations: Concatenation | Interpolation |Matching

Memory Operations: Pointers & references | Addresses

Demonstrate how to get the address of a variable and how to set the address of a
variable.

The PicoLisp function ’[http://software-lab.de/doc/refA.html#adr adr]’ returns
the address of a variable. A variable may be either a symbol or a cons pair in
PicoLisp.

The returned address is a number representing an encoded pointer. For symbols,
it is a negative number, and for cons pairs a positive number. The same function
’adr’ can then be used to convert that pointer back to the original object.

: (setq X 7)
-> 7

: (adr ’X)
-> -2985527269106

: (val (adr -2985527269106))
-> 7

: (set (adr -2985527269106) ’(a b c))
-> (a b c)

: X
-> (a b c)

3 Rosetta Code Tasks starting with A 65

Align columns

Given a text file of many lines, where fields within a line are delineated by a single
‘dollar’ character, write a program that aligns each column of fields by ensuring that
words in each column are separated by at least one space. Further, allow for each
word in a column to be either left justified, right justified, or center justified within
its column.

Use the following text to test your programs:

Givenatext$file$of$many$lines,$where$fields$within$a$line$
are$delineated$byasingle$’dollar’$character,$write$a$program
that$aligns$each$column$of$fields$by$ensuring$that$words$in$each$
columnareseparatedbyat$least$one$space.
Further,$allow$for$each$wordina$column$tobeeither$left$
justified,$right$justified,orcenter$justified$withinitscolumn.

Note that:

1. The example input texts lines may, or may not, have trailing dollar characters.

2. All columns should share the same alignment.

3. Consecutive space characters produced adjacent to the end of lines are insignifi-
cant for the purposes of the task.

4. Output text will be viewed in a mono-spaced font on a plain text editor or basic
terminal.

5. The minimum space between columns should be computed from the text and not
hard-coded.

6. It is not a requirement to add separating characters between or around columns.

66 3 Rosetta Code Tasks starting with A

(let Sizes NIL # Build a list of sizes
(let Lines # and of lines

(make
(in "input.txt" # Reading input file

(while (split (line) "$") # delimited by ’$’
(let (L (link (mapcar pack @)) S Sizes)

(setq Sizes # Maintain sizes
(make

(while (or L S)
(link

(max
(inc (length (pop ’L)))
(pop ’S))))))))))

(for L Lines # Print lines
(prinl (apply align L (mapcar - Sizes)))) # left aligned

(prinl)
(for L Lines

(prinl (apply align L Sizes))) # right aligned
(prinl)
(for L Lines

(prinl (apply center L Sizes))))) # and centered

3 Rosetta Code Tasks starting with A 67

Amb

Define and give an example of the Amb operator.

The Amb operator takes some number of expressions (or values if that’s simpler in
the language) and nondeterministically yields the one or fails if given no parameter,
amb returns the value that doesn’t lead to failure.

The example is using amb to choose four words from the following strings:

set 1: “the” “that” “a”

set 2: “frog” “elephant” “thing”

set 3: “walked” “treaded” “grows”

set 4: “slowly” “quickly”

It is a failure if the last character of word 1 is not equal to the first character of word
2, and similarly with word 2 and word 3, as well as word 3 and word 4. (the only
successful sentence is “that thing grows slowly”).

68 3 Rosetta Code Tasks starting with A

For backtracking, Pilog (PicoLisp Prolog) is the natural choice.

(be amb (@E @Lst)
(lst @E @Lst))

(be joins (@Left @Right)
(@T last (chop (-> @Left)))
(@R car (chop (-> @Right)))
(or

((equal @T @R))
((amb @ NIL)))) # Explicitly using amb fail as required

(be ambExample ((@Word1 @Word2 @Word3 @Word4))
(amb @Word1 ("the" "that" "a"))
(amb @Word2 ("frog" "elephant" "thing"))
(amb @Word3 ("walked" "treaded" "grows"))
(amb @Word4 ("slowly" "quickly"))
(joins @Word1 @Word2)
(joins @Word2 @Word3)
(joins @Word3 @Word4))

Output:

: (? (ambExample @Result))
@Result=("that" "thing" "grows" "slowly")

-> NIL

3 Rosetta Code Tasks starting with A 69

Anagrams

Two or more words can be composed of the same characters, but in a different order.
Using the word list at http://www.puzzlers.org/pub/wordlists/unixdict.txt, find the
sets of words that share the same characters that contain the most words in them.

A straight-forward implementation using ’group’ takes 48 seconds
on a 1.7 GHz Pentium:

(flip
(by length sort

(by ’((L) (sort (copy L))) group
(in "unixdict.txt" (make (while (line) (link @)))))))

Using a binary tree with the ’idx’ function, it takes only 0.42 seconds
on the same machine, a factor of 100 faster:

(let Words NIL
(in "unixdict.txt"

(while (line)
(let (Word (pack @) Key (pack (sort @)))

(if (idx ’Words Key T)
(push (car @) Word)
(set Key (list Word))))))

(flip (by length sort (mapcar val (idx ’Words)))))

Output:

-> (("vile" "veil" "live" "levi" "evil") ("trace" "crate" "cater" "carte" "caret
") ("regal" "large" "lager" "glare" "alger") ("neal" "lena" "lean" "lane" "elan"
) ("lange" "glean" "galen" "angle" "angel") ("elba" "bela" "bale" "able" "abel")
("tulsa" "talus" "sault" "latus") ...

http://www.puzzlers.org/pub/wordlists/unixdict.txt

70 3 Rosetta Code Tasks starting with A

Anagrams/Deranged anagrams

Two or more words are said to be anagrams if they have the same characters, but
in a different order. By analogy with derangements we define a deranged anagram
as two words with the same characters, but in which the same character does not
appear in the same position in both words.

The task is to use the word list at http://www.puzzlers.org/pub/wordlists/unixdict.txt
to find and show the longest deranged anagram.

Cf.

• Permutations/Derangements

• Best shuffle

(let Words NIL
(in "unixdict.txt"

(while (line)
(let (Word @ Key (pack (sort (copy @))))

(if (idx ’Words Key T)
(push (car @) Word)
(set Key (list Word))))))

(maxi ’((X) (length (car X)))
(extract

’((Key)
(pick

’((Lst)
(and

(find
’((L) (not (find = L Lst)))
(val Key))

(cons (pack @) (pack Lst))))
(val Key)))

(idx ’Words))))

Output:

-> ("excitation" . "intoxicate")

http://www.puzzlers.org/pub/wordlists/unixdict.txt

3 Rosetta Code Tasks starting with A 71

Animate a pendulum

One good way of making an animation is by simulating a physical system and illus-
trating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.

For this task, create a simple physical model of a pendulum and animate it.

A minimalist solution. The pendulum consists of the center point ’+’, and the
swinging xterm cursor.

(load "@lib/math.l")

(de pendulum (X Y Len)
(let (Angle pi/2 V 0)

(call ’clear)
(call ’tput "cup" Y X)
(prin ’+)
(call ’tput "cup" 1 (+ X Len))
(until (key 25) # 25 ms

(let A (*/ (sin Angle) -9.81 1.0)
(inc ’V (*/ A 40)) # DT = 25 ms = 1/40 sec
(inc ’Angle (*/ V 40)))

(call ’tput "cup"
(+ Y (*/ Len (cos Angle) 2.2)) # Compensate for aspect ratio
(+ X (*/ Len (sin Angle) 1.0))))))

Test (hit any key to stop):

(pendulum 40 1 36)

http://en.wikipedia.org/wiki/Pendulum

72 3 Rosetta Code Tasks starting with A

Animation

Animation is the foundation of a great many parts of graphical user interfaces, in-
cluding both the fancy effects when things change used in window managers, and of
course games. The core of any animation system is a scheme for periodically chang-
ing the display while still remaining responsive to the user. This task demonstrates
this.

Create a window containing the string ”Hello World! ” (the trailing space is
significant). Make the text appear to be rotating right by periodically removing one
letter from the end of the string and attaching it to the front. When the user clicks
on the text, it should reverse its direction.

Plain text

A plain text version. The following script works in an XTerm window.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(prin "ˆ[[?9h") # Mouse reporting on

(setq Dir 1 Text (chop "Hello World! "))

(loop
(prin (do Dir (rot Text)))
(when (= "ˆ[" (key 200))

(key) (key)
(when (= " " (key)) # Left button

(setq Dir (if (= 1 Dir) 12 1)))
(key) (key))

(do (length Text) (prin "ˆH")))

3 Rosetta Code Tasks starting with A 73

HTML/JavaScript

The standard PicoLisp GUI is HTTP based. Connect your browser to
http://localhost:8080 after starting the following script.

The scrolling text is displayed in a button. Clicking on the button
reverses the scroll direction.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@ext.l" "@lib/http.l" "@lib/xhtml.l" "@lib/form.l")

(one *Dir)

(de start ()
(app)
(action

(html 0 "Animation" "@lib.css" NIL
(form NIL

(gui ’(+Button)
’(pack (do *Dir (rot ’‘(chop "Hello World! "))))
’(setq *Dir (if (= 1 *Dir) 12 1)))

(gui ’(+Click +Auto +Button) 400 ’This 1000 "Start")))))

(server 8080 "!start")
(wait)

74 3 Rosetta Code Tasks starting with A

Java/Swing

This solution works on ErsatzLisp, the Java version of PicoLisp.

#!ersatz/pil

(setq
Dir 1
Text (chop "Hello World! ")
Frame (java "javax.swing.JFrame" T "Animation")
Label (java "javax.swing.JLabel" T (pack Text)))

(java Label ’addMouseListener
(interface "java.awt.event.MouseListener"

’mouseClicked ’((Ev) (setq Dir (if (= 1 Dir) 12 1)))
’mouseEntered nil
’mouseExited nil
’mousePressed nil
’mouseReleased nil))

(java Frame ’add Label)
(java Frame ’pack)
(java Frame ’setVisible T)
(loop

(wait 200)
(java Label ’setText (pack (do Dir (rot Text)))))

3 Rosetta Code Tasks starting with A 75

Anonymous recursion

While implementing a recursive function, it often happens that we must resort to a
separate “helper function” to handle the actual recursion.

This is usually the case when directly calling the current function would waste too
many resources (stack space, execution time), cause unwanted side-effects, and/or
the function doesn’t have the right arguments and/and return values.

So we end up inventing some silly name like “foo2” or “foo helper”. I have always
found it painful to come up with a proper name, and see a quite some disadvantages:

• You have to think up a name, which then pollutes the namespace

• A function is created which is called from nowhere else

• The program flow in the source code is interrupted

Some languages allow you to embed recursion directly in-place. This might work
via a label, a local gosub instruction, or some special keyword.

Anonymous recursion can also be accomplished using the Y combinator.

If possible, demonstrate this by writing the recursive version of the fibonacci func-
tion (see Fibonacci sequence) which checks for a negative argument before doing
the actual recursion.

(de fibo (N)
(if (lt0 N)

(quit "Illegal argument" N))
(recur (N)

(if (> 2 N)
1
(+ (recurse (dec N)) (recurse (- N 2))))))

Explanation: The above uses the
’[http://software-lab.de/doc/refR.html#recur recur]’ /
’[http://software-lab.de/doc/refR.html#recurse recurse]’ function pair, which is
defined as a standard language extensions as

(de recur recurse
(run (cdr recurse)))

Note how ’recur’ dynamically defines the function ’recurse’ at runtime, by
binding the rest of the expression (i.e. the body of the ’recur’ statement) to
the symbol ’recurse’.

76 3 Rosetta Code Tasks starting with A

Apply a callback to an array

In this task, the goal is to take a combined set of elements and apply a function to
each element.

: (mapc println (1 2 3 4 5)) # Print numbers
1
2
3
4
5
-> 5

: (mapcar ’((N) (* N N)) (1 2 3 4 5)) # Calculate squares
-> (1 4 9 16 25)

: (mapcar ** (1 2 3 4 5) (2 .)) # Same, using a circular list
-> (1 4 9 16 25)

: (mapcar if ’(T NIL T NIL) ’(1 2 3 4) ’(5 6 7 8)) # Conditional function
-> (1 6 3 8)

3 Rosetta Code Tasks starting with A 77

Arbitrary-precision integers (included)

Using the in-built capabilities of your language, calculate the integer value of:

• Confirm that the first and last twenty digits of the answer are:
62060698786608744707...92256259918212890625

• Find and show the number of decimal digits in the answer.

C.F. Long multiplication

Note:

• Do not submit an implementation of arbitrary precision arithmetic. The intention
is to show the capabilities of the language as supplied. If a language has a single,
overwhelming, library of varied modules that is endorsed by its home site – such
as CPAN for Perl or Boost for C++ – then that may be used instead.

• Strictly speaking, this should not be solved by fixed-precision numeric libraries
where the precision has to be manually set to a large value; although if this is the
only recourse then it may be used with a note explaining that the precision must
be set manually to a large enough value.

(let L (chop (** 5 (** 4 (** 3 2))))
(prinl (head 20 L) "..." (tail 20 L))
(length L))

Output:

62060698786608744707...92256259918212890625
-> 183231

http://en.wikipedia.org/wiki/arbitrary_precision_arithmetic

78 3 Rosetta Code Tasks starting with A

Arena storage pool

Dynamically allocated objects take their memory from a heap. The memory for an
object is provided by an allocator which maintains the storage pool used for the
heap. Often a call to allocator is denoted as

P := new T

where T is the type of an allocated object and P is a reference to the object.

The storage pool chosen by the allocator can be determined by either:

• the object type T;

• the type of pointer P.

In the former case objects can be allocated only in one storage pool. In the latter
case objects of the type can be allocated in any storage pool or on the stack.

Task description
The task is to show how allocators and user-defined storage pools are supported by
the language. In particular:

1. define an arena storage pool. An arena is a pool in which objects are allocated
individually, but freed by groups.

2. allocate some objects (e.g., integers) in the pool.

Explain what controls the storage pool choice in the language.

PicoLisp allocates any kind of data from a single pool, because everything
is built out of a "cell" primitive. Most of this allocation happens
automatically, but can also be done explicitly with
’[http://software-lab.de/doc/refN.html#new new]’ or
’[http://software-lab.de/doc/refB.html#box box]’. For memory-allocated
objects, there is no explicit way of freeing them. Database objects can be
freed with ’[http://software-lab.de/doc/refZ.html#zap zap]’.

3 Rosetta Code Tasks starting with A 79

Arithmetic evaluation

Create a program which parses and evaluates arithmetic expressions.

Requirements

• An abstract-syntax tree (AST) for the expression must be created from parsing
the input.

• The AST must be used in evaluation, also, so the input may not be directly eval-
uated (e.g. by calling eval or a similar language feature.)

• The expression will be a string or list of symbols like “(1+3)*7”.

• The four symbols + - * / must be supported as binary operators with conventional
precedence rules.

• Precedence-control parentheses must also be supported.

Note

For those who don’t remember, mathematical precedence is as follows:

• Parentheses

• Multiplication/Division (left to right)

• Addition/Subtraction (left to right)

C.f

• 24 game Player.

• Parsing/RPN calculator algorithm.

• Parsing/RPN to infix conversion.

http://en.wikipedia.org/wiki/Abstract_syntax_tree

80 3 Rosetta Code Tasks starting with A

The built-in function ’str’ splits a string into a list of lexical tokens
(numbers and transient symbols). From that, a recursive descendent parser can
build an expression tree, resulting in directly executable Lisp code.

(de ast (Str)
(let *L (str Str "")

(aggregate)))

(de aggregate ()
(let X (product)

(while (member (car *L) ’("+" "-"))
(setq X (list (intern (pop ’*L)) X (product))))

X))

(de product ()
(let X (term)

(while (member (car *L) ’("*" "/"))
(setq X (list (intern (pop ’*L)) X (term))))

X))

(de term ()
(let X (pop ’*L)

(cond
((num? X) X)
((= "+" X) (term))
((= "-" X) (list ’- (term)))
((= "(" X) (prog1 (aggregate) (pop ’*L)))))))

Output:

: (ast "1+2+3*-4/(1+2)")
-> (+ (+ 1 2) (/ (* 3 (- 4)) (+ 1 2)))

: (ast "(1+2+3)*-4/(1+2)")
-> (/ (* (+ (+ 1 2) 3) (- 4)) (+ 1 2))

3 Rosetta Code Tasks starting with A 81

Arithmetic-geometric mean

Write a function to compute the arithmetic-geometric mean of two numbers. The
arithmetic-geometric mean of two numbers can be (usefully) denoted as agm(a,g),
and is equal to the limit of the sequence:

Since the limit of an gn tends (rapidly) to zero with iterations, this is an efficient
method.

Demonstrate the function by calculating:

(scl 80)

(de agm (A G)
(do 7

(prog1 (/ (+ A G) 2)
(setq G (sqrt (* A G)) A @))))

(round
(agm 1.0 (*/ 1.0 1.0 (sqrt (* 2.0 1.0))))
70)

Output:
-> "0.8472130847939790866064991234821916364814459103269421850605793726597340"

http://en.wikipedia.org/wiki/Arithmetic-geometric_mean

82 3 Rosetta Code Tasks starting with A

Arithmetic/Complex

A complex number is a number which can be written as ” ” (sometimes
shown as ” ”) where a and b are real numbers and i is the square root
of -1. Typically, complex numbers are represented as a pair of real numbers called
the “imaginary part” and “real part”, where the imaginary part is the number to be
multiplied by i.

• Show addition, multiplication, negation, and inversion of complex numbers in
separate functions. (Subtraction and division operations can be made with pairs
of these operations.) Print the results for each operation tested.

• Optional: Show complex conjugation. By definition, the complex conjugate of a
+ bi is a bi.

Some languages have complex number libraries available. If your language does,
show the operations. If your language does not, also show the definition of this type.

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Imaginary_unit
http://en.wikipedia.org/wiki/Imaginary_unit
http://en.wikipedia.org/wiki/complex_conjugate

3 Rosetta Code Tasks starting with A 83

(load "@lib/math.l")

(de addComplex (A B)
(cons

(+ (car A) (car B)) # Real
(+ (cdr A) (cdr B)))) # Imag

(de mulComplex (A B)
(cons

(-
(*/ (car A) (car B) 1.0)
(*/ (cdr A) (cdr B) 1.0))

(+
(*/ (car A) (cdr B) 1.0)
(*/ (cdr A) (car B) 1.0))))

(de invComplex (A)
(let Denom

(+
(*/ (car A) (car A) 1.0)
(*/ (cdr A) (cdr A) 1.0))

(cons
(*/ (car A) 1.0 Denom)
(- (*/ (cdr A) 1.0 Denom)))))

(de negComplex (A)
(cons (- (car A)) (- (cdr A))))

(de fmtComplex (A)
(pack

(round (car A) (dec *Scl))
(and (gt0 (cdr A)) "+")
(round (cdr A) (dec *Scl))
"i"))

(let (A (1.0 . 1.0) B (cons pi 1.2))
(prinl "A = " (fmtComplex A))
(prinl "B = " (fmtComplex B))
(prinl "A+B = " (fmtComplex (addComplex A B)))
(prinl "A*B = " (fmtComplex (mulComplex A B)))
(prinl "1/A = " (fmtComplex (invComplex A)))
(prinl "-A = " (fmtComplex (negComplex A))))

Output:

A = 1.00000+1.00000i
B = 3.14159+1.20000i
A+B = 4.14159+2.20000i
A*B = 1.94159+4.34159i
1/A = 0.50000-0.50000i
-A = -1.00000-1.00000i

84 3 Rosetta Code Tasks starting with A

Arithmetic/Rational

The objective of this task is to create a reasonably complete implementation of ra-
tional arithmetic in the particular language using the idioms of the language.

For example: Define a new type called frac with binary operator “//” of two integers
that returns a structure made up of the numerator and the denominator (as per a
rational number).

Further define the appropriate rational unary operators abs and ’-’, with the binary
operators for addition ‘+’, subtraction ’-’, multiplication ‘’, division ‘/’, integer
division ‘’, modulo division, the comparison operators (e.g. ‘<’, ‘’, ‘>’, & ‘’) and
equality operators (e.g. ‘=’ & ‘’).

Define standard coercion operators for casting int to frac etc.

If space allows, define standard increment and decrement operators (e.g. ‘+:=’ &
’-:=’ etc.).

Finally test the operators: Use the new type frac to find all perfect numbers less than
219 by summing the reciprocal of the factors.

See also

• Perfect Numbers

3 Rosetta Code Tasks starting with A 85

(load "@lib/frac.l")

(for (N 2 (> (** 2 19) N) (inc N))
(let (Sum (frac 1 N) Lim (sqrt N))

(for (F 2 (>= Lim F) (inc F))
(when (=0 (\% N F))

(setq Sum
(f+ Sum

(f+ (frac 1 F) (frac 1 (/ N F)))))))
(when (= 1 (cdr Sum))

(prinl
"Perfect " N
", sum is " (car Sum)
(and (= 1 (car Sum)) ": perfect")))))

Output:

Perfect 6, sum is 1: perfect
Perfect 28, sum is 1: perfect
Perfect 120, sum is 2
Perfect 496, sum is 1: perfect
Perfect 672, sum is 2
Perfect 8128, sum is 1: perfect
Perfect 30240, sum is 3
Perfect 32760, sum is 3
Perfect 523776, sum is 2

86 3 Rosetta Code Tasks starting with A

Arithmetic/Integer

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Get two integers from the user, and then output the sum, difference, product, in-
teger quotient and remainder of those numbers. Don’t include error handling. For
quotient, indicate how it rounds (e.g. towards 0, towards negative infinity, etc.). For
remainder, indicate whether its sign matches the sign of the first operand or of the
second operand, if they are different.

Also include the exponentiation operator if one exists.

(de math (A B)
(prinl "Add " (+ A B))
(prinl "Subtract " (- A B))
(prinl "Multiply " (* A B))
(prinl "Divide " (/ A B)) # Truncates towards zero
(prinl "Div/rnd " (*/ A B)) # Rounds to next integer
(prinl "Modulus " (\% A B)) # Sign of the first operand
(prinl "Power " (** A B)))

3 Rosetta Code Tasks starting with A 87

Array concatenation

Show how to concatenate two arrays in your language. If this is as simple as
array1 + array2, so be it.

PicoLisp has no built-in array data type. Lists are used instead.

There are destructive concatenations:

: (setq A (1 2 3) B ’(a b c))
-> (a b c)
: (conc A B) # Concatenate lists in ’A’ and ’B’
-> (1 2 3 a b c)
: A
-> (1 2 3 a b c) # Side effect: List in ’A’ is modified!

and non-destructive concatenations:

: (setq A (1 2 3) B ’(a b c))
-> (a b c)
: (append A B) # Append lists in ’A’ and ’B’
-> (1 2 3 a b c)
: A
-> (1 2 3)
: B
-> (a b c) # Arguments are not modified

88 3 Rosetta Code Tasks starting with A

Arrays

This task is about arrays. For hashes or associative arrays, please see Creating an
Associative Array.

In this task, the goal is to show basic array syntax in your language. Basically, create
an array, assign a value to it, and retrieve an element. (if available, show both fixed-
length arrays and dynamic arrays, pushing a value into it.)

See also

• Collections

• Two-dimensional array (runtime)

3 Rosetta Code Tasks starting with A 89

PicoLisp has no built-in array data type. Lists are used instead.

(setq A ’((1 2 3) (a b c) ((d e) NIL 777))) # Create a 3x3 structure
(mapc println A) # Show it

Output:

(1 2 3)
(a b c)
((d e) NIL 777)

Replace ’b’ with ’B’ in middle row:

(set (nth A 2 2) ’B)
(mapc println A)

Output:

(1 2 3)
(a B c)
((d e) NIL 777)

Insert ’1’ in front of the middle row:

(push (cdr A) 1)
(mapc println A)

Output:

(1 2 3)
(1 a B c)
((d e) NIL 777)

Append ’9’ to the middle row:

(queue (cdr A) 9)
(mapc println A)

Output:

(1 2 3)
(1 a B c 9)
((d e) NIL 777)

90 3 Rosetta Code Tasks starting with A

Assertions

Assertions are a way of breaking out of code when there is an error or an unexpected
input. Some languages throw exceptions and some treat it as a break point.

Show an assertion in your language by asserting that an integer variable is equal to
42.

The ’[http://software-lab.de/doc/refA.html#assert assert]’ function, in
combination with the tilde read macro, generates code only in debug mode:

...
˜(assert (= N 42)) # Exists only in debug mode
...

Other possibilities are either to break into an error handler:

(let N 41
(unless (= N 42) (quit "Incorrect N" N))) # ’quit’ throws an error

41 -- Incorrect N
?

or to stop at a debug break point, allowing to continue with the program:

(let N 41
(unless (= N 42) (! setq N 42))) # ’!’ is a breakpoint

(setq N 42) # Manually fix the value
! # Hit ENTER to leave the breakpoint
-> 42

3 Rosetta Code Tasks starting with A 91

Associative arrays/Creation

In this task, the goal is to create an associative array (also known as a dictionary,
map, or hash).

• Related task: Associative arrays/Iteration

Here we use symbol properties. Other possiblities could be index
trees or association lists.

(put ’A ’foo 5)
(put ’A ’bar 10)
(put ’A ’baz 15)
(put ’A ’foo 20)

: (get ’A ’bar)
-> 10

: (get ’A ’foo)
-> 20

: (show ’A)
A NIL

foo 20
bar 10
baz 15

92 3 Rosetta Code Tasks starting with A

Associative arrays/Iteration

Show how to iterate over the key-value pairs of an associative array, and print each
pair out. Also show how to iterate just over the keys, or the values, if there is a
separate way to do that in your language.

• Related task: Associative arrays/Creation

Using properties

(put ’A ’foo 5)
(put ’A ’bar 10)
(put ’A ’baz 15)

: (getl ’A) # Get the whole property list
-> ((15 . baz) (10 . bar) (5 . foo))

: (mapcar cdr (getl ’A)) # Get all keys
-> (baz bar foo)

: (mapcar car (getl ’A)) # Get all values
-> (15 10 5)

Using an index tree

(idx ’A (def "foo" 5) T)
(idx ’A (def "bar" 10) T)
(idx ’A (def "baz" 15) T)

: A # Get the whole tree
-> ("foo" ("bar" NIL "baz"))

: (idx ’A) # Get all keys
-> ("bar" "baz" "foo")

: (mapcar val (idx ’A)) # Get all values
-> (10 15 5)

3 Rosetta Code Tasks starting with A 93

Atomic updates

Define a data type consisting of a fixed number of ‘buckets’, each containing a
nonnegative integer value, which supports operations to

1. get the current value of any bucket

2. remove a specified amount from one specified bucket and add it to another, pre-
serving the total of all bucket values, and clamping the transferred amount to
ensure the values remain nonnegative

In order to exercise this data type, create one set of buckets, and start three concur-
rent tasks:

1. As often as possible, pick two buckets and make their values closer to equal.

2. As often as possible, pick two buckets and arbitrarily redistribute their values.

3. At whatever rate is convenient, display (by any means) the total value and, op-
tionally, the individual values of each bucket.

The display task need not be explicit; use of e.g. a debugger or trace tool is accept-
able provided it is simple to set up to provide the display.

This task is intended as an exercise in atomic operations. The sum of the bucket
values must be preserved even if the two tasks attempt to perform transfers simul-
taneously, and a straightforward solution is to ensure that at any time, only one
transfer is actually occurring — that the transfer operation is atomic.

http://en.wikipedia.org/wiki/Clamping_(graphics)

94 3 Rosetta Code Tasks starting with A

(de *Buckets . 15) # Number of buckets

E/R model
(class +Bucket +Entity)
(rel key (+Key +Number)) # Key 1 .. *Buckets
(rel val (+Number)) # Value 1 .. 999

Start with an empty DB
(call ’rm "-f" "buckets.db") # Remove old DB (if any)
(pool "buckets.db") # Create new DB file

Create *Buckets buckets with values between 1 and 999
(for K *Buckets

(new T ’(+Bucket) ’key K ’val (rand 1 999)))
(commit)

Pick a random bucket
(de pickBucket ()

(db ’key ’+Bucket (rand 1 *Buckets)))

First process
(unless (fork)

(seed *Pid) # Ensure local random sequence
(loop

(let (B1 (pickBucket) B2 (pickBucket)) # Pick two buckets ’B1’ and ’B2’
(dbSync) # Atomic DB operation
(let (V1 (; B1 val) V2 (; B2 val)) # Get current values

(cond
((> V1 V2)

(dec> B1 ’val) # Make them closer to equal
(inc> B2 ’val))

((> V2 V1)
(dec> B2 ’val)
(inc> B1 ’val))))

(commit ’upd)))) # Close transaction

3 Rosetta Code Tasks starting with A 95

Second process
(unless (fork)

(seed *Pid) # Ensure local random sequence
(loop

(let (B1 (pickBucket) B2 (pickBucket)) # Pick two buckets ’B1’ and ’B2’
(unless (== B1 B2) # Found two different ones?

(dbSync) # Atomic DB operation
(let (V1 (; B1 val) V2 (; B2 val)) # Get current values

(cond
((> V1 V2 0)

(inc> B1 ’val) # Redistribute them
(dec> B2 ’val))

((> V2 V1 0)
(inc> B2 ’val)
(dec> B1 ’val))))

(commit ’upd))))) # Close transaction

Third process
(unless (fork)

(loop
(dbSync) # Atomic DB operation
(let Lst (collect ’key ’+Bucket) # Get all buckets

(for This Lst # Print current values
(printsp (: val)))

(prinl # and total sum
"-- Total: "
(sum ’((This) (: val)) Lst)))

(rollback)
(wait 2000))) # Sleep two seconds

(wait)

96 3 Rosetta Code Tasks starting with A

Output:

70 236 582 30 395 215 525 653 502 825 129 769 722 440 708 -- Total: 6801
0 156 566 352 198 263 0 743 0 1316 58 1180 897 0 1072 -- Total: 6801
0 0 424 101 0 0 0 682 0 1809 0 1549 961 0 1275 -- Total: 6801
0 0 0 0 0 0 0 452 0 2226 0 1838 884 0 1401 -- Total: 6801
54 55 56 55 54 55 54 102 54 2363 54 1816 666 55 1308 -- Total: 6801
198 198 197 196 198 198 197 197 196 1903 197 1438 345 197 946 -- Total: 6801
342 344 343 344 344 342 344 343 343 1278 343 992 343 343 413 -- Total: 6801
ˆC

3 Rosetta Code Tasks starting with A 97

Averages/Arithmetic mean

Write a program to find the mean (arithmetic average) of a numeric vector. In case
of a zero-length input, since the mean of an empty set of numbers is ill-defined,
the program may choose to behave in any way it deems appropriate, though if the
programming language has an established convention for conveying math errors or
undefined values, it’s preferable to follow it.

See also: Median, Mode

(de mean (Lst)
(if (atom Lst)

0
(/ (apply + Lst) (length Lst))))

Output:

: (mean (range 1 1000))
-> 500

http://en.wikipedia.org/wiki/arithmetic_mean

98 3 Rosetta Code Tasks starting with A

Averages/Mean angle

When calculating the average or mean of an angle one has to take into account how
angles wrap around so that any angle in degrees plus any integer multiple of 360
degrees is a measure of the same angle.

If one wanted an average direction of the wind over two readings where the first
reading was of 350 degrees and the second was of 10 degrees then just using the
Pythagorean average of the numbers yields an answer of 180 degrees, whereas if
you can note that 350 degrees is equivalent to -10 degrees and so you have two
readings at 10 degrees either side of zero degrees leading to a more fitting mean
angle of zero degrees.

To calculate the mean angle of several angles:

1. Assume all angles are on the unit circle and convert them to complex numbers
expressed in real and imaginary form.

2. Compute the Pythagorean mean of the complex numbers.

3. Convert the complex mean to polar coordinates whereupon the phase of the com-
plex mean is the required angular mean.

(Note that, since the mean is the sum divided by the number of numbers, and di-
vision by a positive real number does not affect the angle, you can also simply
compute the sum for step 2.)

You can alternatively use this formula:

Given the angles the mean is computed by

The task is to:

1. write a function/method/subroutine/. . . that given a list of angles in degrees re-
turns their mean angle. (You should use a built-in function if you have one that
does this for degrees or radians).

2. Use the function to compute the means of these lists of angles (in degrees): [350,
10], [90, 180, 270, 360], [10, 20, 30]; and show your output here.

http://en.wikipedia.org/wiki/Mean_of_circular_quantities

3 Rosetta Code Tasks starting with A 99

(load "@lib/math.l")

(de meanAngle (Lst)
(*/

(atan2
(sum ’((A) (sin (*/ A pi 180.0))) Lst)
(sum ’((A) (cos (*/ A pi 180.0))) Lst))

180.0 pi))

(for L ’((350.0 10.0) (90.0 180.0 270.0 360.0) (10.0 20.0 30.0))
(prinl

"The mean angle of ["
(glue ", " (mapcar round L ’(0 .)))
"] is: " (round (meanAngle L))))

Output:

The mean angle of [350, 10] is: 0.000
The mean angle of [90, 180, 270, 360] is: 90.000
The mean angle of [10, 20, 30] is: 20.000

100 3 Rosetta Code Tasks starting with A

Averages/Mean time of day

A particular activity of bats occurs at these times of the day:

23:00:17, 23:40:20, 00:12:45, 00:17:19

Using the idea that their are twenty four hours in a day which is analogous to their
being 360 degrees in a circle, map times of day to and from angles and using the
ideas of Averages/Mean angle compute and show here the average time of the noc-
turnal activity to an accuracy of a second of time.

(load "@lib/math.l")

(de meanTime (Lst)
(let Tim

(*/
(atan2

(sum ’((S) (sin (*/ ($tim S) pi 43200))) Lst)
(sum ’((S) (cos (*/ ($tim S) pi 43200))) Lst))

43200 pi)
(tim$ (% (+ Tim 86400) 86400) T)))

Test:

: (meanTime ’("23:00:17" "23:40:20" "00:12:45" "00:17:19"))
-> "23:47:43"

3 Rosetta Code Tasks starting with A 101

Averages/Median

Write a program to find the median value of a vector of floating-point numbers. The
program need not handle the case where the vector is empty, but must handle the
case where there are an even number of elements.

There are several approaches to this. One is to sort the elements, and then pick the
one in the middle. Sorting would take at least O(nlogn). Another would be to build
a priority queue from the elements, and then extract half of the elements to get to
the middle one(s). This would also take O(nlogn). The best solution is to use the
selection algorithm to find the median in O(n) time.

See also: Mean, Mode

(de median (Lst)
(let N (length Lst)

(if (bit? 1 N)
(get (sort Lst) (/ (inc N) 2))
(setq Lst (nth (sort Lst) (/ N 2)))
(/ (+ (car Lst) (cadr Lst)) 2))))

(scl 2)
(prinl (round (median (1.0 2.0 3.0))))
(prinl (round (median (1.0 2.0 3.0 4.0))))
(prinl (round (median (5.1 2.6 6.2 8.8 4.6 4.1))))
(prinl (round (median (5.1 2.6 8.8 4.6 4.1))))

Output:

2.00
2.50
4.85
4.60

http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Selection_algorithm

102 3 Rosetta Code Tasks starting with A

Averages/Mode

Write a program to find the mode value of a collection. The case where the collection
is empty may be ignored. Care must be taken to handle the case where the mode is
non-unique.

If it is not appropriate or possible to support a general collection, use a vector (array),
if possible. If it is not appropriate or possible to support an unspecified value type,
use integers.

See also: Mean,Median

(de modes (Lst)
(let A NIL

(for X Lst
(accu ’A X 1))

(mapcar car
(maxi cdar

(by cdr group A)))))

Output:

: (modes (1 3 6 6 6 6 7 7 12 12 17))
-> (6)

: (modes (1 1 2 4 4))
-> (4 1)

: (modes (chop "ABRAHAMASANTACLARA"))
-> ("A")

: (modes (1 4 A 3 2 7 1 B B 3 6 2 4 C C 5 2 5 B A 3 2 C 3 5 5 4 C 7 7))
-> (5 C 2 3)

http://en.wikipedia.org/wiki/Mode_(statistics)

3 Rosetta Code Tasks starting with A 103

Averages/Pythagorean means

Compute all three of the Pythagorean means of the set of integers 1 through 10.

Show that

for this set of positive integers.

• The most common of the three means, the arithmetic mean, is the sum of the list
divided by its length:

• The geometric mean is the nth root of the product of the list:

• The harmonic mean is n divided by the sum of the reciprocal of each item in the
list:

C.f. Averages/Root mean square

http://en.wikipedia.org/wiki/Pythagorean_means
http://en.wikipedia.org/wiki/Geometric_mean
http://en.wikipedia.org/wiki/Harmonic_mean

104 3 Rosetta Code Tasks starting with A

(load "@lib/math.l")

(let (Lst (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0) Len (length Lst))
(prinl "Arithmetic mean: "

(format
(/ (apply + Lst) Len)

*Scl))
(prinl "Geometric mean: "

(format
(pow (*/ (apply * Lst) (** 1.0 (dec Len))) (/ 1.0 Len))

*Scl))
(prinl "Harmonic mean: "

(format
(*/ (* 1.0 Len) 1.0 (sum ’((N) (*/ 1.0 1.0 N)) Lst))

*Scl)))

Output:

Arithmetic mean: 5.500000
Geometric mean: 4.528729
Harmonic mean: 3.414172

3 Rosetta Code Tasks starting with A 105

Averages/Root mean square

Compute the Root mean square of the numbers 1..10.

The root mean square is also known by its initial RMS (or rms), and as the quadratic
mean.

The RMS is calculated as the mean of the squares of the numbers, square-rooted:

Cf. Averages/Pythagorean means

(scl 5)

(let Lst (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)
(prinl

(format
(sqrt

(*/
(sum ’((N) (*/ N N 1.0)) Lst)
1.0
(length Lst))

T)

*Scl)))

Output:

6.20484

http://en.wikipedia.org/wiki/Root_mean_square

106 3 Rosetta Code Tasks starting with A

Averages/Simple moving average

Computing the simple moving average of a series of numbers.

The task is to:

Create a stateful function/class/instance that takes a period and returns a routine
that takes a number as argument and returns a simple moving average of its argu-
ments so far.

Description
A simple moving average is a method for computing an average of a stream of
numbers by only averaging the last P numbers from the stream, where P is known
as the period. It can be implemented by calling an initialing routine with P as its
argument, I(P), which should then return a routine that when called with individual,
successive members of a stream of numbers, computes the mean of (up to), the last
P of them, lets call this SMA().

The word stateful in the task description refers to the need for SMA() to remember
certain information between calls to it:

• The period, P

• An ordered container of at least the last P numbers from each of its individual
calls.

Stateful also means that successive calls to I(), the initializer, should return separate
routines that do not share saved state so they could be used on two independent
streams of data.

Pseudocode for an implementation of SMA is:

function SMA(number: N):
stateful integer: P
stateful list: stream
number: average

stream.append_last(N)
if stream.length() > P:

Only average the last P elements of the stream
stream.delete_first()

if stream.length() == 0:
average = 0

else:
average = sum(stream.values()) / stream.length()

return average

http://en.wikipedia.org/wiki/Moving_average#Simple_moving_average
http://en.wikipedia.org/wiki/Stateful

3 Rosetta Code Tasks starting with A 107

See also: Standard Deviation

(de sma (@Len)
(curry (@Len (Data)) (N)

(push ’Data N)
(and (nth Data @Len) (con @)) # Truncate
(*/ (apply + Data) (length Data))))

(def ’sma3 (sma 3))
(def ’sma5 (sma 5))

(scl 2)
(for N (1.0 2.0 3.0 4.0 5.0 5.0 4.0 3.0 2.0 1.0)

(prinl
(format N *Scl)
" (sma3) "
(format (sma3 N) *Scl)
" (sma5) "
(format (sma5 N) *Scl)))

Output:

1.00 (sma3) 1.00 (sma5) 1.00
2.00 (sma3) 1.50 (sma5) 1.50
3.00 (sma3) 2.00 (sma5) 2.00
4.00 (sma3) 3.00 (sma5) 2.50
5.00 (sma3) 4.00 (sma5) 3.00
5.00 (sma3) 4.67 (sma5) 3.80
4.00 (sma3) 4.67 (sma5) 4.20
3.00 (sma3) 4.00 (sma5) 4.20
2.00 (sma3) 3.00 (sma5) 3.80
1.00 (sma3) 2.00 (sma5) 3.00

Chapter 4

Rosetta Code Tasks starting with B

Balanced brackets

Task:

• Generate a string with N opening brackets (“[”) and N closing brackets (“]”), in
some arbitrary order.

• Determine whether the generated string is balanced; that is, whether it consists
entirely of pairs of opening/closing brackets (in that order), none of which mis-
nest.

Examples:

(empty) OK
[] OK][NOT OK
[][] OK][][NOT OK
[[][]] OK []][[] NOT OK

109

110 4 Rosetta Code Tasks starting with B

(load "@lib/simul.l") # For ’shuffle’

(de generateBrackets (N)
(shuffle (make (do N (link "[" "]")))))

(de checkBrackets (S)
(let N 0

(for C S
(if (= C "[")

(inc ’N)
(if2 (= C "]") (=0 N)

(off N)
(dec ’N))))

(=0 N)))

(for N 10
(prinl (if (checkBrackets (prin (generateBrackets N))) " OK" "not OK")))

Output:

[] OK
[[]] OK
]]][[[not OK
[[[][]]] OK
[][][[[]]] OK
[]][[[][[]]]not OK
[[[]]][][][][] OK
]][][[[[]][]]][[not OK
[]][][[[][[]]][]][not OK
[[[][]]]]][][[]]][[[not OK

4 Rosetta Code Tasks starting with B 111

Best shuffle

Shuffle the characters of a string in such a way that as many of the character values
are in a different position as possible. Print the result as follows: original string,
shuffled string, (score). The score gives the number of positions whose character
value did not change.

For example: tree, eetr, (0)

A shuffle that produces a randomized result among the best choices is to be pre-
ferred. A deterministic approach that produces the same sequence every time is
acceptable as an alternative.

The words to test with are: abracadabra, seesaw, elk, grrrrrr, up, a

Cf.

• Anagrams/Deranged anagrams

• Permutations/Derangements

112 4 Rosetta Code Tasks starting with B

(de bestShuffle (Str)
(let Lst NIL

(for C (setq Str (chop Str))
(if (assoc C Lst)

(con @ (cons C (cdr @)))
(push ’Lst (cons C))))

(setq Lst (apply conc (flip (by length sort Lst))))
(let Res

(mapcar
’((C)

(prog1 (or (find <> Lst (circ C)) C)
(setq Lst (delete @ Lst))))

Str)
(prinl Str " " Res " (" (cnt = Str Res) ")"))))

Output:

: (bestShuffle "abracadabra")
abracadabra raarababadc (0)

: (bestShuffle "seesaw")
seesaw essewa (0)

: (bestShuffle "elk")
elk lke (0)

: (bestShuffle "grrrrrr")
grrrrrr rgrrrrr (5)

: (bestShuffle "up")
up pu (0)

: (bestShuffle "a")
a a (1)

4 Rosetta Code Tasks starting with B 113

Binary digits

The task is to output the sequence of binary digits for a given non-negative integer.

The decimal value 5, should produce an output of 101 The decimal value 50 should
produce an output of 110010 The decimal value 9000 should produce an output
of 10001100101000

The results can be achieved using builtin radix functions within the language, if
these are available, or alternatively a user defined function can be used. The output
produced should consist just of the binary digits of each number followed by a
newline. There should be no other whitespace, radix or sign markers in the produced
output, and leading zeros should not appear in the results.

: (bin 5)
-> "101"

: (bin 50)
-> "110010"

: (bin 9000)
-> "10001100101000"

http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Leading_zero

114 4 Rosetta Code Tasks starting with B

Binary search

A binary search divides a range of values into halves, and continues to narrow down
the field of search until the unknown value is found. It is the classic example of a
“divide and conquer” algorithm.

As an analogy, consider the children’s game ”guess a number.” The scorer has a
secret number, and will only tell the player if their guessed number is higher than,
lower than, or equal to the secret number. The player then uses this information to
guess a new number.

As the player, an optimal strategy for the general case is to start by choosing the
range’s midpoint as the guess, and then asking whether the guess was higher, lower,
or equal to the secret number. If the guess was too high, one would select the point
exactly between the range midpoint and the beginning of the range. If the original
guess was too low, one would ask about the point exactly between the range mid-
point and the end of the range. This process repeats until one has reached the secret
number.

The Task

Given the starting point of a range, the ending point of a range, and the “secret
value”, implement a binary search through a sorted integer array for a certain
number. Implementations can be recursive or iterative (both if you can). Print out
whether or not the number was in the array afterwards. If it was, print the index also.

There are several binary search algorithms commonly seen. They differ by how they
treat multiple values equal to the given value, and whether they indicate whether the
element was found or not. For completeness we will present pseudocode for all of
them.

All of the following code examples use an “inclusive” upper bound (i.e. high =
N-1 initially). Any of the examples can be converted into an equivalent example
using “exclusive” upper bound (i.e. high = N initially) by making the following
simple changes (which simply increase high by 1):

• change high = N-1 to high = N

• change high = mid-1 to high = mid

• (for recursive algorithm) change if (high < low) to if (high <= low)

• (for iterative algorithm) change while (low <= high) to while (low
< high)

Traditional algorithm

The algorithms are as follows (from Wikipedia). The algorithms return the index
of some element that equals the given value (if there are multiple such elements,
it returns some arbitrary one). It is also possible, when the element is not found,

http://en.wikipedia.org/wiki/Binary_search

4 Rosetta Code Tasks starting with B 115

to return the “insertion point” for it (the index that the value would have if it were
inserted into the array).

Recursive Pseudocode:

// initially called with low = 0, high = N-1
BinarySearch(A[0..N-1], value, low, high) {

// invariants: value > A[i] for all i < low
value < A[i] for all i > high

if (high < low)
return not_found // value would be inserted at index "low"

mid = (low + high) / 2
if (A[mid] > value)

return BinarySearch(A, value, low, mid-1)
else if (A[mid] < value)

return BinarySearch(A, value, mid+1, high)
else

return mid
}

Iterative Pseudocode:

BinarySearch(A[0..N-1], value) {
low = 0
high = N - 1
while (low <= high) {

// invariants: value > A[i] for all i < low
value < A[i] for all i > high

mid = (low + high) / 2
if (A[mid] > value)

high = mid - 1
else if (A[mid] < value)

low = mid + 1
else

return mid
}
return not_found // value would be inserted at index "low"

}

Leftmost insertion point

The following algorithms return the leftmost place where the given element can be
correctly inserted (and still maintain the sorted order). This is the lower (inclusive)
bound of the range of elements that are equal to the given value (if any). Equiva-
lently, this is the lowest index where the element is greater than or equal to the given

116 4 Rosetta Code Tasks starting with B

value (since if it were any lower, it would violate the ordering), or 1 past the last
index if such an element does not exist. This algorithm does not determine if the
element is actually found. This algorithm only requires one comparison per level.

Recursive Pseudocode:

// initially called with low = 0, high = N - 1
BinarySearch_Left(A[0..N-1], value, low, high) {

// invariants: value > A[i] for all i < low
value <= A[i] for all i > high

if (high < low)
return low

mid = (low + high) / 2
if (A[mid] >= value)

return BinarySearch_Left(A, value, low, mid-1)
else

return BinarySearch_Left(A, value, mid+1, high)
}

Iterative Pseudocode:

BinarySearch_Left(A[0..N-1], value) {
low = 0
high = N - 1
while (low <= high) {

// invariants: value > A[i] for all i < low
value <= A[i] for all i > high

mid = (low + high) / 2
if (A[mid] >= value)

high = mid - 1
else

low = mid + 1
}
return low

}

Rightmost insertion point

The following algorithms return the rightmost place where the given element can be
correctly inserted (and still maintain the sorted order). This is the upper (exclusive)
bound of the range of elements that are equal to the given value (if any). Equiva-
lently, this is the lowest index where the element is greater than the given value, or 1
past the last index if such an element does not exist. This algorithm does not deter-
mine if the element is actually found. This algorithm only requires one comparison

4 Rosetta Code Tasks starting with B 117

per level. Note that these algorithms are almost exactly the same as the leftmost-
insertion-point algorithms, except for how the inequality treats equal values.

Recursive Pseudocode:

// initially called with low = 0, high = N - 1
BinarySearch_Right(A[0..N-1], value, low, high) {

// invariants: value >= A[i] for all i < low
value < A[i] for all i > high

if (high < low)
return low

mid = (low + high) / 2
if (A[mid] > value)

return BinarySearch_Right(A, value, low, mid-1)
else

return BinarySearch_Right(A, value, mid+1, high)
}

Iterative Pseudocode:

BinarySearch_Right(A[0..N-1], value) {
low = 0
high = N - 1
while (low <= high) {

// invariants: value >= A[i] for all i < low
value < A[i] for all i > high

mid = (low + high) / 2
if (A[mid] > value)

high = mid - 1
else

low = mid + 1
}
return low

}

Extra credit

Make sure it does not have overflow bugs.

The line in the pseudocode above to calculate the mean of two integers:

mid = (low + high) / 2

could produce the wrong result in some programming languages when used with
a bounded integer type, if the addition causes an overflow. (This can occur if the

118 4 Rosetta Code Tasks starting with B

array size is greater than half the maximum integer value.) If signed integers are
used, and low + high overflows, it becomes a negative number, and dividing by
2 will still result in a negative number. Indexing an array with a negative number
could produce an out-of-bounds exception, or other undefined behavior. If unsigned
integers are used, an overflow will result in losing the largest bit, which will produce
the wrong result.

One way to fix it is to manually add half the range to the low number:

mid = low + (high - low) / 2

Even though this is mathematically equivalent to the above, it is not susceptible to
overflow.

Another way for signed integers, possibly faster, is the following:

mid = (low + high) >>> 1

where >>> is the logical right shift operator. The reason why this works is that,
for signed integers, even though it overflows, when viewed as an unsigned number,
the value is still the correct sum. To divide an unsigned number by 2, simply do a
logical right shift.

References:

• C.f: Guess the number/With Feedback (Player)

• wp:Binary search algorithm

• Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are
Broken.

http://en.wikipedia.org/wiki/Binary_search_algorithm
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

4 Rosetta Code Tasks starting with B 119

(de recursiveSearch (Val Lst Len)
(unless (=0 Len)

(let (N (inc (/ Len 2)) L (nth Lst N))
(cond

((= Val (car L)) Val)
((> Val (car L))

(recursiveSearch Val (cdr L) (- Len N)))
(T (recursiveSearch Val Lst (dec N)))))))

Output:

: (recursiveSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> 5
: (recursiveSearch ’(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> (a b)
: (recursiveSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> NIL

(de iterativeSearch (Val Lst Len)
(use (N L)

(loop
(T (=0 Len))
(setq

N (inc (/ Len 2))
L (nth Lst N))

(T (= Val (car L)) Val)
(if (> Val (car L))

(setq Lst (cdr L) Len (- Len N))
(setq Len (dec N))))))

Output:

: (iterativeSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> 5
: (iterativeSearch ’(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> (a b)
: (iterativeSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> NIL

120 4 Rosetta Code Tasks starting with B

Binary strings

Many languages have powerful and useful (binary safe) string manipulation func-
tions, while others don’t, making it harder for these languages to accomplish some
tasks. This task is about creating functions to handle binary strings (strings made
of arbitrary bytes, i.e. byte strings according to Wikipedia) for those languages that
don’t have built-in support for them. If your language of choice does have this built-
in support, show a possible alternative implementation for the functions or abilities
already provided by the language. In particular the functions you need to create are:

• String creation and destruction (when needed and if there’s no garbage collection
or similar mechanism)

• String assignment

• String comparison

• String cloning and copying

• Check if a string is empty

• Append a byte to a string

• Extract a substring from a string

• Replace every occurrence of a byte (or a string) in a string with another string

• Join strings

Possible contexts of use: compression algorithms (like LZW compression), L-
systems (manipulation of symbols), many more.

http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Comparison_of_programming_languages_(string_functions)
http://en.wikipedia.org/wiki/Comparison_of_programming_languages_(string_functions)

4 Rosetta Code Tasks starting with B 121

Byte strings are represented in PicoLisp as lists of numbers. They can be
maniplated easily with the built-in list functionality.

I/O of raw bytes is done via the ’wr’ (write) and ’rd’ (read) functions. The
following creates a file consisting of 256 bytes, with values from 0 to 255:

: (out "rawfile"
(mapc wr (range 0 255)))

Looking at a hex dump of that file:

: (hd "rawfile")
00000000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00000010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00000020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#\$\%\&’()*+,-./
00000030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
...

To read part of that file, an external tool like ’dd’ might be used:

: (in ’(dd "skip=32" "bs=1" "count=16" "if=rawfile")
(make

(while (rd 1)
(link @))))

-> (32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47)

Now such byte lists can be assigned the normal way (’let’, ’setq’ etc.), they
can be compared with ’=’, ’>’, ’>=’ etc, and manipulated with all internal map-,
filter-, concatenation-, reversal-, pattern matching, and other functions.

If desired, a string containing meaningful values can also be converted to
a transient symbol, e.g. the example above

: (pack (mapcar char (32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47)))
-> " !\"#\$\%\&’()*+,-./"

122 4 Rosetta Code Tasks starting with B

Bitmap

Show a basic storage type to handle a simple RGB raster graphics image, and some
primitive associated functions.

If possible provide a function to allocate an uninitialised image, given its width and
height, and provide 3 additional functions:

• one to fill an image with a plain RGB color,

• one to set a given pixel with a color,

• one to get the color of a pixel.

(If there are specificities about the storage or the allocation, explain those.)

These functions are used as a base for the articles in the category raster graphics
operations, and a basic output function to check the results is available in the article
write ppm file.

For time critical applications this would be done with inline-C in PicoLisp,
but especially for small bitmaps the following makes sense.

Create an empty image of 120 x 90 pixels
(setq *Ppm (make (do 90 (link (need 120)))))

Fill an image with a given color
(de ppmFill (Ppm R G B)

(for Y Ppm
(map

’((X) (set X (list R G B)))
Y)))

Set pixel with a color
(de ppmSetPixel (Ppm X Y R G B)

(set (nth Ppm Y X) (list R G B)))

Get the color of a pixel
(de ppmGetPixel (Ppm X Y)

(get Ppm Y X))

4 Rosetta Code Tasks starting with B 123

Bitmap/Bézier curves/Cubic

Using the data storage type defined in Basic bitmap storage for raster images, and
the draw line function defined in Bresenham’s line algorithm, draw a cubic
bezier curve (definition on Wikipedia).

This uses the ’brez’ line drawing function from
[[Bitmap/Bresenham’s line algorithm#PicoLisp]].

(scl 6)

(de cubicBezier (Img N X1 Y1 X2 Y2 X3 Y3 X4 Y4)
(let (R (* N N N) X X1 Y Y1 DX 0 DY 0)

(for I N
(let

(J (- N I)
A (*/ 1.0 J J J R)
B (*/ 3.0 I J J R)
C (*/ 3.0 I I J R)
D (*/ 1.0 I I I R))

(brez Img
X
Y
(setq DX

(-
(+ (*/ A X1 1.0) (*/ B X2 1.0) (*/ C X3 1.0) (*/ D X4 1.0))
X))

(setq DY
(-

(+ (*/ A Y1 1.0) (*/ B Y2 1.0) (*/ C Y3 1.0) (*/ D Y4 1.0))
Y)))

(inc ’X DX)
(inc ’Y DY)))))

http://en.wikipedia.org/wiki/Bezier_curves#Cubic_B.C3.A9zier_curves

124 4 Rosetta Code Tasks starting with B

Test:

(let Img (make (do 200 (link (need 300 0)))) # Create image 300 x 200
(cubicBezier Img 24 20 120 540 33 -225 33 285 100)
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img)))

(call ’display "img.pbm")

4 Rosetta Code Tasks starting with B 125

Bitmap/Bézier curves/Quadratic

Using the data storage type defined in Basic bitmap storage for raster images, and
the draw line function defined in Bresenham’s line algorithm, draw a quadratic
bezier curve (definition on Wikipedia).

This uses the ’brez’ line drawing function from
[[Bitmap/Bresenham’s line algorithm#PicoLisp]].

(scl 6)

(de quadBezier (Img N X1 Y1 X2 Y2 X3 Y3)
(let (R (* N N) X X1 Y Y1 DX 0 DY 0)

(for I N
(let (J (- N I) A (*/ 1.0 J J R) B (*/ 2.0 I J R) C (*/ 1.0 I I R))

(brez Img X Y
(setq DX (- (+ (*/ A X1 1.0) (*/ B X2 1.0) (*/ C X3 1.0)) X))
(setq DY (- (+ (*/ A Y1 1.0) (*/ B Y2 1.0) (*/ C Y3 1.0)) Y)))

(inc ’X DX)
(inc ’Y DY)))))

Test:

(let Img (make (do 200 (link (need 300 0)))) # Create image 300 x 200
(quadBezier Img 12 20 100 300 -80 260 180)
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img)))

(call ’display "img.pbm")

http://en.wikipedia.org/wiki/Bezier_curves#Quadratic_B.C3.A9zier_curves

126 4 Rosetta Code Tasks starting with B

Bitmap/Bresenham’s line algorithm

Using the data storage type defined in Basic bitmap storage for raster images, draw
a line given 2 points with the Bresenham’s algorithm.

(de brez (Img X Y DX DY)
(let SX

(cond
((=0 DX) 0)
((gt0 DX) 1)
(T (setq DX (- DX)) -1))

(let SY
(cond

((=0 DY) 0)
((gt0 DY) 1)
(T (setq DY (- DY)) -1))

(if (>= DX DY)
(let E (- (* 2 DY) DX)

(do DX
(set (nth Img Y X) 1)
(when (ge0 E)

(inc ’Y SY)
(dec ’E (* 2 DX)))

(inc ’X SX)
(inc ’E (* 2 DY))))

(let E (- (* 2 DX) DY)
(do DY

(set (nth Img Y X) 1)
(when (ge0 E)

(inc ’X SX)
(dec ’E (* 2 DY)))

(inc ’Y SY)
(inc ’E (* 2 DX))))))))

(let Img (make (do 90 (link (need 120 0)))) # Create image 120 x 90
(brez Img 10 10 100 30) # Draw five lines
(brez Img 10 10 100 50)
(brez Img 10 10 100 70)
(brez Img 10 10 60 70)
(brez Img 10 10 20 70)
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 120 " " 90)
(mapc prinl Img)))

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

4 Rosetta Code Tasks starting with B 127

Bitmap/Flood fill

Implement a flood fill.

A flood fill is a way of filling an area using color banks to define the contained
area or a target color which “determines” the area (the valley that can be flooded;
Wikipedia uses the term target color). It works almost like a water flooding from
a point towards the banks (or: inside the valley): if there’s a hole in the banks, the
flood is not contained and all the image (or all the “connected valleys”) get filled.

To accomplish the task, you need implementing just one of the possible algorithms
(examples are on Wikipedia). Variations on the theme are allowed (e.g. adding a
tolerance parameter or argument for color-matching of the banks or target color).

Testing: the basic algorithm is not suitable for truecolor images; a possible test
image is the one shown on the right box; you can try to fill the white area, or the
black inner circle.

http://en.wikipedia.org/wiki/flood_fill
http://en.wikipedia.org/wiki/flood_fill

128 4 Rosetta Code Tasks starting with B

Using the format of [[Bitmap#PicoLisp|Bitmap]], a minimal recursive solution:

(de ppmFloodFill (Ppm X Y Color)
(let Target (get Ppm Y X)

(recur (X Y)
(when (= Target (get Ppm Y X))

(set (nth Ppm Y X) Color)
(recurse (dec X) Y)
(recurse (inc X) Y)
(recurse X (dec Y))
(recurse X (inc Y)))))

Ppm)

Test using ’ppmRead’ from [[Bitmap/Read a PPM file#PicoLisp]] and
’ppmWrite’ from [[Bitmap/Write a PPM file#PicoLisp]],
filling the white area with red:

(ppmWrite
(ppmFloodFill (ppmRead "Unfilledcirc.ppm") 192 128 (255 0 0))
"Filledcirc.ppm")

4 Rosetta Code Tasks starting with B 129

Bitmap/Histogram

Extend the basic bitmap storage defined on this page to support dealing with image
histograms. The image histogram contains for each luminance the count of image
pixels having this luminance. Choosing a histogram representation take care about
the data type used for the counts. It must have range of at least 0..NxM, where N is
the image width and M is the image height.

Test task

Histogram is useful for many image processing operations. As an example, use it to
convert an image into black and white art. The method works as follows:

• Convert image to grayscale;

• Compute the histogram

• Find the median: defined as the luminance such that the image has an approxi-
mately equal number of pixels with lesser and greater luminance.

• Replace each pixel of luminance lesser than the median to black, and others to
white.

Use read/write ppm file, and grayscale image solutions.

(de histogram (Pgm)
(let H (need 256 0)

(for L Pgm
(for G L

(inc (nth H (inc G)))))
H))

130 4 Rosetta Code Tasks starting with B

Bitmap/Midpoint circle algorithm

Using the data storage type defined Basic bitmap storage for raster images, write
an implementation of the midpoint circle algorithm (also known as Bresenham’s
circle algorithm). (definition on Wikipedia).

(de midPtCircle (Img CX CY Rad)
(let (F (- 1 Rad) DdFx 0 DdFy (* -2 Rad) X 0 Y Rad)

(set (nth Img (+ CY Rad) CX) 1)
(set (nth Img (- CY Rad) CX) 1)
(set (nth Img CY (+ CX Rad)) 1)
(set (nth Img CY (- CX Rad)) 1)
(while (> Y X)

(when (ge0 F)
(dec ’Y)
(inc ’F (inc ’DdFy 2)))

(inc ’X)
(inc ’F (inc (inc ’DdFx 2)))
(set (nth Img (+ CY Y) (+ CX X)) 1)
(set (nth Img (+ CY Y) (- CX X)) 1)
(set (nth Img (- CY Y) (+ CX X)) 1)
(set (nth Img (- CY Y) (- CX X)) 1)
(set (nth Img (+ CY X) (+ CX Y)) 1)
(set (nth Img (+ CY X) (- CX Y)) 1)
(set (nth Img (- CY X) (+ CX Y)) 1)
(set (nth Img (- CY X) (- CX Y)) 1))))

(let Img (make (do 120 (link (need 120 0)))) # Create image 120 x 120
(midPtCircle Img 60 60 50) # Draw circle
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 120 " " 120)
(mapc prinl Img)))

http://en.wikipedia.org/wiki/Midpoint_circle_algorithm

4 Rosetta Code Tasks starting with B 131

Bitmap/PPM conversion through a pipe

Using the data storage type defined Basic bitmap storage for for raster images, del-
egate writing a JPEG file through a pipe using the output ppm function defined
Write ppm file.

There are various utilities that can be used for this task, for example: cjpeg (package
“jpeg-progs” on Linux), ppmtojpeg (package “netpbm” on Linux), convert (from
ImageMagick, multi-platform).

Create an empty image of 120 x 90 pixels
(setq *Ppm (make (do 90 (link (need 120)))))

Fill background with green color
(ppmFill *Ppm 0 255 0)

Draw a diagonal line
(for I 80 (ppmSetPixel *Ppm I I 0 0 0))

Write to "img.jpg" through a pipe
(ppmWrite *Ppm ’("convert" "-" "img.jpg"))

132 4 Rosetta Code Tasks starting with B

Bitmap/Read a PPM file

Using the data storage type defined Basic bitmap storage for raster images, read an
image from a PPM file (binary P6 prefered). (Read the definition of PPM file on
Wikipedia.)

Task: Use write ppm file solution and grayscale image solution with this one in
order to convert a color image to grayscale one.

(de ppmRead (File)
(in File

(unless (and ‘(hex "5036") (rd 2)) # P6
(quit "Wrong file format" File))

(rd 1)
(let (DX 0 DY 0 Max 0 C)

(while (>= 9 (setq C (- (rd 1) ‘(char "0"))) 0)
(setq DX (+ (* 10 DX) C)))

(while (>= 9 (setq C (- (rd 1) ‘(char "0"))) 0)
(setq DY (+ (* 10 DY) C)))

(while (>= 9 (setq C (- (rd 1) ‘(char "0"))) 0)
(setq Max (+ (* 10 Max) C)))

(prog1
(make (do DY (link (need DX))))
(for Y @

(map
’((X) (set X (list (rd 1) (rd 1) (rd 1))))
Y))))))

Read a color image "img.ppm", convert and write to "img.pgm":

(pgmWrite (ppm->pgm (ppmRead "img.ppm")) "img.pgm")

http://en.wikipedia.org/wiki/Netpbm_format

4 Rosetta Code Tasks starting with B 133

Bitmap/Read an image through a pipe

This task is the opposite of the PPM conversion through a pipe. In this task, using a
delegate tool (like cjpeg, one of the netpbm package, or convert of the ImageMag-
ick package) we read an image file and load it into the data storage type Basic bitmap
storage. We can also use the code from Read ppm file, so that we can use PPM for-
mat like a (natural) bridge between the foreign image format and our simple data
storage.

(setq *Ppm (ppmRead ’("convert" "img.jpg" "ppm:-")))

134 4 Rosetta Code Tasks starting with B

Bitmap/Write a PPM file

Using the data storage type defined Basic bitmap storage for raster images, write
the image to a PPM file (binary P6 prefered).

(Read the definition of PPM file on Wikipedia.)

(de ppmWrite (Ppm File)
(out File

(prinl "P6")
(prinl (length (car Ppm)) " " (length Ppm))
(prinl 255)
(for Y Ppm (for X Y (apply wr X)))))

http://en.wikipedia.org/wiki/Netpbm_format

4 Rosetta Code Tasks starting with B 135

Bitwise IO

The aim of this task is to write functions (or create a class if your language is Object
Oriented and you prefer) for reading and writing sequences of bits. While the output
of a asciiprint "STRING" is the ASCII byte sequence “S”, “T”, “R”, “I”,
“N”, “G”, the output of a “print” of the bits sequence 0101011101010 (13 bits)
must be 0101011101010; real I/O is performed always quantized by byte (avoiding
endianness issues and relying on underlying buffering for performance), therefore
you must obtain as output the bytes 0101 0111 0101 0000 (bold bits are padding
bits), i.e. in hexadecimal 57 50.

As test, you can implement a rough (e.g. don’t care about error handling or other is-
sues) compression/decompression program for ASCII sequences of bytes, i.e. bytes
for which the most significant bit is always unused, so that you can write seven bits
instead of eight (each 8 bytes of input, we write 7 bytes of output).

These bit oriented I/O functions can be used to implement compressors and de-
compressors; e.g. Dynamic and Static Huffman encodings use variable length bits
sequences, while LZW (see LZW compression) use fixed or variable words nine (or
more) bits long.

• Limits in the maximum number of bits that can be written/read in a single
read/write operation are allowed.

• Errors handling is not mandatory

136 4 Rosetta Code Tasks starting with B

(de write7bitwise (Lst)
(let (Bits 0 Byte)

(for N Lst
(if (=0 Bits)

(setq Bits 7 Byte (* 2 N))
(wr (| Byte (>> (dec ’Bits) N)))
(setq Byte (>> (- Bits 8) N))))

(unless (=0 Bits)
(wr Byte))))

(de read7bitwise ()
(make

(let (Bits 0 Byte)
(while (rd 1)

(let N @
(link

(if (=0 Bits)
(>> (one Bits) N)
(| Byte (>> (inc ’Bits) N))))

(setq Byte (\& 127 (>> (- Bits 7) N)))))
(when (= 7 Bits)

(link Byte)))))

(out ’a (write7bitwise (127 0 127 0 127 0 127 0 127)))
(hd ’a)
(in ’a (println (read7bitwise)))

(out ’a (write7bitwise (0 127 0 127 0 127 0 127 0)))
(hd ’a)
(in ’a (println (read7bitwise)))

(out ’a (write7bitwise (mapcar char (chop "STRING"))))
(hd ’a)
(println (mapcar char (in ’a (read7bitwise))))

Output:

00000000 FE 03 F8 0F E0 3F 80 FE?..
(127 0 127 0 127 0 127 0)
00000000 01 FC 07 F0 1F C0 7F 00
(0 127 0 127 0 127 0 127)
00000000 A7 52 94 99 D1 C0 .R....
("S" "T" "R" "I" "N" "G")

4 Rosetta Code Tasks starting with B 137

Bitwise operations

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Write a routine to perform a bitwise AND, OR, and XOR on two integers, a bitwise
NOT on the first integer, a left shift, right shift, right arithmetic shift, left rotate,
and right rotate. All shifts and rotates should be done on the first integer with a
shift/rotate amount of the second integer. If any operation is not available in your
language, note it.

138 4 Rosetta Code Tasks starting with B

PicoLisp has no specific word size. Numbers grow to arbitrary length. Therefore,
bitwise NOT, logical (non-arithmetic) SHIFTs, and rotate operations do not make
sense.

Bitwise AND:

: (\& 6 3)
-> 2

: (\& 7 3 1)
-> 1

Bitwise AND-Test (tests if all bits in the first argument are set in the
following arguments):

: (bit? 1 2)
-> NIL

: (bit? 6 3)
-> NIL

: (bit? 6 15 255)
-> 6

Bitwise OR:

: (| 1 2)
-> 3

: (| 1 2 4 8)
-> 15

Bitwise XOR:

: (x| 2 7)
-> 5

: (x| 2 7 1)
-> 4

Shift (right with a positive count, left with a negative count):

: (>> 1 8)
-> 4

: (>> 3 16)
-> 2

: (>> -3 16)
-> 128

: (>> -1 -16)
-> -32

4 Rosetta Code Tasks starting with B 139

Boolean values

Show how to represent the boolean states “true” and “false” in a language. If other
objects represent “true” or “false” in conditionals, note it.

Cf.

• Logical operations

Like in all Lisps, the symbol ’NIL’ denotes "false", any other value "true".

Some functions return the symbol ’T’ for "true" if no other useful (non-NIL)
value is available in the given context. Note that ’NIL’ and ’T’ are written in
uppercase letters (PicoLisp is case-sensitive).

140 4 Rosetta Code Tasks starting with B

Boxing the compass

Avast me hearties!

There be many a land lubber that knows naught of the pirate ways and gives direc-
tion by degree! They know not how to box the compass!

Task description

1. Create a function that takes a heading in degrees and returns the correct 32-point
compass heading.

2. Use the function to print and display a table of Index, Compass point, and De-
gree; rather like the corresponding columns from, the first table of the wikipedia
article, but use only the following 33 headings as input:

[0.0, 16.87, 16.88, 33.75, 50.62, 50.63, 67.5, 84.37, 84.38,
101.25, 118.12, 118.13, 135.0, 151.87, 151.88, 168.75, 185.62,
185.63, 202.5, 219.37, 219.38, 236.25, 253.12, 253.13, 270.0,
286.87, 286.88, 303.75, 320.62, 320.63, 337.5, 354.37, 354.38].
(They should give the same order of points but are spread throughout the ranges of
acceptance).

Notes;

• The headings and indices can be calculated from this pseudocode:

for i in 0..32 inclusive:
heading = i * 11.25
case i%3:

if 1: heading += 5.62; break
if 2: heading -= 5.62; break

end
index = (i mod 32) + 1

• The column of indices can be thought of as an enumeration of the thirty two
cardinal points (see talk page)..

http://www.talklikeapirate.com/howto.html
http://oxforddictionaries.com/view/entry/m_en_gb0550020#m_en_gb0550020
http://en.wikipedia.org/wiki/Boxing_the_compass
http://en.wikipedia.org/wiki/Boxing_the_compass
http://en.wikipedia.org/wiki/Boxing_the_compass

4 Rosetta Code Tasks starting with B 141

(scl 3)

(setq *Compass # Build lookup table
(let H -16.875

(mapcar
’((Str)

(cons
(inc ’H 11.25) # Heading in degrees
(pack # Compass point

(replace (chop Str)
"N" "north"
"E" "east"
"S" "south"
"W" "west"
"b" " by "))))

’("N" "NbE" "N-NE" "NEbN" "NE" "NEbE" "E-NE" "EbN"
"E" "EbS" "E-SE" "SEbE" "SE" "SEbS" "S-SE" "SbE"
"S" "SbW" "S-SW" "SWbS" "SW" "SWbW" "W-SW" "WbS"
"W" "WbN" "W-NW" "NWbW" "NW" "NWbN" "N-NW" "NbW"
"N"))))

(de heading (Deg)
(rank (\% Deg 360.00) *Compass))

(for I (range 0 32)
(let H (* I 11.25)

(case (\% I 3)
(1 (inc ’H 5.62))
(2 (dec ’H 5.62)))

(tab (3 1 -18 8)
(inc (\% I 32))
NIL
(cdr (heading H))
(round H 2))))

142 4 Rosetta Code Tasks starting with B

Output:

1 north 0.00
2 north by east 16.87
3 north-northeast 16.88
4 northeast by north 33.75
5 northeast 50.62
6 northeast by east 50.63
7 east-northeast 67.50
8 east by north 84.37
9 east 84.38
10 east by south 101.25
11 east-southeast 118.12
12 southeast by east 118.13
13 southeast 135.00
14 southeast by south 151.87
15 south-southeast 151.88
16 south by east 168.75
17 south 185.62
18 south by west 185.63
19 south-southwest 202.50
20 southwest by south 219.37
21 southwest 219.38
22 southwest by west 236.25
23 west-southwest 253.12
24 west by south 253.13
25 west 270.00
26 west by north 286.87
27 west-northwest 286.88
28 northwest by west 303.75
29 northwest 320.62
30 northwest by north 320.63
31 north-northwest 337.50
32 north by west 354.37
1 north 354.38

4 Rosetta Code Tasks starting with B 143

Break OO privacy

Show how to access private or protected members of a class in an object oriented
language from outside an instance of the class, without calling non-private or non-
protected members of the class as a proxy.

Note that this is almost universally regarded as unidiomatic at best, and poor pro-
gramming practice at worst.

PicoLisp uses [http://software-lab.de/doc/ref.html#transient "transient
symbols"] for variables, functions, methods etc. inaccessible from other parts
of the program. Lexically, a transient symbol is enclosed by double quotes.

The only way to access a transient symbol outside its namespace is to search for
its name in other (public) structures. This is done by the
’[http://software-lab.de/doc/refL.html#loc loc]’ function.

(class +Example)
"_name"

(dm T (Name)
(=: "_name" Name))

(dm string> ()
(pack "Hello, I am " (: "_name")))

(====) # Close transient scope

(setq Foo (new ’(+Example) "Eric"))

144 4 Rosetta Code Tasks starting with B

Test:

: (string> Foo) # Access via method call
-> "Hello, I am Eric"

: (get Foo ’"_name") # Direct access doesn’t work
-> NIL

: (get Foo (loc "_name" +Example)) # Locating the transient symbol works
-> "Eric"

: (put Foo (loc "_name" +Example) "Edith")
-> "Edith"

: (string> Foo) # Ditto
-> "Hello, I am Edith"

: (get Foo ’"_name")
-> NIL

: (get Foo (loc "_name" +Example))
-> "Edith"

4 Rosetta Code Tasks starting with B 145

Brownian tree

Generate and draw a Brownian Tree.

A Brownian Tree is generated as a result of an initial seed, followed by the interac-
tion of two processes.

1. The initial “seed” is placed somewhere within the field. Where is not particularly
important; it could be randomized, or it could be a fixed point.

2. Particles are injected into the field, and are individually given a (typically ran-
dom) motion pattern.

3. When a particle collides with the seed or tree, its position is fixed, and it’s con-
sidered to be part of the tree.

Because of the lax rules governing the random nature of the particle’s placement and
motion, no two resulting trees are really expected to be the same, or even necessarily
have the same general shape.

(load "@lib/simul.l")

(de brownianTree (File Size Cnt)
(let Img (grid Size Size)

(put Img (/ Size 2) (/ Size 2) ’pix T)
(use (P Q)

(do Cnt
(setq P (get Img (rand 1 Size) (rand 1 Size)))
(loop

(setq Q ((if2 (rand T) (rand T) north east south west) P))
(T (; Q pix) (put P ’pix T))
(setq P (or Q (get Img (rand 1 Size) (rand 1 Size)))))))

(out "img.pbm"
(prinl "P1")
(prinl Size " " Size)
(for L Img

(for This L
(prin (if (: pix) 1 0)))

(prinl)))))

Use:

(brownianTree "img.pbm" 300 9000)
(call ’display "img.pbm")

http://en.wikipedia.org/wiki/Brownian_tree

146 4 Rosetta Code Tasks starting with B

Bulls and cows/Player

The task is to write a player of the Bulls and Cows game, rather than a scorer. The
player should give intermediate answers that respect the scores to previous attempts.

One method is to generate a list of all possible numbers that could be the answer,
then to prune the list by keeping only those numbers that would give an equivalent
score to how your last guess was scored. Your next guess can be any number from
the pruned list.
Either you guess correctly or run out of numbers to guess, which indicates a problem
with the scoring.

Cf,

• Bulls and cows

• Guess the number

• Guess the number/With Feedback (Player)

(load "@lib/simul.l")

(de bullsAndCows ()
(let Choices (shuffle (mapcan permute (subsets 4 (range 1 9))))

(use (Guess Bulls Cows)
(loop

(prinl "Guessing " (setq Guess (pop ’Choices)))
(prin "How many bulls and cows? ")
(setq Bulls (read) Cows (read))
(setq Choices

(filter
’((C)

(let B (cnt = Guess C)
(and

(= Bulls B)
(= Cows (- (length (sect Guess C)) B)))))

Choices))
(NIL Choices "No matching solution")
(NIL (cdr Choices) (pack "The answer is " (car Choices)))))))

4 Rosetta Code Tasks starting with B 147

Output:

: (bullsAndCows)
Guessing 4217
How many bulls and cows? 0 2
Guessing 5762
How many bulls and cows? 1 1
Guessing 9372
How many bulls and cows? 0 1
Guessing 7864
How many bulls and cows? 1 2
Guessing 8754
How many bulls and cows? 0 2
-> "The answer is 2468"

Chapter 5

Rosetta Code Tasks starting with C

Caesar cipher

Implement a Caesar cipher, both encryption and decryption. The key is an integer
from 1 to 25. This cipher rotates the letters of the alphabet (A to Z). The encryption
replaces each letter with the 1st to 25th next letter in the alphabet (wrapping Z
to A). So key 2 encrypts “HI” to “JK”, but key 20 encrypts “HI” to “BC”. This
simple “monoalphabetic substitution cipher” provides almost no security, because
an attacker who has the encrypted message can either use frequency analysis to
guess the key, or just try all 25 keys.

Caesar cipher is identical to Vigenre cipher with key of length 1. Also, Rot-13 is
identical to Caesar cipher with key 13.

149

http://en.wikipedia.org/wiki/Caesar_cipher

150 5 Rosetta Code Tasks starting with C

(setq *Letters (apply circ (mapcar char (range 65 90))))

(de caesar (Str Key)
(pack

(mapcar ’((C) (cadr (nth (member C *Letters) Key)))
(chop (uppc Str)))))

Test:

: (caesar "IBM" 25)
-> "HAL"
: (caesar @ 1)
-> "IBM"

: (caesar "The quick brown fox jumped over the lazy dog’s back" 7)
-> "AOLXBPJRIYVDUMVEQBTWLKVCLYAOLSHGFKVNZIHJR"
: (caesar @ (- 26 7))
-> "THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSBACK"

5 Rosetta Code Tasks starting with C 151

Calendar

Create a routine that will generate a text calendar for any year. Test the calendar by
generating a calendar for the year 1969, on a device of the time. Choose one of the
following devices:

• A line printer with a width of 132 characters.

• An IBM 3278 model 4 terminal (8043 display with accented characters). Target
formatting the months of the year to fit nicely across the 80 character width
screen. Restrict number of lines in test output to 43.

(Ideally, the program will generate well-formatted calendars for any page width
from 20 characters up.)

Kudos () for routines that also correctly transition from Julian to Gregorian calendar
in September 1752.

This task is inspired by Real Programmers Don’t Use PASCAL by Ed Post, Data-
mation, volume 29 number 7, July 1983.

THE REAL PROGRAMMER’S NATURAL HABITAT
"Taped to the wall is a line-printer Snoopy calender for the year 1969."

For further Kudos see task CALENDAR, where all code is to be in UPPERCASE.

For economy of size, do not actually include Snoopy generation in either the code
or the output, instead just output a place-holder.

http://en.wikipedia.org/wiki/IBM_3270#Displays
http://www.ee.ryerson.ca/~elf/hack/realmen.html

152 5 Rosetta Code Tasks starting with C

This "calendar" is nicely formated, and fits into 20 columns ;-)

(de cal (Year)
(prinl "====== " Year " ======")
(for Dat (range (date Year 1 1) (date Year 12 31))

(let D (date Dat)
(tab (3 3 4 8)

(when (= 1 (caddr D))
(get *Mon (cadr D)))

(caddr D)
(day Dat *Day)
(when (=0 (\% (inc Dat) 7))

(pack "Week " (week Dat)))))))

(cal 1969)

Output:

====== 1969 ======
Jan 1 Wed

2 Thu
3 Fri
4 Sat
5 Sun
6 Mon Week 2
7 Tue

....
28 Sat
29 Sun
30 Mon Week 27

Jul 1 Tue
2 Wed
3 Thu
4 Fri

....
25 Thu
26 Fri
27 Sat
28 Sun
29 Mon Week 53
30 Tue
31 Wed

5 Rosetta Code Tasks starting with C 153

Calendar - for ”real” programmers

Provide an algorithm as per the Calendar task, except the entire code for the algo-
rithm must be presented entirely without lowercase. Also - as per many 1969 era
line printers - format the calendar to nicely fill a page that is 132 characters wide.

(Hint: manually convert the code from the Calendar task to all UPPERCASE)

This task also is inspired by Real Programmers Don’t Use PASCAL by Ed Post,
Datamation, volume 29 number 7, July 1983.

THE REAL PROGRAMMER’S NATURAL HABITAT
"Taped to the wall is a line-printer Snoopy calender for the year 1969."

Moreover this task is further inspired by the long lost corollary article titled:

"Real programmers think in UPPERCASE"!

Note: Whereas today we only need to worry about ASCII, UTF-8, UTF-16, UTF-
32, UTF-7 and UTF-EBCDIC encodings, in the 1960s having code in UPPERCASE
was often mandatory as characters were often stuffed into 36-bit words as 6 lots of
6-bit characters. More extreme words sizes include 60-bit words of the CDC 6000
series computers. The Soviets even had a national character set that was inclusive
of all 4-bit, 5-bit, 6-bit & 7-bit depending on how the file was opened. . . And one
rogue Soviet university went further and built a 1.5-bit based computer.

Of course. . . as us Boomers have turned into Geezers we have become HARD OF
HEARING, and suffer from chronic Presbyopia, hence programming in UPPER-
CASE is less to do with computer architecture and more to do with practically. :-)

For economy of size, do not actually include Snoopy generation in either the code
or the output, instead just output a place-holder.

FYI: a nice ASCII art file of Snoppy can be found at textfiles.com. Save with a .txt
extension.

http://en.wikipedia.org/wiki/line_printer#Paper_.28forms.29_handling
http://www.ee.ryerson.ca/~elf/hack/realmen.html
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16/UCS-2
http://en.wikipedia.org/wiki/UTF-32/UCS-4
http://en.wikipedia.org/wiki/UTF-32/UCS-4
http://en.wikipedia.org/wiki/UTF-7
http://en.wikipedia.org/wiki/UTF-EBCDIC
http://en.wikipedia.org/wiki/36-bit
http://en.wikipedia.org/wiki/6-bit
http://en.wikipedia.org/wiki/60-bit
http://en.wikipedia.org/wiki/CDC_6000_series
http://en.wikipedia.org/wiki/CDC_6000_series
http://en.wikipedia.org/wiki/GOST_10859#4-bit_code:_Binary_coded_decimal
http://en.wikipedia.org/wiki/GOST_10859#5-bit_code:_with_BCD_.26_mathematical_operators
http://en.wikipedia.org/wiki/GOST_10859#6-bit_code:_with_only_Cyrillic_upper_case_letters
http://en.wikipedia.org/wiki/GOST_10859#7-bit_code:_Cyrillic_.26_Latin_upper_case_letters
http://www.computer-museum.ru/english/setun.htm
http://en.wikipedia.org/wiki/Baby-Boom_Generation
http://en.wikipedia.org/wiki/Geezer
http://en.wikipedia.org/wiki/All_caps#Computing
http://en.wikipedia.org/wiki/All_caps#Computing
http://en.wikipedia.org/wiki/Presbyopia
http://www.textfiles.com/artscene/asciiart/cursepic.art

154 5 Rosetta Code Tasks starting with C

The "CALENDAR.L" source file:

(DE CAL (YEAR)
(PRINL "====== " YEAR " ======")
(FOR DAT (RANGE (DATE YEAR 1 1) (DATE YEAR 12 31))

(LET D (DATE DAT)
(TAB (3 3 4 8)

(WHEN (= 1 (CADDR D))
(GET ‘(INTERN (PACK (MAPCAR CHAR (42 77 111 110)))) (CADR D)))

(CADDR D)
(DAY DAT ‘(INTERN (PACK (MAPCAR CHAR (42 68 97 121)))))
(WHEN (=0 (\% (INC DAT) 7))

(PACK (CHAR 87) "EEk " (WEEK DAT)))))))

(CAL 1969)
(BYE)

Then it can be executed with this command line:

\$ pil -’load (list "awk" "{print tolower(\$0)}" "CALENDAR.L")’

Output:

====== 1969 ======
Jan 1 Wed

2 Thu
3 Fri
4 Sat
5 Sun
6 Mon Week 2
7 Tue

....
28 Sat
29 Sun
30 Mon Week 27

Jul 1 Tue
2 Wed
3 Thu
4 Fri

....
25 Thu
26 Fri
27 Sat
28 Sun
29 Mon Week 53
30 Tue
31 Wed

5 Rosetta Code Tasks starting with C 155

Call a foreign-language function

Show how a foreign language function can be called from the language.

As an example, consider calling functions defined in the C language. Create a string
containing “Hello World!” of the string type typical to the language. Pass the string
content to C’s strdup. The content can be copied if necessary. Get the result
from strdup and print it using language means. Do not forget to free the result
of strdup (allocated in the heap).

Notes:

• It is not mandated if the C run-time library is to be loaded statically or dynami-
cally. You are free to use either way.

• C++ and C solutions can take some other language to communicate with.

• It is not mandatory to use strdup, especially if the foreign function interface
being demonstrated makes that uninformative.

See also:

• Use another language to call a function

156 5 Rosetta Code Tasks starting with C

The easiest is to inline the C code. Another possibility would be to write it
into a separate shared object file (see "Call a function in a shared library").

There are differences between the 32-bit and 64-bit versions. While the 64-bit
can interface directly to C functions, requires the 32-bit function some glue
code.

32-bit version

(load "@lib/gcc.l")

(gcc "str" NIL # The ’gcc’ function passes all text
’duptest) # until /**/ to the C compiler

any duptest(any ex) {
any x = evSym(cdr(ex)); // Accept a symbol (string)
char str[bufSize(x)]; // Create a buffer to unpack the name
char *s;

bufString(x, str); // Upack the string
s = strdup(str); // Make a duplicate
x = mkStr(s); // Build a new Lisp string
free(s); // Dispose the duplicate
return x;

}
/**/

(println ’Duplicate (duptest "Hello world!"))

5 Rosetta Code Tasks starting with C 157

64-bit version

(load "@lib/native.l")

(gcc "str" NIL
(duptest (Str) duptest ’S Str))

#include <stdlib.h>
#include <string.h>

char *duptest(char *str) {
static char *s;

if (s) // To avoid having to worry about free(),
free(s); // We simply dispose the result of the last call

return s = strdup(str);
}
/**/

(println ’Duplicate (duptest "Hello world!"))

Output in both cases:

Duplicate "Hello world!"

158 5 Rosetta Code Tasks starting with C

Call a function

The task is to demonstrate the different syntax and semantics provided for calling a
function. This may include:

• Calling a function that requires no arguments

• Calling a function with a fixed number of arguments

• Calling a function with optional arguments

• Calling a function with a variable number of arguments

• Calling a function with named arguments

• Using a function in statement context

• Using a function in first-class context within an expression

• Obtaining the return value of a function

• Distinguishing built-in functions and user-defined functions

• Distinguishing subroutines and functions

• Stating whether arguments are passed by value or by reference

• Is partial application possible and how

This task is not about defining functions.

5 Rosetta Code Tasks starting with C 159

When calling a funcion in PicoLisp directly (does this mean "in a statement
context"?), it is always surrounded by parentheses, with or without arguments,
and for any kind of arguments (evaluated or not):

(foo)
(bar 1 ’arg 2 ’mumble)

When a function is used in a "first class context" (e.g. passed to another
function), then it is not yet _called_. It is simply _used_. Technically, a
function can be either a _number_ (a built-in function) or a _list_ (a
Lisp-level function) in PicoLisp):

(mapc println Lst) # The value of ’printlin’ is a number
(apply ’((A B C) (foo (+ A (* B C)))) (3 5 7)) # A list is passed

Any argument to a function may be evaluated or not, depending on the function.
For example, ’setq’ evaluates every second argument

(setq A (+ 3 4) B (* 3 4))

i.e. the first argument ’A’ is not evaluated, the second evaluates to 7, ’B’ is
not evaluated, then the fourth evaluates to 12.

160 5 Rosetta Code Tasks starting with C

Call a function from a foreign language

[aka “Use another language to call a function”]

This task is inverse to the task Call foreign language function. Consider the follow-
ing C program:

#include <stdio.h>

extern int Query (char * Data, size_t * Length);

int main (int argc, char * argv [])
{

char Buffer [1024];
size_t Size = sizeof (Buffer);

if (0 == Query (Buffer, &Size))
{

printf ("failed to call Query\n");
}
else
{

char * Ptr = Buffer;
while (Size-- > 0) putchar (*Ptr++);
putchar (’\n’);

}
}

Write an implementation of Query in your language and make main calling it. The
function Query takes the buffer a places the string Here am I into it. The buffer
size in bytes is specified by the parameter Length. When there is no room in the
buffer, Query shall return 0. Otherwise it overwrites the beginning of Buffer, sets
the number of overwritten bytes into Length and returns 1.

5 Rosetta Code Tasks starting with C 161

Calling a PicoLisp function from another program requires a running interpreter.
There are several possibilities, like IPC via fifo’s or sockets using the PLIO
(PicoLisp-I/O) protocol, but the easiest is calling the interpreter in a pipe.
This is relatively efficient, as the interpreter’s startup time is quite short.

If there is a file "query.l"

(let (Str "Here am I" Len (format (opt))) # Get length from command line
(unless (>= (size Str) Len) # Check buffer size

(prinl Str))) # Return string if OK

then the C function ’Query’ could be

int Query(char *Data, size_t *Length) {
FILE *fp;
char buf[64];

sprintf(buf, "/usr/bin/picolisp query.l \%d -bye", *Length);
if (!(fp = popen(buf, "r")))

return 0;
fgets(Data, *Length, fp);

*Length = strlen(Data);
return pclose(fp) >= 0 \&\& *Length != 0;

}

162 5 Rosetta Code Tasks starting with C

Call a function in a shared library

Show how to call a function in a shared library (without dynamically linking to it
at compile-time). In particular, show how to call the shared library function if the
library is available, otherwise use an internal equivalent function.

This is a special case of calling a foreign language function where the focus is close
to the ABI level and not at the normal API level.

5 Rosetta Code Tasks starting with C 163

This differs between the 32-bit and 64-bit versions. While the 64-bit version
can interface directly to C functions (in external libraries or not), requires
the 32-bit function some glue code.

For the 32-bit version, we need some glue code:

(load "@lib/gcc.l")

(gcc "x11" ’("-lX11") ’xOpenDisplay ’xCloseDisplay)

#include <X11/Xlib.h>

any xOpenDisplay(any ex) {
any x = evSym(cdr(ex)); // Get display name
char display[bufSize(x)]; // Create a buffer for the name

bufString(x, display); // Upack the name
return boxCnt((long)XOpenDisplay(display));

}

any xCloseDisplay(any ex) {
return boxCnt(XCloseDisplay((Display*)evCnt(ex, cdr(ex))));

}
/**/

With that we can open and close the display:
: (setq Display (xOpenDisplay ":0.7")) # Wrong
-> 0
: (setq Display (xOpenDisplay ":0.0")) # Correct
-> 158094320
: (xCloseDisplay Display)
-> 0

In the 64-bit version, we can call the library directly:

: (setq Display (native "/usr/lib/libX11.so.6" "XOpenDisplay" ’N ":0.0"))
-> 6502688
: (native "/usr/lib/libX11.so.6" "XCloseDisplay" ’I Display)
-> 0

164 5 Rosetta Code Tasks starting with C

Call an object method

In object-oriented programming a method is a function associated with a particular
class or object. In most forms of object oriented implementations methods can be
static, associated with the class itself; or instance, associated with an instance of a
class.

Show how to call a static or class method, and an instance method of a class.

Method invocation is syntactically equivalent to normal function calls.
Method names have a trailing ‘>’ by convention.

(foo> MyClass)(foo> MyObject)

5 Rosetta Code Tasks starting with C 165

Case-sensitivity of identifiers

Three dogs (Are there three dogs or one dog?) is a code snippet used to illustrate the
lettercase sensitivity of the programming language. For a case-sensitive language,
the identifiers dog, Dog and DOG are all different and we should get the output:

The three dogs are named Benjamin, Samba and Bernie.

For a language that is lettercase insensitive, we get the following output:

There is just one dog named Bernie.

Cf.

• Unicode variable names

(let (dog "Benjamin" Dog "Samba" DOG "Bernie")
(prinl "The three dogs are named " dog ", " Dog " and " DOG))

Output:

The three dogs are named Benjamin, Samba and Bernie

166 5 Rosetta Code Tasks starting with C

Catalan numbers

Catalan numbers are a sequence of numbers which can be defined directly:

Or recursively:

Or alternatively (also recursive):

Implement at least one of these algorithms and print out the first 15 Catalan numbers
with each. Memoization is not required, but may be worth the effort when using the
second method above.

Cf.

• Pascal’s triangle

• Catalan Numbers and the Pascal Triangle

• http://rosettacode.org/wiki/Catalan numbers#An Alternative Approach

http://milan.milanovic.org/math/english/fibo/fibo4.html
http://rosettacode.org/wiki/Catalan_numbers#An_Alternative_Approach

5 Rosetta Code Tasks starting with C 167

Factorial
(de fact (N)

(if (=0 N)
1
(* N (fact (dec N)))))

Directly
(de catalanDir (N)

(/ (fact (* 2 N)) (fact (inc N)) (fact N)))

Recursively
(de catalanRec (N)

(if (=0 N)
1
(cache ’(NIL) (pack (char (hash N)) N) # Memoize

(sum
’((I) (* (catalanRec I) (catalanRec (- N I 1))))
(range 0 (dec N))))))

Alternatively
(de catalanAlt (N)

(if (=0 N)
1
(*/ 2 (dec (* 2 N)) (catalanAlt (dec N)) (inc N))))

Test
(for (N 0 (> 15 N) (inc N))

(tab (2 4 8 8 8)
N
" => "
(catalanDir N)
(catalanRec N)
(catalanAlt N)))

Output:

0 => 1 1 1
1 => 1 1 1
2 => 2 2 2
3 => 5 5 5
4 => 14 14 14
5 => 42 42 42
6 => 132 132 132
7 => 429 429 429
8 => 1430 1430 1430
9 => 4862 4862 4862

10 => 16796 16796 16796
11 => 58786 58786 58786
12 => 208012 208012 208012
13 => 742900 742900 742900
14 => 2674440 2674440 2674440

168 5 Rosetta Code Tasks starting with C

Character codes

Given a character value in your language, print its code (could be ASCII code, Uni-
code code, or whatever your language uses). For example, the character ‘a’ (low-
ercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms
the beginning of Unicode). Conversely, given a code, print out the corresponding
character.

5 Rosetta Code Tasks starting with C 169

Character matching

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation |Matching

Memory Operations
Pointers & references | Addresses

Given two strings, demonstrate the following 3 types of matchings:

1. Determining if the first string starts with second string

2. Determining if the first string contains the second string at any location

3. Determining if the first string ends with the second string

Optional requirements:

1. Print the location of the match for part 2

2. Handle multiple occurrences of a string for part 2.

170 5 Rosetta Code Tasks starting with C

: (pre? "ab" "abcd")
-> "abcd"
: (pre? "xy" "abcd")
-> NIL

: (sub? "bc" "abcd")
-> "abcd"
: (sub? "xy" "abcd")
-> NIL

: (tail (chop "cd") (chop "abcd"))
-> ("c" "d")
: (tail (chop "xy") (chop "abcd"))
-> NIL

(de positions (Pat Str)
(setq Pat (chop Pat))
(make

(for ((I . L) (chop Str) L (cdr L))
(and (head Pat L) (link I)))))

: (positions "bc" "abcdabcd")
-> (2 6)

5 Rosetta Code Tasks starting with C 171

Chat server

Write a server for a minimal text based chat. People should be able to connect via
‘telnet’, sign on with a nickname, and type messages which will then be seen by
all other connected users. Arrivals and departures of chat members should generate
appropriate notification messages.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de chat Lst
(out *Sock

(mapc prin Lst)
(prinl)))

(setq *Port (port 4004))

(loop
(setq *Sock (listen *Port))
(NIL (fork) (close *Port))
(close *Sock))

(out *Sock
(prin "Please enter your name: ")
(flush))

(in *Sock (setq *Name (line T)))

(tell ’chat "+++ " *Name " arrived +++")

(task *Sock
(in @

(ifn (eof)
(tell ’chat *Name "> " (line T))
(tell ’chat "--- " *Name " left ---")
(bye))))

(wait)

172 5 Rosetta Code Tasks starting with C

Output:

After starting the above script, connect to the chat server from two terminals:

Terminal 1 | Terminal 2
---------------------------------+---------------------------------
\$ telnet localhost 4004 |
Trying ::1... |
Trying 127.0.0.1... |
Connected to localhost. |
Escape character is ’ˆ]’. |
Please enter your name: Ben |

| \$ telnet localhost 4004
| Trying ::1...
| Trying 127.0.0.1...
| Connected to localhost.
| Escape character is ’ˆ]’.
| Please enter your name: Tom

+++ Tom arrived +++ |
Hi Tom |

| Ben> Hi Tom
| Hi Ben

Tom> Hi Ben |
| How are you?

Tom> How are you? |
Thanks, fine! |

| Ben> Thanks, fine!
| See you!

Tom> See you! |
| ˆ]
| telnet> quit

--- Tom left --- |
| Connection closed.
| \$

5 Rosetta Code Tasks starting with C 173

Checkpoint synchronization

The checkpoint synchronization is a problem of synchronizing multiple tasks. Con-
sider a workshop where several workers (tasks) assembly details of some mecha-
nism. When each of them completes his work they put the details together. There is
no store, so a worker who finished its part first must wait for others before starting
another one. Putting details together is the checkpoint at which tasks synchronize
themselves before going their paths apart.

The task

Implement checkpoint synchronization in your language.

Make sure that the solution is race condition-free. Note that a straightforward so-
lution based on events is exposed to race condition. Let two tasks A and B need
to be synchronized at a checkpoint. Each signals its event (EA and EB correspond-
ingly), then waits for the AND-combination of the events (EA&EB) and resets its
event. Consider the following scenario: A signals EA first and gets blocked waiting
for EA&EB. Then B signals EB and loses the processor. Then A is released (both
events are signaled) and resets EA. Now if B returns and enters waiting for EA&EB,
it gets lost.

When a worker is ready it shall not continue before others finish. A typical imple-
mentation bug is when a worker is counted twice within one working cycle causing
its premature completion. This happens when the quickest worker serves its cycle
two times while the laziest one is lagging behind.

If you can, implement workers joining and leaving.

174 5 Rosetta Code Tasks starting with C

The following solution implements each worker as a coroutine. Therefore, it
works only in the 64-bit version.

’checkpoints’ takes a number of projects to do, and a number of workers. Each
worker is started with a random number of steps to do (between 2 and 5), and is
kept in a list of ’Staff’ members. Whenever a worker finishes, he is removed
from that list, until it is empty and the project is done.

’worker’ takes a number of steps to perform. It "works" by printing each step,
and returning NIL when done.

(de checkpoints (Projects Workers)
(for P Projects

(prinl "Starting project number " P ":")
(for

(Staff
(mapcar

’((I) (worker (format I) (rand 2 5))) # Create staff of workers
(range 1 Workers))

Staff # While still busy
(filter worker Staff))) # Remove finished workers

(prinl "Project number " P " is done.")))

(de worker (ID Steps)
(co ID

(prinl "Worker " ID " has " Steps " steps to do")
(for N Steps

(yield ID)
(prinl "Worker " ID " step " N))

NIL))

5 Rosetta Code Tasks starting with C 175

Output:

: (checkpoints 2 3) # Start two projects with 3 workers
Starting project number 1:
Worker 1 has 2 steps to do
Worker 2 has 3 steps to do
Worker 3 has 5 steps to do
Worker 1 step 1
Worker 2 step 1
Worker 3 step 1
Worker 1 step 2
Worker 2 step 2
Worker 3 step 2
Worker 2 step 3
Worker 3 step 3
Worker 3 step 4
Worker 3 step 5
Project number 1 is done.
Starting project number 2:
Worker 1 has 4 steps to do
Worker 2 has 3 steps to do
Worker 3 has 2 steps to do
Worker 1 step 1
Worker 2 step 1
Worker 3 step 1
Worker 1 step 2
Worker 2 step 2
Worker 3 step 2
Worker 1 step 3
Worker 2 step 3
Worker 1 step 4
Project number 2 is done.

176 5 Rosetta Code Tasks starting with C

Chess player

In the early times, chess used to be the prime example of artificial intelligence.
Nowadays, some chess programs can beat a human master, and simple implementa-
tions can be written in a few pages of code.

Write a program which plays chess against a human player. No need for graphics –
a textual user interface is sufficient.

5 Rosetta Code Tasks starting with C 177

See [[Chess player/PicoLisp]].

This implementation supports all chess rules (including castling, pawn promotion
and en passant), switching sides, unlimited undo/redo, and the setup, saving and
loading of board positions to/from files.

*Board a1 .. h8
*White *Black *WKPos *BKPos *Pinned
*Depth *Moved *Undo *Redo *Me *You

(load "@lib/simul.l")

Fields/Board
x y color piece whAtt blAtt

(setq *Board (grid 8 8))

(for (X . Lst) *Board
(for (Y . This) Lst

(=: x X)
(=: y Y)
(=: color (not (bit? 1 (+ X Y))))))

(de *Straight ‘west ‘east ‘south ‘north)

(de *Diagonal
((This) (: 0 1 1 0 -1 1)) # Southwest
((This) (: 0 1 1 0 -1 -1)) # Northwest
((This) (: 0 1 -1 0 -1 1)) # Southeast
((This) (: 0 1 -1 0 -1 -1))) # Northeast

(de *DiaStraight
((This) (: 0 1 1 0 -1 1 0 -1 1)) # South Southwest
((This) (: 0 1 1 0 -1 1 0 1 1)) # West Southwest
((This) (: 0 1 1 0 -1 -1 0 1 1)) # West Northwest
((This) (: 0 1 1 0 -1 -1 0 -1 -1)) # North Northwest
((This) (: 0 1 -1 0 -1 -1 0 -1 -1)) # North Northeast
((This) (: 0 1 -1 0 -1 -1 0 1 -1)) # East Northeast
((This) (: 0 1 -1 0 -1 1 0 1 -1)) # East Southeast
((This) (: 0 1 -1 0 -1 1 0 -1 1))) # South Southeast

178 5 Rosetta Code Tasks starting with C

Pieces
(de piece (Typ Cnt Fld)

(prog1
(def

(pack (mapcar ’((Cls) (cdr (chop Cls))) Typ))
Typ)

(init> @ Cnt Fld)))

(class +White)
color ahead

(dm init> (Cnt Fld)
(=: ahead north)
(extra Cnt Fld))

(dm name> ()
(pack " " (extra) " "))

(dm move> (Fld)
(adjMove ’*White ’*WKPos whAtt- whAtt+))

(class +Black)
color ahead

(dm init> (Cnt Fld)
(=: color T)
(=: ahead south)
(extra Cnt Fld))

(dm name> ()
(pack ’< (extra) ’>))

(dm move> (Fld)
(adjMove ’*Black ’*BKPos blAtt- blAtt+))

(class +piece)
cnt field attacks

(dm init> (Cnt Fld)
(=: cnt Cnt)
(move> This Fld))

(dm ctl> ())

5 Rosetta Code Tasks starting with C 179

(class +King +piece)

(dm name> () ’K)

(dm val> () 120)

(dm ctl> ()
(unless (=0 (: cnt)) -10))

(dm moves> ()
(make

(unless
(or

(n0 (: cnt))
(get (: field) (if (: color) ’whAtt ’blAtt)))

(tryCastle west T)
(tryCastle east))

(try1Move *Straight)
(try1Move *Diagonal)))

(dm attacks> ()
(make

(try1Attack *Straight)
(try1Attack *Diagonal)))

(class +Castled)

(dm ctl> () 30)

(class +Queen +piece)

(dm name> () ’Q)

(dm val> () 90)

(dm moves> ()
(make

(tryMoves *Straight)
(tryMoves *Diagonal)))

(dm attacks> ()
(make

(tryAttacks *Straight)
(tryAttacks *Diagonal T)))

180 5 Rosetta Code Tasks starting with C

(class +Rook +piece)

(dm name> () ’R)

(dm val> () 47)

(dm moves> ()
(make (tryMoves *Straight)))

(dm attacks> ()
(make (tryAttacks *Straight)))

(class +Bishop +piece)

(dm name> () ’B)

(dm val> () 33)

(dm ctl> ()
(when (=0 (: cnt)) -10))

(dm moves> ()
(make (tryMoves *Diagonal)))

(dm attacks> ()
(make (tryAttacks *Diagonal T)))

(class +Knight +piece)

(dm name> () ’N)

(dm val> () 28)

(dm ctl> ()
(when (=0 (: cnt)) -10))

(dm moves> ()
(make (try1Move *DiaStraight)))

(dm attacks> ()
(make (try1Attack *DiaStraight)))

5 Rosetta Code Tasks starting with C 181

(class +Pawn +piece)

(dm name> () ’P)

(dm val> () 10)

(dm moves> ()
(let (Fld1 ((: ahead) (: field)) Fld2 ((: ahead) Fld1))

(make
(and

(tryPawnMove Fld1 Fld2)
(=0 (: cnt))
(tryPawnMove Fld2 T))

(tryPawnCapt (west Fld1) Fld2 (west (: field)))
(tryPawnCapt (east Fld1) Fld2 (east (: field))))))

(dm attacks> ()
(let Fld ((: ahead) (: field))

(make
(and (west Fld) (link @))
(and (east Fld) (link @)))))

182 5 Rosetta Code Tasks starting with C

Move Logic
(de inCheck (Color)

(if Color (get *BKPos ’whAtt) (get *WKPos ’blAtt)))

(de whAtt+ (This Pce)
(=: whAtt (cons Pce (: whAtt))))

(de whAtt- (This Pce)
(=: whAtt (delq Pce (: whAtt))))

(de blAtt+ (This Pce)
(=: blAtt (cons Pce (: blAtt))))

(de blAtt- (This Pce)
(=: blAtt (delq Pce (: blAtt))))

(de adjMove (Var KPos Att- Att+)
(let (W (: field whAtt) B (: field blAtt))

(when (: field)
(put @ ’piece NIL)
(for F (: attacks) (Att- F This)))

(nond
(Fld (set Var (delq This (val Var))))
((: field) (push Var This)))

(ifn (=: field Fld)
(=: attacks)
(put Fld ’piece This)
(and (isa ’+King This) (set KPos Fld))
(for F (=: attacks (attacks> This)) (Att+ F This)))

(reAtttack W (: field whAtt) B (: field blAtt))))

(de reAtttack (W W2 B B2)
(for This W

(unless (memq This W2)
(for F (: attacks) (whAtt- F This))
(for F (=: attacks (attacks> This)) (whAtt+ F This))))

(for This W2
(for F (: attacks) (whAtt- F This))
(for F (=: attacks (attacks> This)) (whAtt+ F This)))

(for This B
(unless (memq This B2)

(for F (: attacks) (blAtt- F This))
(for F (=: attacks (attacks> This)) (blAtt+ F This))))

(for This B2
(for F (: attacks) (blAtt- F This))
(for F (=: attacks (attacks> This)) (blAtt+ F This))))

5 Rosetta Code Tasks starting with C 183

(de try1Move (Lst)
(for Dir Lst

(let? Fld (Dir (: field))
(ifn (get Fld ’piece)

(link (list This (cons This Fld)))
(unless (== (: color) (get @ ’color))

(link
(list This

(cons (get Fld ’piece))
(cons This Fld))))))))

(de try1Attack (Lst)
(for Dir Lst

(and (Dir (: field)) (link @))))

(de tryMoves (Lst)
(for Dir Lst

(let Fld (: field)
(loop

(NIL (setq Fld (Dir Fld)))
(T (get Fld ’piece)

(unless (== (: color) (get @ ’color))
(link

(list This
(cons (get Fld ’piece))
(cons This Fld)))))

(link (list This (cons This Fld)))))))

(de tryAttacks (Lst Diag)
(use (Pce Cls Fld2)

(for Dir Lst
(let Fld (: field)

(loop
(NIL (setq Fld (Dir Fld)))
(link Fld)
(T

(and
(setq Pce (get Fld ’piece))
(<> (: color) (get Pce ’color))))

(T (== ’+Pawn (setq Cls (last (type Pce))))
(and

Diag
(setq Fld2 (Dir Fld))
(= (get Fld2 ’y) (get ((get Pce ’ahead) Fld) ’y))
(link Fld2)))

(T (memq Cls ’(+Knight +Queen +King)))
(T (and Pce (xor Diag (== Cls ’+Bishop)))))))))

184 5 Rosetta Code Tasks starting with C

(de tryPawnMove (Fld Flg)
(unless (get Fld ’piece)

(if Flg
(link (list This (cons This Fld)))
(for Cls ’(+Queen +Knight +Rook +Bishop)

(link
(list This

(cons This)
(cons

(piece (list (car (type This)) Cls) (: cnt))
Fld)))))))

(de tryPawnCapt (Fld1 Flg Fld2)
(if (get Fld1 ’piece)

(unless (== (: color) (get @ ’color))
(if Flg

(link
(list This

(cons (get Fld1 ’piece))
(cons This Fld1)))

(for Cls ’(+Queen +Knight +Rook +Bishop)
(link

(list This
(cons (get Fld1 ’piece))
(cons This)
(cons

(piece (list (car (type This)) Cls) (: cnt))
Fld1))))))

(let? Pce (get Fld2 ’piece)
(and

(== Pce (car *Moved))
(= 1 (get Pce ’cnt))
(isa ’+Pawn Pce)
(n== (: color) (get Pce ’color))
(link (list This (cons Pce) (cons This Fld1)))))))

5 Rosetta Code Tasks starting with C 185

(de tryCastle (Dir Long)
(use (Fld1 Fld2 Fld Pce)

(or
(get (setq Fld1 (Dir (: field))) ’piece)
(get Fld1 (if (: color) ’whAtt ’blAtt))
(get (setq Fld2 (Dir Fld1) Fld Fld2) ’piece)
(when Long

(or
(get (setq Fld (Dir Fld)) ’piece)
(get Fld (if (: color) ’whAtt ’blAtt))))

(and
(== ’+Rook (last (type (setq Pce (get (Dir Fld) ’piece)))))
(=0 (get Pce ’cnt))
(link

(list This
(cons This)
(cons

(piece (cons (car (type This)) ’(+Castled +King)) 1)
Fld2)

(cons Pce Fld1)))))))

(de pinned (Fld Lst Color)
(use (Pce L P)

(and
(loop

(NIL (setq Fld (Dir Fld)))
(T (setq Pce (get Fld ’piece))

(and
(= Color (get Pce ’color))
(setq L

(make
(loop

(NIL (setq Fld (Dir Fld)))
(link Fld)
(T (setq P (get Fld ’piece))))))

(<> Color (get P ’color))
(memq (last (type P)) Lst)
(cons Pce L))))

(link @))))

186 5 Rosetta Code Tasks starting with C

Moves
Move ((p1 (p1 . f2)) . ((p1 . f1)))
Capture ((p1 (p2) (p1 . f2)) . ((p1 . f1) (p2 . f2)))
Castle ((K (K) (C . f2) (R . f4)) . ((R . f3) (K . f1)))
Promote ((P (P) (Q . f2)) . ((Q) (P . f1)))
Capt/Prom ((P (p1) (P) (Q . f2)) . ((Q) (P . f1) (p1 . f2)))
(de moves (Color)

(filter
’((Lst)

(prog2
(move (car Lst))
(not (inCheck Color))
(move (cdr Lst))))

(mapcan
’((Pce)

(mapcar
’((Lst)

(cons Lst
(flip

(mapcar
’((Mov) (cons (car Mov) (get Mov 1 ’field)))
(cdr Lst)))))

(moves> Pce)))
(if Color *Black *White))))

(de move (Lst)
(if (atom (car Lst))

(inc (prop (push ’*Moved (pop ’Lst)) ’cnt))
(dec (prop (pop ’*Moved) ’cnt)))

(for Mov Lst
(move> (car Mov) (cdr Mov))))

5 Rosetta Code Tasks starting with C 187

Evaluation
(de mate (Color)

(and (inCheck Color) (not (moves Color))))

(de battle (Fld Prey Attacker Defender)
(use Pce

(loop
(NIL (setq Pce (mini ’val> Attacker)) 0)
(setq Attacker (delq Pce Attacker))
(NIL (and (asoq Pce *Pinned) (not (memq Fld @)))

(max 0 (- Prey (battle Fld (val> Pce) Defender Attacker)))))))

Ref. Sargon, Dan and Kate Spracklen, Hayden 1978
(de cost (Color)

(if (mate (not Color))
-9999
(setq *Pinned

(make
(for Dir *Straight

(pinned *WKPos ’(+Rook +Queen))
(pinned *BKPos ’(+Rook +Queen) T))

(for Dir *Diagonal
(pinned *WKPos ’(+Bishop +Queen))
(pinned *BKPos ’(+Bishop +Queen) T))))

(let (Ctl 0 Mat 0 Lose 0 Win1 NIL Win2 NIL Flg NIL)
(use (White Black Col Same B)

(for Lst *Board
(for This Lst

(setq White (: whAtt) Black (: blAtt))
((if Color inc dec) ’Ctl (- (length White) (length Black)))
(let? Val (and (: piece) (val> @))

(setq Col (: piece color) Same (== Col Color))
((if Same dec inc) ’Ctl (ctl> (: piece)))
(unless

(=0
(setq B

(if Col
(battle This Val White Black)
(battle This Val Black White))))

(dec ’Val 5)
(if Same

(setq
Lose (max Lose B)
Flg (or Flg (== (: piece) (car *Moved))))

(when (> B Win1)
(xchg ’B ’Win1)
(setq Win2 (max Win2 B)))))

((if Same dec inc) ’Mat Val)))))
(unless (=0 Lose) (dec ’Lose 5))
(if Flg

(* 4 (+ Mat Lose))
(when Win2

(dec ’Lose (>> 1 (- Win2 5))))
(+ Ctl (* 4 (+ Mat Lose)))))))

188 5 Rosetta Code Tasks starting with C

Game
(de display (Res)

(when Res
(disp *Board T

’((This)
(cond

((: piece) (name> @))
((: color) " - ")
(T " ")))))

(and (inCheck *You) (prinl "(+)"))
Res)

(de moved? (Lst)
(or

(> 16 (length Lst))
(find ’((This) (n0 (: cnt))) Lst)))

(de bookMove (From To)
(let Pce (get From ’piece)

(list 0 (list (list Pce (cons Pce To)) (cons Pce From)))))

(de myMove ()
(let? M

(cadr
(cond

((moved? (if *Me *Black *White))
(game *Me *Depth moves move cost))

(*Me
(if (member (get *Moved 1 ’field ’x) (1 2 3 5))

(bookMove ’e7 ’e5)
(bookMove ’d7 ’d5)))

((rand T) (bookMove ’e2 ’e4))
(T (bookMove ’d2 ’d4))))

(move (car (push ’*Undo M)))
(off *Redo)
(cons

(caar M)
(cdr (asoq (caar M) (cdr M)))
(pick cdr (cdar M)))))

5 Rosetta Code Tasks starting with C 189

(de yourMove (From To Cls)
(when

(find
’((Mov)

(and
(== (caar Mov) (get From ’piece))
(== To (pick cdr (cdar Mov)))
(or

(not Cls)
(isa Cls (car (last (car Mov)))))))

(moves *You))
(prog1 (car (push ’*Undo @))

(off *Redo)
(move @))))

(de undo ()
(move (cdr (push ’*Redo (pop ’*Undo)))))

(de redo ()
(move (car (push ’*Undo (pop ’*Redo)))))

(de setup (Depth You Init)
(setq *Depth (or Depth 5) *You You *Me (not You))
(off *White *Black *Moved *Undo *Redo)
(for Lst *Board

(for This Lst (=: piece) (=: whAtt) (=: blAtt)))
(if Init

(for L Init
(with (piece (cadr L) 0 (car L))

(unless (caddr L)
(=: cnt 1)
(push ’*Moved This))))

(mapc
’((Cls Lst)

(piece (list ’+White Cls) 0 (car Lst))
(piece ’(+White +Pawn) 0 (cadr Lst))
(piece ’(+Black +Pawn) 0 (get Lst 7))
(piece (list ’+Black Cls) 0 (get Lst 8)))

’(+Rook +Knight +Bishop +Queen +King +Bishop +Knight +Rook)

*Board)))

190 5 Rosetta Code Tasks starting with C

(de main (Depth You Init)
(setup Depth You Init)
(display T))

(de go Args
(display

(cond
((not Args) (xchg ’*Me ’*You) (myMove))
((== ’- (car Args)) (and *Undo (undo)))
((== ’+ (car Args)) (and *Redo (redo)))
((apply yourMove Args) (display T) (myMove)))))

Print position to file
(de ppos (File)

(out File
(println

(list ’main *Depth *You
(lit

(mapcar
’((This)

(list
(: field)
(val This)
(not (memq This *Moved))))

(append *White *Black)))))))

5 Rosetta Code Tasks starting with C 191

Start:

\$ pil chess.l -main +
+---+---+---+---+---+---+---+---+

8 |<R>|<N>||<Q>|<K>||<N>|<R>|
+---+---+---+---+---+---+---+---+

7 |<P>|<P>|<P>|<P>|<P>|<P>|<P>|<P>|
+---+---+---+---+---+---+---+---+

6 | | - | | - | | - | | - |
+---+---+---+---+---+---+---+---+

5 | - | | - | | - | | - | |
+---+---+---+---+---+---+---+---+

4 | | - | | - | | - | | - |
+---+---+---+---+---+---+---+---+

3 | - | | - | | - | | - | |
+---+---+---+---+---+---+---+---+

2 | P | P | P | P | P | P | P | P |
+---+---+---+---+---+---+---+---+

1 | R | N | B | Q | K | B | N | R |
+---+---+---+---+---+---+---+---+

a b c d e f g h

192 5 Rosetta Code Tasks starting with C

Entering moves:

: (go e2 e4)

Undo moves:

: (go -)

Redo:

: (go +)

Switch sides:

: (go)

Save position to a file:

: (ppos "file")

Load position from file:

: (load "file")

5 Rosetta Code Tasks starting with C 193

Cholesky decomposition

Every symmetric, positive definite matrix A can be decomposed into a product of a
unique lower triangular matrix L and its transpose:

A = LLT

L is called- the Cholesky factor of A, and can be interpreted as a generalized square
root of A, as described in Cholesky decomposition.

In a 3x3 example, we have to solve the following system of equations:

We can see that for the diagonal elements (lkk) of L there is a calculation pattern:

or in general:

http://en.wikipedia.org/wiki/Cholesky_decomposition

194 5 Rosetta Code Tasks starting with C

For the elements below the diagonal (lik, where i > k) there is also a calculation
pattern:

which can also be expressed in a general formula:

Task description

The task is to implement a routine which will return a lower Cholesky factor L for
every given symmetric, positive definite nxn matrix A. You should then test it on the
following two examples and include your output.

Example 1:

25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3

Example 2:

5 Rosetta Code Tasks starting with C 195

18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262

196 5 Rosetta Code Tasks starting with C

(scl 9)
(load "@lib/math.l")

(de cholesky (A)
(let L (mapcar ’(() (need (length A) 0)) A)

(for (I . R) A
(for J I

(let S (get R J)
(for K (inc J)

(dec ’S (*/ (get L I K) (get L J K) 1.0)))
(set (nth L I J)

(if (= I J)
(sqrt (* 1.0 S))
(*/ S 1.0 (get L J J)))))))

(for R L
(for N R (prin (align 9 (round N 5))))
(prinl))))

Test:

(cholesky
’((25.0 15.0 -5.0) (15.0 18.0 0) (-5.0 0 11.0)))

(prinl)

(cholesky
(quote

(18.0 22.0 54.0 42.0)
(22.0 70.0 86.0 62.0)
(54.0 86.0 174.0 134.0)
(42.0 62.0 134.0 106.0)))

Output:

5.00000 0.00000 0.00000
3.00000 3.00000 0.00000

-1.00000 1.00000 3.00000

4.24264 0.00000 0.00000 0.00000
5.18545 6.56591 0.00000 0.00000

12.72792 3.04604 1.64974 0.00000
9.89949 1.62455 1.84971 1.39262

5 Rosetta Code Tasks starting with C 197

Classes

In object-oriented programming class is a set (a transitive closure) of types bound
by the relation of inheritance. It is said that all types derived from some base type T
and the type T itself form a class T. The first type T from the class T sometimes is
called the root type of the class.

A class of types itself, as a type, has the values and operations of its own. The op-
erations of are usually called methods of the root type. Both operations and values
are called polymorphic.

A polymorphic operation (method) selects an implementation depending on the
actual specific type of the polymorphic argument. The action of choice the type-
specific implementation of a polymorphic operation is called dispatch. Correspond-
ingly, polymorphic operations are often called dispatching or virtual. Operations
with multiple arguments and/or the results of the class are called multi-methods. A
further generalization of is the operation with arguments and/or results from differ-
ent classes.

• single-dispatch languages are those that allow only one argument or result to
control the dispatch. Usually it is the first parameter, often hidden, so that a prefix
notation x.f () is used instead of mathematical f (x).

• multiple-dispatch languages allow many arguments and/or results to control the
dispatch.

A polymorphic value has a type tag indicating its specific type from the class and the
corresponding specific value of that type. This type is sometimes called the most
specific type of a [polymorphic] value. The type tag of the value is used in order to
resolve the dispatch. The set of polymorphic values of a class is a transitive closure
of the sets of values of all types from that class.

In many OO languages the type of the class of T and T itself are considered equiv-
alent. In some languages they are distinct (like in Ada). When class T and T are
equivalent, there is no way to distinguish polymorphic and specific values.

The purpose of this task is to create a basic class with a method, a constructor, an
instance variable and how to instantiate it.

(class +Rectangle)
dx dy

(dm area> () # Define a a method that calculates the rectangle’s area
(* (: dx) (: dy)))

(println # Create a rectangle, and print its area
(area> (new ’(+Rectangle) ’dx 3 ’dy 4)))

http://en.wikipedia.org/wiki/Transitive_closure

198 5 Rosetta Code Tasks starting with C

Closest-pair problem

The aim of this task is to provide a function to find the closest two points among a
set of given points in two dimensions, i.e. to solve the Closest pair of points problem
in the planar case.

The straightforward solution is a O(n2) algorithm (which we can call brute-force
algorithm); the pseudocode (using indexes) could be simply:

bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then

return
else

minDistance |P(1) - P(2)|
minPoints { P(1), P(2) }
foreach i [1, N-1]

foreach j [i+1, N]
if |P(i) - P(j)| < minDistance then

minDistance |P(i) - P(j)|
minPoints { P(i), P(j) }

endif
endfor

endfor
return minDistance, minPoints
endif

A better algorithm is based on the recursive divide&conquer approach, as explained
also at Wikipedia, which is O(n log n); a pseudocode could be:

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem#Planar_case

5 Rosetta Code Tasks starting with C 199

closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and

yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N 3 then

return closest points of xP using brute-force algorithm
else

xL points of xP from 1 to N/2
xR points of xP from N/2+1 to N
xm xP(N/2)x
yL { p yP: px xm }
yR { p yP: px > xm }
(dL, pairL) closestPair of (xL, yL)
(dR, pairR) closestPair of (xR, yR)
(dmin, pairMin) (dR, pairR)
if dL < dR then

(dmin, pairMin) (dL, pairL)
endif
yS { p yP: |xm - px| < dmin }
nS number of points in yS
(closest, closestPair) (dmin, pairMin)
for i from 1 to nS - 1

k i + 1
while k nS and yS(k)y - yS(i)y < dmin

if |yS(k) - yS(i)| < closest then
(closest, closestPair) (|yS(k) - yS(i)|, {yS(k), yS(i)})

endif
k k + 1

endwhile
endfor
return closest, closestPair

endif

References and further readings

• Closest pair of points problem

• Closest Pair (McGill)

• Closest Pair (UCSB)

• Closest pair (WUStL)

• Closest pair (IUPUI)

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html
http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf
http://classes.cec.wustl.edu/~cse241/handouts/closestpair.pdf
http://www.cs.iupui.edu/~xkzou/teaching/CS580/Divide-and-conquer-closestPair.ppt

200 5 Rosetta Code Tasks starting with C

A brute-force solution:

(de closestPairBF (Lst)
(let Min T

(use (Pt1 Pt2)
(for P Lst

(for Q Lst
(or

(== P Q)
(>=

(setq N
(let (A (- (car P) (car Q)) B (- (cdr P) (cdr Q)))

(+ (* A A) (* B B))))
Min)

(setq Min N Pt1 P Pt2 Q))))
(list Pt1 Pt2 (sqrt Min)))))

Test:

: (scl 6)
-> 6

: (closestPairBF
(quote

(0.654682 . 0.925557)
(0.409382 . 0.619391)
(0.891663 . 0.888594)
(0.716629 . 0.996200)
(0.477721 . 0.946355)
(0.925092 . 0.818220)
(0.624291 . 0.142924)
(0.211332 . 0.221507)
(0.293786 . 0.691701)
(0.839186 . 0.728260)))

-> ((891663 . 888594) (925092 . 818220) 77910)

5 Rosetta Code Tasks starting with C 201

Closures/Variable capture

Task: Create a list of 10 functions, in the simplest manner possible (anonymous
functions are encouraged), such that the function at index i (you may choose to
start i from either 0 or 1), when run, should return the square of the index, that is,
i2. Display the result of running any but the last function, to demonstrate that the
function indeed remembers its value.

Goal: To demonstrate how to create a series of independent closures based on the
same template but maintain separate copies of the variable closed over. In imperative
languages, one would generally use a loop with a mutable counter variable. For each
function to maintain the correct number, it has to capture the value of the variable
at the time it was created, rather than just a reference to the variable, which would
have a different value by the time the function was run.

(setq FunList
(make

(for @N 10
(link (curry (@N) () (* @N @N))))))

Test:

: ((get FunList 2))
-> 4

: ((get FunList 8))
-> 64

202 5 Rosetta Code Tasks starting with C

Collections

Collections are abstractions to represent sets of values. In statically-typed languages,
the values are typically of a common data type.

Create a collection, and add a few values to it.

The direct way in PicoLisp is a linear list (other possibilities could involve
[http://software-lab.de/doc/refI.html#idx index] trees or
[http://software-lab.de/doc/ref.html#symbol property] lists).

: (setq Lst (3 4 5 6))
-> (3 4 5 6)

: (push ’Lst 2)
-> 2

: (push ’Lst 1)
-> 1

: Lst
-> (1 2 3 4 5 6)

: (insert 4 Lst ’X)
-> (1 2 3 X 4 5 6)

5 Rosetta Code Tasks starting with C 203

Color of a screen pixel

Get color information from an arbitrary pixel on the screen, such as the current
location of the mouse cursor. The mouse cursor may or may not have to be active in
a GUI created by your program. These functions are OS related.

Using ’[http://www.muquit.com/muquit/software/grabc/grabc.html grabc]’
as recommended in the C solution

(in ’(grabc)
(mapcar hex (cdr (line NIL 1 2 2 2))))

Output:

73,61,205
-> (73 61 205)

204 5 Rosetta Code Tasks starting with C

Colour bars/Display

The task is to display a series of vertical color bars across the width of the display.
The color bars should either use the system palette, or the sequence of colors: Black,
Red, Green, Blue, Magenta, Cyan, Yellow, White.

(call ’clear)

(let Width (in ’(tput cols) (read))
(do (in ’(tput lines) (read))

(for B (range 0 7)
(call ’tput ’setab B)
(space (/ Width 8)))

(prinl)))

(call ’tput ’sgr0) # reset

5 Rosetta Code Tasks starting with C 205

Colour pinstripe/Display

The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient num-
ber of pinstripes to span the entire width of the graphics display. The pinstripes
should either follow the system palette sequence or a sequence that includes Black,
Red, Green, Blue, Magenta, Cyan, Yellow, White.

After filling the top quarter of the display, we switch to a wider 2 pixel wide verti-
cal pinstripe pattern. Halfway down the display we switch to 3 pixel wide vertical
pinstripe and then finally to a 4 pixels wide vertical pinstripe for the last quarter of
the display.

(de *Colors # Black Red Green Blue Magenta Cyan Yellow White
((0 0 0) (255 0 0) (0 255 0) (0 0 255)

(255 0 255) (0 255 255) (255 255 0) (255 255 255) .))

(let Ppm # Create PPM of 384 x 288 pixels
(make

(for N 4
(let L

(make
(do (/ 384 N)

(let C (pop *Colors)
(do N (link C)))))

(do 72 (link L)))))
(out ’(display) # Pipe to ImageMagick

(prinl "P6") # NetPBM format
(prinl (length (car Ppm)) " " (length Ppm))
(prinl 255)
(for Y Ppm (for X Y (apply wr X)))))

206 5 Rosetta Code Tasks starting with C

Colour pinstripe/Printer

The task is to create 1 point wide colour vertical pinstripes with a sufficient number
of pinstripes to span the entire width of the colour graphics printer. The pinstripes
should alternate between each individual cartridge ink and ink pair and black and
white pinstripes should be included. A typical pinstripe sequence woud be black,
red, green, blue, magenta, cyan, yellow, white.

After the first inch of printing, we switch to a wider 2 pixel wide vertical pinstripe
pattern. and to 3 point wide vertical for the next inch, and then 4 point wide, etc. This
trend continues for the entire length of the page (or for 12 inches of run length in
the case of a printer using continuous roll stationery). After printing the test pattern
the page is ejected (or the test pattern is rolled clear of the printer enclosure, in the
case of continuous roll printers).

Note that it is an acceptable solution to use the smallest marks that the language pro-
vides, rather than working at native printer resolution, where this is not achievable
from within the language.

Optionally, on systems where the printer resolution cannot be determined, it is per-
missible to prompt the user for printer resolution, and to calculate point size based
on user input, enabling fractional point sizes to be used.

5 Rosetta Code Tasks starting with C 207

(load "@lib/ps.l")

Using circular lists for an endless supply of colors
(black red green blue magenta cyan yellow white)
(setq

Red (0 100 0 0 100 0 100 100 .)
Green (0 0 100 0 0 100 100 100 .)
Blue (0 0 0 100 100 100 0 100 .))

(call ’lpr
(pdf "pinstripes"

(a4) # 595 x 842 dots
(let (I 0 Step 1)

(for X 595
(color (car Red) (car Green) (car Blue)

(vline X 0 842))
(when (= Step (inc ’I))

(zero I)
(pop ’Red)
(pop ’Green)
(pop ’Blue))

(when (=0 (\% X 72)) # 1 inch
(zero I)
(inc ’Step))))

(page)))

208 5 Rosetta Code Tasks starting with C

Combinations

Given non-negative integers m and n, generate all size m combinations of the integers
from 0 to n-1 in sorted order (each combination is sorted and the entire table is
sorted).

For example, 3 comb 5 is

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

If it is more “natural” in your language to start counting from 1 instead of 0 the
combinations can be of the integers from 1 to n.

(de comb (M Lst)
(cond

((=0 M) ’(NIL))
((not Lst))
(T

(conc
(mapcar

’((Y) (cons (car Lst) Y))
(comb (dec M) (cdr Lst)))

(comb M (cdr Lst))))))

(comb 3 (1 2 3 4 5))

http://mathworld.wolfram.com/Combination.html

5 Rosetta Code Tasks starting with C 209

Combinations with repetitions

The set of combinations with repetitions is computed from a set, S (of cardinality
n), and a size of resulting selection, k, by reporting the sets of cardinality k where
each member of those sets is chosen from S. In the real world, it is about choosing
sets where there is a “large” supply of each type of element and where the order of
choice does not matter. For example:

Q: How many ways can a person choose two doughnuts from a store selling three
types of doughnut: iced, jam, and plain? (i.e., S is {iced,jam,plain}, | S | = 3, and k
= 2.)

A: 6: {iced, iced}; {iced, jam}; {iced, plain}; {jam, jam}; {jam, plain}; {plain,
plain}.

Note that both the order of items within a pair, and the order of the pairs given in
the answer is not significant; the pairs represent multisets.

Task description

• Write a function/program/routine/.. to generate all the combinations with repeti-
tions of n types of things taken k at a time and use it to show an answer to the
doughnut example above.

• For extra credit, use the function to compute and show just the number of ways of
choosing three doughnuts from a choice of ten types of doughnut. Do not show
the individual choices for this part.

References:

• k-combination with repetitions

http://en.wikipedia.org/wiki/Combination

210 5 Rosetta Code Tasks starting with C

(de combrep (N Lst)
(cond

((=0 N) ’(NIL))
((not Lst))
(T

(conc
(mapcar

’((X) (cons (car Lst) X))
(combrep (dec N) Lst))

(combrep N (cdr Lst))))))

Output:

: (combrep 2 ’(iced jam plain))
-> ((iced iced) (iced jam) (iced plain) (jam jam) (jam plain) (plain plain))

: (length (combrep 3 (range 1 10)))
-> 220

5 Rosetta Code Tasks starting with C 211

Command-line arguments

Command-line arguments is part of Short Circuit’s Console Program Basics se-
lection.

Retrieve the list of command-line arguments given to the program. For programs
that only print the arguments when run directly, see Scripted main.

See also Program name.

For parsing command line arguments intelligently, see Parsing command-line argu-
ments.

Example command line:

myprogram -c "alpha beta" -h "gamma"

212 5 Rosetta Code Tasks starting with C

There are three ways to handle command-line arguments in PicoLisp:

1. Obtain all arguments as a list of strings via
’[http://software-lab.de/doc/refA.html#argv argv]’

2. Fetch each argument individually with
’[http://software-lab.de/doc/refO.html#opt opt]’

3. Use the built-in
[http://software-lab.de/doc/ref.html#invoc command-line interpretation],
where arguments starting with a hypen are executed as functions.

Here we use the third option, as it is not so obvious, sometimes more flexible,
and in fact the most commonly used one for application development.

We define ’c’ and ’h’ as functions, which retrieve their argument with ’opt’,
and then ’[http://software-lab.de/doc/refL.html#load load]’ all remaining
command line arguments.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de c ()
(prinl "Got ’c’: " (opt)))

(de h ()
(prinl "Got ’h’: " (opt)))

(load T)
(bye)

Output:

\$./myprogram -c "alpha beta" -h "gamma"
Got ’c’: alpha beta
Got ’h’: gamma

5 Rosetta Code Tasks starting with C 213

Comments

Demonstrate all ways to include text in a language source file which is completely
ignored by the compiler or interpreter.

See Also:

• xkcd (Humor: hand gesture denoting // for “commenting out” people).

The rest of the line is ignored
#{

This is a
multiline comment

}#
NIL
Immediately stop reading this file. Because all text in the input file following
a top-level ’NIL’ is ignored.

This is typically used conditionally, with a read-macro expression like
‘*Dbg
so that this text is only read if in debugging mode.

http://xkcd.com/156

214 5 Rosetta Code Tasks starting with C

Compile-time calculation

Some programming languages allow calculation of values at compile time. For this
task, calculate 10! at compile time. Print the result when the program is run.

Discuss what limitations apply to compile-time calculations in your language.

The PicoLisp "compiler" is the so-called "reader", which converts the
human-readable source code into nested internal pointer structures. When it
runs, arbitrary expressions can be executed with the backqoute and tilde
operators ([http://software-lab.de/doc/ref.html#macro-io read macros]).

(de fact (N)
(apply * (range 1 N)))

(de foo ()
(prinl "The value of fact(10) is " ‘(fact 10)))

Output:

: (pp ’foo) # Pretty-print the function
(de foo NIL

(prinl "The value of fact(10) is " 3628800))
-> foo

: (foo) # Execute it
The value of fact(10) is 3628800
-> 3628800

5 Rosetta Code Tasks starting with C 215

Compound data type

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.

Create a compound data type Point(x,y).

A compound data type is one that holds multiple independent values. See also Enu-
meration.

(class +Point)

(dm T (X Y)
(=: x X)
(=: y Y))

(setq P (new ’(+Point) 3 4))

(show P)

Output:

\$52717735311266 (+Point)
y 4
x 3

216 5 Rosetta Code Tasks starting with C

Concurrent computing

Using either native language concurrency syntax or freely available libraries write
a program to display the strings “Enjoy” “Rosetta” “Code”, one string per line, in
random order. Concurrency syntax must use threads, tasks, co-routines, or whatever
concurrency is called in your language.

Using background tasks

(for (N . Str) ’("Enjoy" "Rosetta" "Code")
(task (- N) (rand 1000 4000) # Random start time 1 .. 4 sec

Str Str # Closure with string value
(println Str) # Task body: Print the string
(task @))) # and stop the task

Using child processes

(for Str ’("Enjoy" "Rosetta" "Code")
(let N (rand 1000 4000) # Randomize

(unless (fork) # Create child process
(wait N) # Wait 1 .. 4 sec
(println Str) # Print string
(bye)))) # Terminate child process

5 Rosetta Code Tasks starting with C 217

Conditional structures

Control Structures

These are examples of control structures. You may also be interested in:

• Conditional structures

• Exceptions

• Flow-control structures

• Loops

This page lists the conditional structures offered by different programming lan-
guages. Common conditional structures are if-then-else and switch.

(if (condition) # If the condition evaluates to non-NIL
(then-do-this) # Then execute the following expression
(else-do-that) # Else execute all other expressions
(and-more))

(ifn (condition) # If the condition evaluates to NIL
(then-do-this) # Then execute the following expression
(else-do-that) # Else execute all other expressions
(and-more))

(when (condition) # If the condition evaluates to non-NIL
(then-do-this) # Then execute tall following expressions
(and-more))

(unless (condition) # If the condition evaluates to NIL
(then-do-this) # Then execute all following expressions
(and-more))

(if2 (condition1) (condition2) # If both conditions evaluate to non-NIL
(expression-both) # Then execute this expression
(expression-first) # Otherwise this for the first
(expression-second) # or this the second condition.
(expression-none) # If both are NIL, all following expressions
(and-more))

218 5 Rosetta Code Tasks starting with C

(cond
((condition1) # If this condition evaluates to non-NIL

(expression 1) # Execute these expression(s)
(more 1))

((condition2) # Otherwise, if this evaluates to non-NIL
(expression 2) # Execute these expression(s)
(more 2))

(T # If none evaluated to non-NIL
(expression 1) # Execute these expression(s)
(more 1))

(nond
((condition1) # If this condition evaluates to NIL

(expression 1) # Execute these expression(s)
(more 1))

((condition2) # Otherwise, if this evaluates to NIL
(expression 2) # Execute these expression(s)
(more 2))

(NIL # If none evaluated to NIL
(expression 1) # Execute these expression(s)
(more 1))

(case (expression) # Evaluate the expression
(value1 # If it is equal to, or member of, ’value1’

(do-this1) # Execute these expression(s)
(do-that1))

(value2 # Else if it is equal to, or member of, ’value2’
(do-this2) # Execute these expression(s)
(do-that2))

(T # Else execute final expression(s)
(do-something-else)))

5 Rosetta Code Tasks starting with C 219

Constrained Random Points on a Circle

Generate 100 <x,y> coordinate pairs such that x and y are integers sampled from

the uniform distribution with the condition that . Then dis-
play/plot them. The outcome should be a “fuzzy” circle. The actual number of points
plotted may be less than 100, given that some pairs may be generated more than
once.

There are several possible approaches to accomplish this. Here are two possible
algorithms.

1) Generate random pairs of integers and filter out those that don’t satisfy this con-
dition:

.

2) Precalculate the set of all possible points (there are 404 of them) and select ran-
domly from this set.

220 5 Rosetta Code Tasks starting with C

(let Area (make (do 31 (link (need 31 " "))))
(use (X Y)

(do 100
(until

(>=
15
(sqrt

(+
(* (setq X (rand -15 15)) X)
(* (setq Y (rand -15 15)) Y)))

10))
(set (nth Area (+ 16 X) (+ 16 Y)) "#")))

(mapc prinl Area))

Output:

#
##

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#
#

#
#

#
#

#
#

#
##

#
#

#

5 Rosetta Code Tasks starting with C 221

Constrained genericity

Constrained genericity means that a parametrized type or function (see Parametric
Polymorphism) can only be instantiated on types fulfilling some conditions, even if
those conditions are not used in that function.

Say a type is called “eatable” if you can call the function eat on it. Write a generic
type FoodBox which contains a collection of objects of a type given as parameter,
but can only be instantiated on eatable types. The FoodBox shall not use the function
eat in any way (i.e. without the explicit restriction, it could be instantiated on any
type). The specification of a type being eatable should be as generic as possible in
your language (i.e. the restrictions on the implementation of eatable types should be
as minimal as possible). Also explain the restrictions, if any, on the implementation
of eatable types, and show at least one example of an eatable type.

222 5 Rosetta Code Tasks starting with C

(class +Eatable)

(dm eat> ()
(prinl "I’m eatable"))

(class +FoodBox)
obj

(dm set> (Obj)
(unless (method ’eat> Obj) # Check if the object is eatable

(quit "Object is not eatable" Obj))
(=: obj Obj)) # If so, set the object

(let (Box (new ’(+FoodBox)) Eat (new ’(+Eatable)) NoEat (new ’(+Bla)))
(set> Box Eat) # Works
(set> Box NoEat)) # Gives an error

Output:

\$384320489 -- Object is not eatable

? (show Box)
\$384320487 (+FoodBox)

obj \$384320488

? (show Box ’obj)
\$384320488 (+Eatable)

? (show NoEat)
\$384320489 (+Bla)

5 Rosetta Code Tasks starting with C 223

Conway’s Game of Life

The Game of Life is a cellular automaton devised by the British mathematician
John Horton Conway in 1970. It is the best-known example of a cellular automaton.

Conway’s game of life is described here:

A cell C is represented by a 1 when alive or 0 when dead, in an m-by-m square array
of cells. We calculate N - the sum of live cells in C’s eight-location neighbourhood,
then cell C is alive or dead in the next generation based on the following table:

C N new C
1 0,1 -> 0 # Lonely
1 4,5,6,7,8 -> 0 # Overcrowded
1 2,3 -> 1 # Lives
0 3 -> 1 # It takes three to give birth!
0 0,1,2,4,5,6,7,8 -> 0 # Barren

Assume cells beyond the boundary are always dead.

The “game” is actually a zero-player game, meaning that its evolution is determined
by its initial state, needing no input from human players. One interacts with the
Game of Life by creating an initial configuration and observing how it evolves.

Although you should test your implementation on more complex examples such as
the glider in a larger universe, show the action of the blinker (three adjoining cells
in a row all alive), over three generations, in a 3 by 3 grid.

http://en.wikipedia.org/wiki/cellular_automaton
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://en.wikipedia.org/wiki/Moore_neighborhood
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns

224 5 Rosetta Code Tasks starting with C

This example uses ’grid’ and ’disp’ from "lib/simul.l". These functions
maintain an array of multiply linked objects, and are also used in the chess
program and other games in the distribution.

(load "@lib/simul.l")

(de life (DX DY . Init)
(let Grid (grid DX DY)

(for This Init
(=: life T))

(loop
(disp Grid NIL

’((This) (if (: life) "X " " ")))
(wait 1000)
(for Col Grid

(for This Col
(let N # Count neighbors

(cnt
’((Dir) (get (Dir This) ’life))
(quote

west east south north
((X) (south (west X)))
((X) (north (west X)))
((X) (south (east X)))
((X) (north (east X)))))

(=: next # Next generation
(if (: life)

(>= 3 N 2)
(= N 3))))))

(for Col Grid # Update
(for This Col

(=: life (: next)))))))

(life 5 5 b3 c3 d3)

5 Rosetta Code Tasks starting with C 225

Output:

5
4
3 X X X
2
1
a b c d e

5
4 X
3 X
2 X
1
a b c d e

5
4
3 X X X
2
1
a b c d e

226 5 Rosetta Code Tasks starting with C

Copy a string

This task is about copying a string. Where it is relevant, distinguish between copying
the contents of a string versus making an additional reference to an existing string.

(setq Str1 "abcdef")
(setq Str2 Str1) # Create a reference to that symbol
(setq Str3 (name Str1)) # Create new symbol with name "abcdef"

5 Rosetta Code Tasks starting with C 227

Count occurrences of a substring

The task is to either create a function, or show a built-in function, to count the
number of non-overlapping occurrences of a substring inside a string. The function
should take two arguments: the first argument being the string to search and the
second a substring to be search for. It should return an integer count.

print countSubstring("the three truths","th")
3

// do not count substrings that overlap with
// previously-counted substrings:

print countSubstring("ababababab","abab")
2

The matching should yield the highest number of non-overlapping matches. In gen-
eral, this essentially means matching from left-to-right or right-to-left.

(de countSubstring (Str Sub)
(let (Cnt 0 H (chop Sub))

(for (S (chop Str) S (cdr S))
(when (head H S)

(inc ’Cnt)
(setq S (map prog2 H S))))

Cnt))

Test:

: (countSubstring "the three truths" "th")
-> 3

: (countSubstring "ababababab" "abab")
-> 2

228 5 Rosetta Code Tasks starting with C

Count the Coins

There are four types of common coins in US currency: quarters (25 cents), dimes
(10), nickels (5) and pennies (1). There are 6 ways to make change for 15 cents:

• A dime and a nickel;

• A dime and 5 pennies;

• 3 nickels;

• 2 nickels and 5 pennies;

• A nickel and 10 pennies;

• 15 pennies.

How many ways are there to make change for a dollar using these common coins?
(1 dollar = 100 cents).

Optional:

Less common are dollar coins (100 cents); very rare are half dollars (50 cents). With
the addition of these two coins, how many ways are there to make change for $1000?
(note: the answer is larger than 232).

Algorithm: See

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#% sec Temp 52.

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_Temp_52

5 Rosetta Code Tasks starting with C 229

(de coins (Sum Coins)
(let (Buf (mapcar ’((N) (cons 1 (need (dec N) 0))) Coins) Prev)

(do Sum
(zero Prev)
(for L Buf

(inc (rot L) Prev)
(setq Prev (car L))))

Prev))

Test:

(for Coins ’((100 50 25 10 5 1) (200 100 50 20 10 5 2 1))
(println (coins 100 (cddr Coins)))
(println (coins (* 1000 100) Coins))
(println (coins (* 10000 100) Coins))
(println (coins (* 100000 100) Coins))
(prinl))

Output:

242
13398445413854501
1333983445341383545001
133339833445334138335450001

4562
10056050940818192726001
99341140660285639188927260001
992198221207406412424859964272600001

230 5 Rosetta Code Tasks starting with C

Counting in Factors

Write a program which counts up from 1, displaying each number as the multipli-
cation of its prime factors. For the purpose of this task, 1 may be shown as itself.

For examle, 2 is prime, so it would be shown as itself. 6 is not prime; it would be
shown as .

Likewise, 2144 is not prime; it would be shown as .

c.f. Prime decomposition, Category:Prime Numbers

5 Rosetta Code Tasks starting with C 231

This is the ’factor’ function from [[Prime decomposition#PicoLisp]].

(de factor (N)
(make

(let (D 2 L (1 2 2 . (4 2 4 2 4 6 2 6 .)) M (sqrt N))
(while (>= M D)

(if (=0 (\% N D))
(setq M (sqrt (setq N (/ N (link D)))))
(inc ’D (pop ’L))))

(link N))))

(for N 20
(prinl N ": " (glue " * " (factor N))))

Output:

1: 1
2: 2
3: 3
4: 2 * 2
5: 5
6: 2 * 3
7: 7
8: 2 * 2 * 2
9: 3 * 3
10: 2 * 5
11: 11
12: 2 * 2 * 3
13: 13
14: 2 * 7
15: 3 * 5
16: 2 * 2 * 2 * 2
17: 17
18: 2 * 3 * 3
19: 19
20: 2 * 2 * 5

232 5 Rosetta Code Tasks starting with C

Counting in octal

The task is to produce a sequential count in octal, starting at zero, and using an
increment of a one for each consecutive number. Each number should appear on a
single line, and the program should count until terminated, or until the maximum
value of the numeric type in use is reached.

• Integer sequence is a similar task without the use of octal numbers.

(for (N 0 T (inc N))
(prinl (oct N)))

5 Rosetta Code Tasks starting with C 233

Create a file

In this task, the job is to create a new empty file called “output.txt” of size 0 bytes
and an empty directory called “docs”. This should be done twice: once “here”, i.e.
in the current working directory and once in the filesystem root.

(out "output.txt") # Empty output
(call ’mkdir "docs") # Call external
(out "/output.txt")
(call ’mkdir "/docs")

234 5 Rosetta Code Tasks starting with C

Create a two-dimensional array at runtime

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.

Get two integers from the user, then create a two-dimensional array where the two
dimensions have the sizes given by those numbers, and which can be accessed in the
most natural way possible. Write some element of that array, and then output that
element. Finally destroy the array if not done by the language itself.

(de 2dimTest (DX DY)
(let A (make (do DX (link (need DY))))

(set (nth A 3 3) 999) # Set A[3][3] to 999
(mapc println A) # Print all
(get A 3 3))) # Return A[3][3]

(2dimTest 5 5)

Output:

(NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL)
(NIL NIL 999 NIL NIL)
(NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL)
-> 999

5 Rosetta Code Tasks starting with C 235

Create an HTML table

Create an HTML table.

• The table body should have at least three rows of three columns.

• Each of these three columns should be labelled “X”, “Y”, and “Z”.

• An extra column should be added at either the extreme left or the extreme right
of the table that has no heading, but is filled with sequential row numbers.

• The rows of the “X”, “Y”, and “Z” columns should be filled with random or
sequential integers having 4 digits or less.

• The numbers should be aligned in the same fashion for all columns.

(load "@lib/xhtml.l")

(<table> NIL NIL ’(NIL (NIL "X") (NIL "Y") (NIL "Z"))
(for N 3

(<row> NIL N 124 456 789)))

236 5 Rosetta Code Tasks starting with C

Create an object at a given address

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

In systems programing it is sometimes required to place language objects at specific
memory locations, like I/O registers, hardware interrupt vectors etc.

Task

Show how language objects can be allocated at a specific machine addresses.

Since most OSes prohibit access to the physical memory if it is not mapped by the
application, as an example, rather than a physical address, take the address of some
existing object (using suitable address operations if necessary). For example, create
an integer object. Print the machine address of the object. Take the address of the
object and create another integer object at this address. Print the value of this object
to verify that it is same as one of the origin. Change the value of the origin and
verify it again.

: (setq IntSpace 12345) # Integer
-> 12345

: (setq Address (adr ’IntSpace)) # Encoded machine address
-> -2969166782547

: (set (adr Address) 65535) # Set this address to a new value
-> 65535

: IntSpace # Show the new value
-> 65535

5 Rosetta Code Tasks starting with C 237

CSV to HTML translation

Consider a simplified CSV format where all rows are separated by a newline and
all columns are separated by commas. No commas are allowed as field data, but the
data may contain other characters and character sequences that would normally be
escaped when converted to HTML

The task is to create a function that takes a string representation of the CSV data and
returns a text string of an HTML table representing the CSV data. Use the following
data as the CSV text to convert, and show your output.

Character,Speech

The multitude,The messiah! Show us the messiah!

Brians mother,<angry>Now you listen here! He’s not the messiah; he’s a very
naughty boy! Now go away!</angry>

The multitude,Who are you?

Brians mother,I’m his mother; that’s who!

The multitude,Behold his mother! Behold his mother!

For extra credit, optionally allow special formatting for the first row of the table as
if it is the tables header row (via <thead> preferably; CSS if you must).

238 5 Rosetta Code Tasks starting with C

Simple solution

(load "@lib/http.l")

(in "text.csv"
(<table> ’myStyle NIL NIL

(prinl)
(while (split (line) ",")

(<row> NIL (ht:Prin (pack (car @))) (ht:Prin (pack (cadr @))))
(prinl))))

Output:

<table class="myStyle">
<tr><td>Character</td><td>Speech</td></tr>
<tr><td>The multitude</td><td>The messiah! Show us the messiah!</td></tr>
<tr><td>Brians mother</td><td>\<angry\>Now you listen here!
He’s not the messiah; he’s a very naughty boy! Now go away!\</angry\></td></tr>
<tr><td>The multitude</td><td>Who are you?</td></tr>
<tr><td>Brians mother</td><td>I’m his mother; that’s who!</td></tr>
<tr><td>The multitude</td><td>Behold his mother! Behold his mother!</td></tr>
</table>

Extra credit solution

(load "@lib/http.l")

(in "text.csv"
(when (split (line) ",")

(<table> ’myStyle NIL (mapcar ’((S) (list NIL (pack S))) @)
(prinl)
(while (split (line) ",")

(<row> NIL (ht:Prin (pack (car @))) (ht:Prin (pack (cadr @))))
(prinl)))))

Output:

<table class="myStyle"><tr><th>Character</th><th>Speech</th></tr>
<tr><td>The multitude</td><td>The messiah! Show us the messiah!</td></tr>
<tr><td>Brians mother</td><td>\<angry\>Now you listen here!
He’s not the messiah; he’s a very naughty boy! Now go away!\</angry\></td></tr>
<tr><td>The multitude</td><td>Who are you?</td></tr>
<tr><td>Brians mother</td><td>I’m his mother; that’s who!</td></tr>
<tr><td>The multitude</td><td>Behold his mother! Behold his mother!</td></tr>
</table>

Chapter 6

Rosetta Code Tasks starting with D

Date format

This task has been clarified. Its programming examples are in need of review to
ensure that they still fit the requirements of the task.

Display the current date in the formats of “2007-11-10” and “Sunday, November
10, 2007”.

(let (Date (date) Lst (date Date))
(prinl (dat\$ Date "-")) # 2010-02-19
(prinl # Friday, February 19, 2010

(day Date)
", "
(get *MonFmt (cadr Lst))
" "
(caddr Lst)
", "
(car Lst)))

239

240 6 Rosetta Code Tasks starting with D

Date manipulation

Given the date string “March 7 2009 7:30pm EST”, output the time 12 hours later
in any human-readable format.

As extra credit, display the resulting time in a time zone different from your own.

(de timePlus12 (Str)
(use (@Mon @Day @Year @Time @Zone)

(and
(match

’(@Mon " " @Day " " @Year " " @Time " " @Zone)
(chop Str))

(setq @Mon (index (pack @Mon) *MonFmt))
(setq @Day (format @Day))
(setq @Year (format @Year))
(setq @Time

(case (tail 2 @Time)
(("a" "m") (\$tim (head -2 @Time)))
(("p" "m") (+ ‘(time 12 0) (\$tim (head -2 @Time))))
(T (\$tim @Time))))

(let? Date (date @Year @Mon @Day)
(when (>= (inc ’@Time ‘(time 12 0)) 86400)

(dec ’@Time 86400)
(inc ’Date))

(pack (dat\$ Date "-") " " (tim\$ @Time T) " " @Zone)))))

6 Rosetta Code Tasks starting with D 241

Day of the week

A company decides that whenever Xmas falls on a Sunday they will give their work-
ers all extra paid holidays so that, together with any public holidays, workers will
not have to work the following week (between the 25th of December and the first of
January).

In what years between 2008 and 2121 will the 25th of December be a Sunday?

Using any standard date handling libraries of your programming language; compare
the dates calculated with the output of other languages to discover any anomalies in
the handling of dates which may be due to, for example, overflow in types used to
represent dates/times similar to y2k type problems.

(for (Y 2008 (>= 2121 Y) (inc Y))
(when (= "Sunday" (day (date Y 12 25)))

(printsp Y)))

Output:

2011 2016 2022 2033 2039 2044 2050 2061 2067 2072 2078 2089 2095 2101 2107 2112 2118

http://en.wikipedia.org/wiki/Y2k#See_also

242 6 Rosetta Code Tasks starting with D

Deal cards for FreeCell

Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system
in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented
the game for DOS, then Windows. This version introduced 32000 numbered deals.
(The FreeCell FAQ tells this history.)

As the game became popular, Jim Horne disclosed the algorithm, and other im-
plementations of FreeCell began to reproduce the Microsoft deals. These deals are
numbered from 1 to 32000. Newer versions from Microsoft have 1 million deals,
numbered from 1 to 1000000; some implementations allow numbers outside that
range.

The algorithm uses this linear congruential generator from Microsoft C:

•

•

• randn is in range 0 to 32767.

• Rosetta Code has another task, linear congruential generator, with code for this
RNG in several languages.

The algorithm follows:

1. Seed the RNG with the number of the deal.

2. Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace
of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4,
5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of
Clubs at 0, and King of Spades at 51.

3. Until the array is empty:

• Choose a random card at index next random number (mod array length).

• Swap this random card with the last card of the array.

• Remove this random card from the array. (Array length goes down by 1.)

• Deal this random card.

4. Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns,
the next 8 cards go on the first 8 cards, and so on.

http://www.solitairelaboratory.com/fcfaq.html
http://www.solitairelaboratory.com/mshuffle.txt

6 Rosetta Code Tasks starting with D 243

Order to deal cards

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52

Game \#1

JD 2D 9H JC 5D 7H 7C 5H
KD KC 9S 5S AD QC KH 3H
2S KS 9D QD JS AS AH 3C
4C 5C TS QH 4H AC 4D 7S
3S TD 4S TH 8H 2C JH 7D
6D 8S 8D QS 6C 3D 8C TC
6S 9C 2H 6H

Game \#617

7D AD 5C 3S 5S 8C 2D AH
TD 7S QD AC 6D 8H AS KH
TH QC 3H 9D 6S 8D 3D TC
KD 5H 9S 3C 8S 7H 4D JS
4C QS 9C 9H 7C 6H 2C 2S
4S TS 2H 5D JC 6C JH QH
JD KS KC 4H

Deals can also be checked against FreeCell solutions to 1000000 games. (Summon
a video solution, and it displays the initial deal.)

Write a program to take a deal number and deal cards in the same order as this algo-
rithm. The program may display the cards with ASCII, with Unicode, by drawing
graphics, or any other way.

http://freecellgamesolutions.com/

244 6 Rosetta Code Tasks starting with D

Using the random generator from [[Linear congruential generator#PicoLisp]]:

(setq *MsSeed 11982)

(de msRand ()
(>> 16

(setq *MsSeed
(\& (+ 2531011 (* 214013 *MsSeed)) ‘(dec (** 2 31))))))

(let L
(make

(for Num (range 13 1)
(for Suit ’((32 . "") (31 . "") (31 . "") (32 . ""))

(link (cons (get ’‘(chop "A23456789TJQK") Num) Suit)))))
(for I 51

(xchg
(nth L I)
(nth L (- 52 (\% (msRand) (- 53 I))))))

(for C L
(prin " ˆ[[" (cadr C) "m" (cddr C) "ˆ[[m" (car C))
(at (0 . 8) (prinl)))

(prinl))

6 Rosetta Code Tasks starting with D 245

Decision tables

Decision Tables are a precise yet compact way to model complicated logic. Demon-
strate how your language implements decision tables. Use the example of Printer
Troubleshooting given in the Wikipedia article.

http://en.wikipedia.org/wiki/Decision_table

246 6 Rosetta Code Tasks starting with D

We allow ourselves a luxurious user interface:

(de yes? (Cond)
(out NIL (prin (car Cond) "? "))
(in NIL

(use Reply
(loop

(setq Reply (read))
(T (member Reply ’(T Y YES Yes y yes true 1))

T)
(T (member Reply ’(NIL N NO No n no false 0)))
(prinl "Please answer ’Yes’ or ’No’")))))

The decision table used in the example:

(de *Conditions
("Printer does not print" T T T T NIL NIL NIL NIL)
("A red light is flashing" T T NIL NIL T T NIL NIL)
("Printer is unrecognised" T NIL T NIL T NIL T NIL))

(de *Actions
("Check the power cable" NIL NIL T)
("Check the printer-computer cable" T NIL T)
("Ensure printer software is installed" T NIL T NIL T NIL T)
("Check/replace ink" T T NIL NIL T T)
("Check for paper jam" NIL T NIL T))

The decision can be made directly on the condition and action data, without the
need to create intermediate tables:

(de decide ()
(let Reply (mapcar yes? *Conditions)

(extract and
(apply pick (append *Conditions *Actions)

’(@
(unless (pick ’((Flg) (<> Flg (next))) Reply)

(rest))))
(mapcar car *Actions))))

6 Rosetta Code Tasks starting with D 247

Output:

: (decide)
Printer does not print? y
A red light is flashing? y
Printer is unrecognised? n
-> ("Check/replace ink" "Check for paper jam")

: (decide)
Printer does not print? n
A red light is flashing? y
Printer is unrecognised? y
-> ("Ensure printer software is installed" "Check/replace ink")

: (decide)
Printer does not print? n
A red light is flashing? n
Printer is unrecognised? n
-> NIL

248 6 Rosetta Code Tasks starting with D

Deconvolution/1D

The convolution of two functions F and H of an integer variable is defined as the
function G satisfying

for all integers n. Assume F(n) can be non-zero only for 0 n | F | , where | F | is the
“length” of F, and similarly for G and H, so that the functions can be modeled as

finite sequences by identifying with , etc.
Then for example, values of | F | = 6 and | H | = 5 would determine the following
value of g by definition.

We can write this in matrix form as:

6 Rosetta Code Tasks starting with D 249

or

For this task, implement a function (or method, procedure, subroutine, etc.) deconv
to perform deconvolution (i.e., the inverse of convolution) by constructing and solv-
ing such a system of equations represented by the above matrix A for h given f and
g.

• The function should work for G of arbitrary length (i.e., not hard coded or con-
stant) and F of any length up to that of G. Note that | H | will be given by | G | |
F | + 1.

• There may be more equations than unknowns. If convenient, use a function from
a library that finds the best fitting solution to an overdetermined system of lin-
ear equations (as in the Multiple regression task). Otherwise, prune the set of
equations as needed and solve as in the Reduced row echelon form task.

• Test your solution on the following data. Be sure to verify both that deconv(g,f)
= h and deconv(g,h) = f and display the results in a human readable form.

h = [-8,-9,-3,-1,-6,7]

f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]

g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]

http://www.netlib.org/lapack/lug/node27.html

250 6 Rosetta Code Tasks starting with D

(load "@lib/math.l")

(de deconv (G F)
(let A (pop ’F)

(make
(for (N . H) (head (- (length F)) G)

(for (I . M) (made)
(dec ’H

(*/ M (get F (- N I)) 1.0)))
(link (*/ H 1.0 A))))))

Test:

(setq
F (-3. -6. -1. 8. -6. 3. -1. -9. -9. 3. -2. 5. 2. -2. -7. -1.)
G (24. 75. 71. -34. 3. 22. -45. 23. 245. 25. 52. 25. -67. -96.
96. 31. 55. 36. 29. -43. -7.)
H (-8. -9. -3. -1. -6. 7.))

(test H (deconv G F))
(test F (deconv G H))

6 Rosetta Code Tasks starting with D 251

Deepcopy

Demonstrate how to copy data structures containing complex hetrogeneous and
cyclic semantics. This is often referred to as deep copying, and is normally required
where structures are mutable and to ensure that independent copies can be manipu-
lated without side-effects.

If this facility is not built into the language, it is permissible to use functions from a
common library, or a coded procedure.

The task should show:

• Relevant semantics of structures, such as their homogeneous or heterogeneous
properties, or containment of (self- or mutual-reference) cycles.

• Any limitations of the method.

• That the structure and its copy are different.

• Suitable links to external documentation for common libraries.

Show how to insert documentation for classes, functions, and/or variables in your
language. If this documentation is built-in to the language, note it. If this docu-
mentation requires external tools, note them.

http://en.wikipedia.org/wiki/Deep_copy#Deep_copy
http://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity

252 6 Rosetta Code Tasks starting with D

A shallow copy can be done with ’[http://software-lab.de/doc/refC.html#copy
copy]’. This function takes care of cons pairs and lists, no matter whether they
are cyclic, or end in NIL or some other data structure.

For a known depth, it might be used in combination with other list functions.
For example, to copy a non-cyclic structure of depth 2 with
’[http://software-lab.de/doc/refM.html#mapcar mapcar]’:

(mapcar copy List)

Copying non-cyclic structures of arbitrary depth and list-termination could be
handled with a custom function (using
’[http://software-lab.de/doc/refC.html#cons cons]’):

(de deepCopy (X)
(if (atom X)

X
(cons (deepCopy (car X)) (deepCopy (cdr X)))))

Test:

: (setq A ’((a . b) (c d e) f g . e))
-> ((a . b) (c d e) f g . e)

: (setq B (deepCopy A))
-> ((a . b) (c d e) f g . e)

: A
-> ((a . b) (c d e) f g . e)

: B
-> ((a . b) (c d e) f g . e)

: (= A B)
-> T # A and its copy B are structure-equal
: (== A B)
-> NIL # but they are not identical (pointer-equal)

: (cadr A)
-> (c d e)

: (cadr B)
-> (c d e)

: (== (cadr A) (cadr B))
-> NIL # The same holds for sub-structures

6 Rosetta Code Tasks starting with D 253

For cyclic structures, the above ’deepCopy’ function could be extended, to
remember already visited structures and their copies in a mark list:

(de deepCopy (X)
(let Mark NIL

(recur (X)
(cond

((atom X) X)
((asoq X Mark) (cdr @))
(T

(prog1 (cons)
(push ’Mark (cons X @))
(set @ (recurse (car X)))
(con @ (recurse (cdr X)))))))))

Test:

: (setq A ’(a b .) B (deepCopy A))
-> (a b .)
: A
-> (a b .)
: B
-> (a b .)

: (= A B)
-> T # A and its copy B are structure-equal

: (== A B)
-> NIL # but they are not identical (pointer-equal)

254 6 Rosetta Code Tasks starting with D

Define a primitive data type

Demonstrate how to define a type that behaves like an integer but has a lowest valid
value of 1 and a highest valid value of 10. Include all bounds checking you need
to write, or explain how the compiler or interpreter creates those bounds checks for
you.

6 Rosetta Code Tasks starting with D 255

(class +BoundedInt)
value lower upper

(dm T (Low Up)
(=: lower (min Low Up))
(=: upper (max Low Up)))

(de "checkBounds" (Val)
(if (>= (: upper) Val (: lower))

Val
(throw ’boundedIntOutOfBounds

(pack
"value " Val
" is out of bounds [" (: lower) "," (: upper) "]"))))

(dm set> (Val)
(=: value ("checkBounds" Val)))

(dm +> (Val)
(=: value ("checkBounds" (+ Val (: value)))))

(dm val> ()
(: value))

(de main ()
(let (A (new ’(+BoundedInt) 1 10) B (new ’(+BoundedInt) 1 10))

(set> A 6)
(when (catch ’boundedIntOutOfBounds (set> B 12) NIL)

(prinl @))
(set> B 9)
(when (catch ’boundedIntOutOfBounds (+> A (val> B)) NIL)

(prinl @))))

Output:

: (main)
value 12 is out of bounds [1,10]
value 15 is out of bounds [1,10]

256 6 Rosetta Code Tasks starting with D

Delegates

A delegate is a helper object used by another object. The delegator may send the
delegate certain messages, and provide a default implementation when there is no
delegate or the delegate does not respond to a message. This pattern is heavily used
in Cocoa framework on Mac OS X. See also wp:Delegation pattern.

Objects responsibilities:

Delegator:

• Keep an optional delegate instance.

• Implement “operation” method, returning the delegate “thing” if the delegate
respond to “thing”, or the string “default implementation”.

Delegate:

• Implement “thing” and return the string “delegate implementation”

Show how objects are created and used. First, without a delegate, then with a del-
egate that does not implement “thing”, and last with a delegate that implements
“thing”.

http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/chapter_5_section_3.html#//apple_ref/doc/uid/TP40002974-CH6-DontLinkElementID_93
http://en.wikipedia.org/wiki/Delegation_pattern

6 Rosetta Code Tasks starting with D 257

(class +Delegator)
delegate

(dm operation> ()
(if (: delegate)

(thing> @)
"default implementation"))

(class +Delegate)
thing

(dm T (Msg)
(=: thing Msg))

(dm thing> ()
(: thing))

(let A (new ’(+Delegator))
Without a delegate
(println (operation> A))

With delegate that does not implement ’thing>’
(put A ’delegate (new ’(+Delegate)))
(println (operation> A))

With delegate that implements ’thing>’
(put A ’delegate (new ’(+Delegate) "delegate implementation"))
(println (operation> A)))

Output:

"default implementation"
NIL
"delegate implementation"

258 6 Rosetta Code Tasks starting with D

Delete a file

In this task, the job is to delete a file called “input.txt” and delete a directory called
“docs”. This should be done twice: once “here”, i.e. in the current working directory
and once in the filesystem root.

(call ’rm "input.txt")
(call ’rmdir "docs")
(call ’rm "/input.txt")
(call ’rmdir "/docs")

6 Rosetta Code Tasks starting with D 259

Detect division by zero

Write a function to detect a divide by zero error without checking if the denominator
is zero.

(catch ’("Div/0") (/ A B))

260 6 Rosetta Code Tasks starting with D

Determine if a string is numeric

Create a boolean function which takes in a string and tells whether it is a numeric
string (floating point and negative numbers included) in the syntax the language uses
for numeric literals or numbers converted from strings.

The ’format’ function can be used for that. It returns NIL if the
given string is not a legal number

: (format "123")
-> 123

: (format "123a45")
-> NIL

: (format "-123.45" 4)
-> 1234500

6 Rosetta Code Tasks starting with D 261

Determine if only one instance is running

This task is to determine if there is only one instance of an application running. If
the program discovers that an instance of it is already running, then it should display
a message indicating that it is already running and exit.

Calling ’killall’

One possibility is to send a zero-signal with ’killall’, and check the return
value. This is useful if each application is started by a hash-bang script (the
first line is e.g. "#!/usr/bin/picolisp /usr/lib/picolisp/lib.l"). In that way,
each application has its own name which can be passed to ’killall’.

\$ cat myScript
#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(wait 120000)
(bye)

\$./myScript \& # Start in the background
[1] 26438

\$ pil +
: (call "killall" "-0" "-q" "myScript")
-> T

Using a mutex

Another possibility is to ’acquire’ a mutex on program start, and never release
it.

: (acquire "running1")
-> 30817 # A successful call returns the PID

A second application trying to acquire the same mutex would receive ’NIL’

262 6 Rosetta Code Tasks starting with D

Digital root

Related task Sum digits of an integer

The digital root (X) of a number (N) is calculated:

find X as the sum of the digits of N

find a new X by summing the digits of X repeating until X has only one digit.

The additive persistance is the number of summations required to obtain the single
digit.

The task is to calculate the additive persistance and the digital root of a number. e.g.

627615 has additive persistance 2 and digital root of 9;

39390 has additive persistance 2 and digital root of 6;

588225 has additive persistance 2 and digital root of 3;

393900588225 has additive persistance 2 and digital root of 9;

The digital root may be calculated in bases other than 10.

See: Casting out nines for this wiki’s use of this procedure.

(for N (627615 39390 588225 393900588225)
(for ((A . I) N T (sum format (chop I)))

(T (> 10 I)
(prinl N " has additive persistance " (dec A) " and digital root of " I ";"))))

Output:

627615 has additive persistance 2 and digital root of 9;
39390 has additive persistance 2 and digital root of 6;
588225 has additive persistance 2 and digital root of 3;
393900588225 has additive persistance 2 and digital root of 9;

6 Rosetta Code Tasks starting with D 263

Dijkstra’s algorithm

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in
1956 and published in 1959, is a graph search algorithm that solves the single-source
shortest path problem for a graph with nonnegative edge path costs, producing a
shortest path tree. This algorithm is often used in routing and as a subroutine in
other graph algorithms.

For a given source vertex (node) in the graph, the algorithm finds the path with
lowest cost (i.e. the shortest path) between that vertex and every other vertex. It
can also be used for finding costs of shortest paths from a single vertex to a single
destination vertex by stopping the algorithm once the shortest path to the destination
vertex has been determined. For example, if the vertices of the graph represent cities
and edge path costs represent driving distances between pairs of cities connected by
a direct road, Dijkstra’s algorithm can be used to find the shortest route between one
city and all other cities. As a result, the shortest path first is widely used in network
routing protocols, most notably IS-IS and OSPF (Open Shortest Path First).

Task:

1. Implement a version of Dijkstra’s algorithm that computes a shortest path from
a start vertex to an end vertex in a directed graph.

2. Run your program with the following directed graph to find the shortest path
from vertex “a” to vertex “e.”

3. Show the output of your program.

Number Name

1 a

2 b

3 c

4 d

5 e

6 f

Table 6.1: Ver-
tices

http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/graph_search_algorithm
http://en.wikipedia.org/wiki/shortest_path_problem
http://en.wikipedia.org/wiki/graph_(mathematics)
http://en.wikipedia.org/wiki/edge_(graph_theory)
http://en.wikipedia.org/wiki/shortest_path_tree
http://en.wikipedia.org/wiki/routing
http://en.wikipedia.org/wiki/vertex_(graph_theory)
http://en.wikipedia.org/wiki/routing_protocol
http://en.wikipedia.org/wiki/IS-IS
http://en.wikipedia.org/wiki/OSPF

264 6 Rosetta Code Tasks starting with D

Start End Cost

a b 7

a c 9

a f 14

b c 10

b d 15

c d 11

c f 2

d e 6

e f 9

Table 6.2:
Edges

You can use numbers or names to identify vertices in your program.

Extra Credit: Document the specific algorithm implemented. The {{trans}} tem-
plate is sufficient. Otherwise add text outside of your program or add comments
within your program. This is not a requirement to explain how the algorithm works,
but to state which algorithm is implemented. If your code follows an external source
such as the Wikipedia pseudocode, you can state that. You can state if it is Dijkstra’s
original algorithm or some more efficient variant. It is relevant to mention things like
priority queues, heaps, and expected time complexity in big-O notation. If a priority
queue is used, it is important to discuss how the step of decreasing the distance of a
node is accomplished, and whether it is linear or logarithmic time.

6 Rosetta Code Tasks starting with D 265

Following the Wikipedia algorithm:

(de neighbor (X Y Cost)
(push (prop X ’neighbors) (cons Y Cost))
(push (prop Y ’neighbors) (cons X Cost)))

(de dijkstra (Curr Dest)
(let Cost 0

(until (== Curr Dest)
(let (Min T Next)

(for N (; Curr neighbors)
(with (car N)

(let D (+ Cost (cdr N))
(unless (and (: distance) (>= D @))

(=: distance D)))
(when (> Min (: distance))

(setq Min (: distance) Next This))
(del (asoq Curr (: neighbors)) (:: neighbors))))

(setq Curr Next Cost Min)))
Cost))

Test:

(neighbor ’a ’b 7)
(neighbor ’a ’c 9)
(neighbor ’a ’f 14)
(neighbor ’b ’c 10)
(neighbor ’b ’d 15)
(neighbor ’c ’d 11)
(neighbor ’c ’f 2)
(neighbor ’d ’e 6)
(neighbor ’e ’f 9)

(dijkstra ’a ’e)

Output:

-> 20

266 6 Rosetta Code Tasks starting with D

Dinesman’s multiple-dwelling problem

The task is to solve Dinesman’s multiple dwelling problem but in a way that
most naturally follows the problem statement given below. Solutions are allowed
(but not required) to parse and interpret the problem text, but should remain flexible
and should state what changes to the problem text are allowed. Flexibility and ease
of expression are valued.

Examples may be be split into “setup”, “problem statement”, and “output” sections
where the ease and naturalness of stating the problem and getting an answer, as well
as the ease and flexibility of modifying the problem are the primary concerns.

Example output should be shown here, as well as any comments on the examples
flexibility.

[The problem]

Baker, Cooper, Fletcher, Miller, and Smith live on different floors of an apartment
house that contains only five floors. Baker does not live on the top floor. Cooper does
not live on the bottom floor. Fletcher does not live on either the top or the bottom
floor. Miller lives on a higher floor than does Cooper. Smith does not live on a floor
adjacent to Fletcher’s. Fletcher does not live on a floor adjacent to Cooper’s. Where
does everyone live?

http://www-mitpress.mit.edu/sicp/full-text/book/book-Z-H-28.html#%_sec_4.3.2

6 Rosetta Code Tasks starting with D 267

Using Pilog (PicoLisp Prolog). The problem can be modified by changing just the
’dwelling’ rule (the "Problem statement"). This might involve the names and
number of dwellers (the list in the first line), and statements about who does
(or does not) live on the top floor (using the ’topFloor’ predicate), the bottom
floor (using the ’bottomFloor’ predicate), on a higher floor (using the
’higherFloor’ predicate) or on an adjecent floor (using the ’adjacentFloor’
predicate). The logic follows an implied AND, and statements may be arbitrarily
combined using OR and NOT (using the ’or’ and ’not’ predicates), or any other
Pilog (Prolog) built-in predicates. If the problem statement has several
solutions, they will be all generated.

Problem statement
(be dwelling (@Tenants)

(permute (Baker Cooper Fletcher Miller Smith) @Tenants)
(not (topFloor Baker @Tenants))
(not (bottomFloor Cooper @Tenants))
(not (or ((topFloor Fletcher @Tenants)) ((bottomFloor Fletcher @Tenants))))
(higherFloor Miller Cooper @Tenants)
(not (adjacentFloor Smith Fletcher @Tenants))
(not (adjacentFloor Fletcher Cooper @Tenants)))

Utility rules
(be topFloor (@Tenant @Lst)

(equal (@ @ @ @ @Tenant) @Lst))

(be bottomFloor (@Tenant @Lst)
(equal (@Tenant @ @ @ @) @Lst))

(be higherFloor (@Tenant1 @Tenant2 @Lst)
(append @ @Rest @Lst)
(equal (@Tenant2 . @Higher) @Rest)
(member @Tenant1 @Higher))

(be adjacentFloor (@Tenant1 @Tenant2 @Lst)
(append @ @Rest @Lst)
(or

((equal (@Tenant1 @Tenant2 . @) @Rest))
((equal (@Tenant2 @Tenant1 . @) @Rest))))

Output:

: (? (dwelling @Result))
@Result=(Smith Cooper Baker Fletcher Miller) # Only one solution

-> NIL

268 6 Rosetta Code Tasks starting with D

Dining philosophers

The dining philosophers problem illustrates non-composability of low-level syn-
chronization primitives like semaphores. It is a modification of a problem posed by
Edsger Dijkstra.

Five philosophers, Aristotle, Kant, Spinoza, Marx, and Russell (the tasks) spend
their time thinking and eating spaghetti. They eat at a round table with five individual
seats. For eating each philosopher needs two forks (the resources). There are five
forks on the table, one left and one right of each seat. When a philosopher cannot
grab both forks it sits and waits. Eating takes random time, then the philosopher
puts the forks down and leaves the dining room. After spending some random time
thinking about the nature of the universe, he again becomes hungry, and the circle
repeats itself.

It can be observed that a straightforward solution, when forks are implemented by
semaphores, is exposed to deadlock. There exist two deadlock states when all five
philosophers are sitting at the table holding one fork each. One deadlock state is
when each philosopher has grabbed the fork left of him, and another is when each
has the fork on his right.

There are many solutions of the problem, program at least one, and explain how the
deadlock is prevented.

6 Rosetta Code Tasks starting with D 269

This following solution uses the built-in fininte state machine function
’[http://software-lab.de/doc/refS.html#state state]’. Deadlocks are avoided, as
each philosopher releases the first fork if he doesn’t succeed to obtain the
second fork, and waits for a random time.

Another solution, using the Chandy/Misra method, can be found
[http://logand.com/sw/phil.l here].

(de dining (Name State)
(loop

(prinl Name ": " State)
(state ’State # Dispatch according to state

(thinking ’hungry) # If thinking, get hungry
(hungry # If hungry, grab random fork

(if (rand T)
(and (acquire leftFork) ’leftFork)
(and (acquire rightFork) ’rightFork)))

(hungry ’hungry # Failed, stay hungry for a while
(wait (rand 1000 3000)))

(leftFork # If holding left fork, try right one
(and (acquire rightFork) ’eating)
(wait 2000)) # then eat for 2 seconds

(rightFork # If holding right fork, try left one
(and (acquire leftFork) ’eating)
(wait 2000)) # then eat for 2 seconds

((leftFork rightFork) ’hungry # Otherwise, go back to hungry,
(release (val State)) # release left or right fork
(wait (rand 1000 3000))) # and stay hungry

(eating ’thinking # After eating, resume thinking
(release leftFork)
(release rightFork)
(wait 6000))))) # for 6 seconds

(setq *Philosophers
(maplist

’((Phils Forks)
(let (leftFork (tmp (car Forks)) rightFork (tmp (cadr Forks)))

(or
(fork) # Parent: Collect child process IDs
(dining (car Phils) ’hungry)))) # Initially hungry

’("Aristotle" "Kant" "Spinoza" "Marx" "Russell")
’("ForkA" "ForkB" "ForkC" "ForkD" "ForkE" .)))

(push ’*Bye ’(mapc kill *Philosophers)) # Terminate all upon exit

270 6 Rosetta Code Tasks starting with D

Output:

<pre>Aristotle: hungry
Aristotle: rightFork
Kant: hungry
Kant: rightFork
Spinoza: hungry
Spinoza: rightFork
Marx: hungry
Marx: rightFork
Russell: hungry
Marx: hungry
Spinoza: hungry
Kant: hungry
Russell: hungry
Aristotle: eating
...

6 Rosetta Code Tasks starting with D 271

Discordian date

Convert a given date from the Gregorian calendar to the Discordian calendar.

See Also

• Discordian calendar (wiki)

(de disdate (Year Month Day)
(let? Date (date Year Month Day)

(let (Leap (date Year 2 29) D (- Date (date Year 1 1)))
(if (and Leap (= 2 Month) (= 29 Day))

(pack "St. Tib’s Day, YOLD " (+ Year 1166))
(and Leap (>= D 60) (dec ’D))
(pack

(get
’("Chaos" "Discord" "Confusion" "Bureaucracy" "The Aftermath")
(inc (/ D 73)))

" "
(inc (\% D 73))
", YOLD "
(+ Year 1166))))))

http://en.wikipedia.org/wiki/Discordian_calendar

272 6 Rosetta Code Tasks starting with D

Distributed programming

Write two programs (or one program with two modes) which run on networked
computers, and send some messages between them.

The protocol used may be language-specific or not, and should be suitable for gen-
eral distributed programming; that is, the protocol should be generic (not de-
signed just for the particular example application), readily capable of handling the
independent communications of many different components of a single application,
and the transferring of arbitrary data structures natural for the language.

This task is intended to demonstrate high-level communication facilities beyond just
creating sockets.

Server

(task (port 12321) # Background server task
(let? Sock (accept @)

(unless (fork) # Handle request in child process
(in Sock

(while (rd) # Handle requests
(out Sock

(pr (eval @))))) # Evaluate and send reply
(bye)) # Exit child process

(close Sock))) # Close socket in parent process

Client

(let? Sock (connect "localhost" 12321)
(out Sock (pr ’*Pid)) # Query PID from server
(println ’PID (in Sock (rd))) # Receive and print reply
(out Sock (pr ’(* 3 4))) # Request some calculation
(println ’Result (in Sock (rd))) # Print result
(close Sock)) # Close connection to server

Output:

PID 18372
Result 12

6 Rosetta Code Tasks starting with D 273

DNS query

DNS is an internet service that maps domain names, like rosettacode.org, to
IP addresses, like 66.220.0.231.

Use DNS to resolve www.kame.net to both IPv4 and IPv6 addresses. Print these
addresses.

(make
(in ’(host "www.kame.net")

(while (from "address ")
(link (till "ˆJ" T)))))

Output:

-> ("203.178.141.194" "2001:200:dff:fff1:216:3eff:feb1:44d7")

274 6 Rosetta Code Tasks starting with D

Documentation

Show how to insert documentation for classes, functions, and/or variables in your
language. If this documentation is built-in to the language, note it. If this documen-
tation requires external tools, note them.

PicoLisp doesn’t yet support inline documentation directly in the code. However,
it has built-in runtime documentation via the
’[http://software-lab.de/doc/refD.html#doc doc]’ function. This requires no
external tools, except that the interpreter must have been started in debug
mode.

: (doc ’car) # View documentation of a function

: (doc ’+Entity) # View documentation of a class

: (doc ’+ ’firefox) # Explicitly specify a browser

6 Rosetta Code Tasks starting with D 275

Dot product

Create a function/use an in-built function, to compute the dot product, also known
as the scalar product of two vectors. If possible, make the vectors of arbitrary
length.

As an example, compute the dot product of the vectors [1, 3, -5] and [4,
-2, -1].

If implementing the dot product of two vectors directly, each vector must be the
same length; multiply corresponding terms from each vector then sum the results to
produce the answer.

Reference

• Vector products on Rosetta Code.

(de dotProduct (A B)
(sum * A B))

(dotProduct (1 3 -5) (4 -2 -1))

Output:

-> 3

http://en.wikipedia.org/wiki/Dot_product

276 6 Rosetta Code Tasks starting with D

Doubly-linked list/Definition

Define the data structure for a complete Doubly Linked List.

• The structure should support adding elements to the head, tail and middle of the
list.

• The structure should not allow circular loops

See also Linked List

For the list of double-cell structures described in
[[Doubly-linked list/Element definition#PicoLisp]],
we define a header structure, containing one pointer to the start
and one to the end of the list.

+------------> start
|

+--+--+-----+
| | | ---+---> end
+-----+-----+

Build a doubly-linked list
(de 2list @

(let Prev NIL
(let L

(make
(while (args)

(setq Prev (chain (list (next) Prev)))))
(cons L Prev))))

(setq *DLst (2list ’was ’it ’a ’cat ’I ’saw))

For output of the example data, see [[Doubly-linked list/Traversal#PicoLisp]].

6 Rosetta Code Tasks starting with D 277

Doubly-linked list/Element definition

Define the data structure for a doubly-linked list element. The element should in-
clude a data member to hold its value and pointers to both the next element in the
list and the previous element in the list. The pointers should be mutable.

We use (in addition to the header structure described in
[[Doubly-linked list/Definition#PicoLisp]])
two cells per doubly-linked list element:

+-----+-----+ +-----+-----+
| Val | ---+---> | | | ---+---> next
+-----+-----+ +--+--+-----+

|
prev <---+

With that, ’cddr’ can be used to access the next, and ’cadr’ to access the
previous element.

’cons’ an element to a doubly-linked list
(de 2cons (X DLst)

(let L (car DLst) # Get current data list
(set DLst (cons X NIL L)) # Prepend two new cons pairs
(if L # Unless DLst was empty

(set (cdr L) (car DLst)) # set new ’prev’ link
(con DLst (car DLst))))) # otherwise set ’end’ link

We prepend ’not’ to the list in the previous example
(2cons ’not *DLst)

For output of the example data, see [[Doubly-linked list/Traversal#PicoLisp]].

278 6 Rosetta Code Tasks starting with D

Doubly-linked list/Element insertion

Use the link structure defined in Doubly-Linked List (element) to define a procedure
for inserting a link into a doubly-linked list. Call this procedure to insert element C
into a list {A,B}, between elements A and B.

This is much like inserting into a Singly-Linked List, but with added assignments so
that the backwards-pointing links remain correct.

This works with the structures described in
[[Doubly-linked list/Definition#PicoLisp]] and
[[Doubly-linked list/Element definition#PicoLisp]].

Insert an element X at position Pos
(de 2insert (X Pos DLst)

(let (Lst (nth (car DLst) (dec (* 2 Pos))) New (cons X (cadr Lst) Lst))
(if (cadr Lst)

(con (cdr @) New)
(set DLst New))

(if (cdr Lst)
(set @ New)
(con DLst New))))

(setq *DL (2list ’A ’B)) # Build a two-element doubly-linked list
(2insert ’C 2 *DL) # Insert C at position 2

For output of the example data, see [[Doubly-linked list/Traversal#PicoLisp]].

6 Rosetta Code Tasks starting with D 279

Doubly-linked list/Traversal

Traverse from the beginning of a doubly-linked list to the end, and from the end to
the beginning.

Print the elements a doubly-linked list
(de 2print (DLst)

(for (L (car DLst) L (cddr L))
(printsp (car L)))

(prinl))

Print the elements a doubly-linked list in reverse order
(de 2printReversed (DLst)

(for (L (cdr DLst) L (cadr L))
(printsp (car L)))

(prinl))

Output for the example data produced in
[[Doubly-linked list/Definition#PicoLisp]] and
[[Doubly-linked list/Element definition#PicoLisp]]:

: (2print *DLst) # Print the list
not was it a cat I saw

: (2printReversed *DLst) # Print it in reversed order
saw I cat a it was not

Output for the example data produced in
[[Doubly-linked list/Element insertion#PicoLisp]]:

: (2print *DL) # Print the list
A C B

: (2printReversed *DL) # Print it in reversed order
B C A

280 6 Rosetta Code Tasks starting with D

Dragon curve

Create and display a dragon curve fractal. (You may either display the curve directly
or write it to an image file.)

http://en.wikipedia.org/wiki/dragon_curve

6 Rosetta Code Tasks starting with D 281

This uses the ’brez’ line drawing function from
[[Bitmap/Bresenham’s line algorithm#PicoLisp]].

Need some turtle graphics
(load "@lib/math.l")

(setq

*TurtleX 100 # X position

*TurtleY 75 # Y position

*TurtleA 0.0) # Angle

(de fd (Img Len) # Forward
(let (R (*/ *TurtleA pi 180.0) DX (*/ (cos R) Len 1.0) DY (*/ (sin R) Len 1.0))

(brez Img *TurtleX *TurtleY DX DY)
(inc ’*TurtleX DX)
(inc ’*TurtleY DY)))

(de rt (A) # Right turn
(inc ’*TurtleA A))

(de lt (A) # Left turn
(dec ’*TurtleA A))

Dragon curve stuff
(de *DragonStep . 4)

(de dragon (Img Depth Dir)
(if (=0 Depth)

(fd Img *DragonStep)
(rt Dir)
(dragon Img (dec Depth) 45.0)
(lt (* 2 Dir))
(dragon Img (dec Depth) -45.0)
(rt Dir)))

Run it
(let Img (make (do 200 (link (need 300 0)))) # Create image 300 x 200

(dragon Img 10 45.0) # Build dragon curve
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img)))

282 6 Rosetta Code Tasks starting with D

Draw a clock

Task: draw a clock. More specific:

1. Draw a time keeping device. It can be a stopwatch, hourglass, sundial, a mouth
counting “one thousand and one”, anything. Only showing the seconds is re-
quired, e.g. a watch with just a second hand will suffice. However, it must clearly
change every second, and the change must cycle every so often (one minute, 30
seconds, etc.) It must be drawn; printing a string of numbers to your terminal
doesn’t qualify. Both text-based and graphical drawing are OK.

2. The clock is unlikely to be used to control space flights, so it needs not be hyper-
accurate, but it should be usable, meaning if one can read the seconds off the
clock, it must agree with the system clock.

3. A clock is rarely (never?) a major application: don’t be a CPU hog and poll the
system timer every microsecond, use a proper timer/signal/event from your sys-
tem or language instead. For a bad example, many OpenGL programs update the
framebuffer in a busy loop even if no redraw is needed, which is very undesirable
for this task.

4. A clock is rarely (never?) a major application: try to keep your code simple and to
the point. Don’t write something too elaborate or convoluted, instead do whatever
is natural, concise and clear in your language.

Key points: animate simple object; timed event; polling system resources; code clar-
ity.

6 Rosetta Code Tasks starting with D 283

This is an animated ASCII drawing of the "Berlin-Uhr", a clock built to display
the time according to the principles of set theory, which is installed in Berlin
since 1975.

See [http://www.surveyor.in-berlin.de/berlin/uhr/indexe.html
www.surveyor.in-berlin.de/berlin/uhr/indexe.html] and
[http://www.cs.utah.edu/˜hatch/berlin_uhr.html
www.cs.utah.edu/˜hatch/berlin_uhr.html].

(de draw Lst
(for L Lst

(for X L
(cond

((num? X) (space X))
((sym? X) (prin X))
(T (do (car X) (prin (cdr X))))))

(prinl)))

(de bigBox (N)
(do 2

(prin "|")
(for I 4

(prin (if (> I N) " |" " ======== |")))
(prinl)))

(call ’clear) # Clear screen
(call "tput" "civis") # Set cursor invisible

(push ’*Bye ’(call "tput" "cnorm")) # Set cursor visible on exit

284 6 Rosetta Code Tasks starting with D

(loop
(call "tput" "cup" 0 0) # Cursor to top left
(let Time (time (time))

(draw (20 (5 . _)) (19 / 5 \\))
(if (onOff (NIL))

(draw (18 / 7 \\) (18 \\ 7 /))
(draw (18 / 2 (3 . "#") 2 \\) (18 \\ 2 (3 . "#") 2 /)))

(draw
(19 \\ (5 . _) /)
(+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +))

(bigBox (/ (car Time) 5))
(draw (+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +))
(bigBox (\% (car Time) 5))
(draw (+ (43 . -) +))
(do 2

(prin "|")
(for I ‘(range 5 55 5)

(prin
(cond

((> I (cadr Time)) " |")
((=0 (\% I 3)) " # |")
(T " = |"))))

(prinl))
(draw (+ (43 . -) +))
(bigBox (\% (cadr Time) 5))
(draw (+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +)))

(wait 1000))

The six ’#’ characters in the "circle" on top toggle on/off every second. This
is the display at 17:46:

/ \

/ ### \
\ ### /
_____/

+----------+----------+----------+----------+
| ======== | ======== | ======== | |
| ======== | ======== | ======== | |
+----------+----------+----------+----------+
| ======== | ======== | | |
| ======== | ======== | | |
+---+
| = | = | # | = | = | # | = | = | # | | |
| = | = | # | = | = | # | = | = | # | | |
+---+
| ======== | | | |
| ======== | | | |
+----------+----------+----------+----------+

6 Rosetta Code Tasks starting with D 285

Draw a cuboid

The task is to draw a cuboid with relative dimensions of 2x3x4. The cuboid can
be represented graphically, or in ascii art, depending on the language capabilities.
To fulfil the criteria of being a cuboid, three faces must be visible. Either static or
rotational projection is acceptable for this task.

Using ASCII

(de cuboid (DX DY DZ)
(cubLine (inc DY) "+" DX "-" 0)
(for I DY

(cubLine (- DY I -1) "/" DX " " (dec I) "|"))
(cubLine 0 "+" DX "-" DY "|")
(do (- (* 4 DZ) DY 2)

(cubLine 0 "|" DX " " DY "|"))
(cubLine 0 "|" DX " " DY "+")
(for I DY

(cubLine 0 "|" DX " " (- DY I) "/"))
(cubLine 0 "+" DX "-" 0))

(de cubLine (N C DX D DY E)
(space N)
(prin C)
(do (dec (* 9 DX)) (prin D))
(prin C)
(space DY)
(prinl E))

286 6 Rosetta Code Tasks starting with D

Output:

: (cuboid 2 3 4)
+-----------------+
/ /|

/ / |
/ / |
+-----------------+ |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | +
| | /
| | /
| |/
+-----------------+

: (cuboid 1 1 1)
+--------+

/ /|
+--------+ |
| | |
| | +
| |/
+--------+

: (cuboid 6 2 1)
+---+

/ /|
/ / |
+---+ |
| | +
| | /
| |/
+---+

6 Rosetta Code Tasks starting with D 287

Using OpenGL

Based on cube.io by Mike Austin

(load "@lib/openGl.l")

(setq *AngleX -26.0 *AngleY 74.0)
(setq *LastX 0 *LastY 0)

(glutInit)
(glutInitDisplayMode (| GLUT_RGBA GLUT_DOUBLE GLUT_DEPTH))
(glutInitWindowSize 512 512)
(glutInitWindowPosition 10 50)
(glutCreateWindow "PicoLisp Cube")

(glClearColor 1.0 1.0 1.0 1.0) # The background color
(glEnable GL_DEPTH_TEST)
(glEnable GL_LIGHTING)
(glEnable GL_LIGHT0)
(glDisable GL_CULL_FACE)

(glEnable GL_BLEND)
(glBlendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA)
(glEnable GL_LINE_SMOOTH)
(glHint GL_LINE_SMOOTH_HINT GL_NICEST)
(glLineWidth 2.0)

288 6 Rosetta Code Tasks starting with D

(mouseFunc
’((Btn State X Y)

(setq *LastX X *LastY Y)))

(motionFunc
’((X Y)

(inc ’*AngleX (* (- Y *LastY) 1.0))
(inc ’*AngleY (* (- X *LastX) 1.0))
(setq *LastX X *LastY Y)
(glutPostRedisplay)))

(reshapeFunc
’((Width Height)

(glMatrixMode GL_PROJECTION)
(glLoadIdentity)
(gluPerspective 45.0 (*/ Width 1.0 Height) 1.0 10.0)
(glMatrixMode GL_MODELVIEW)
(glViewport 0 0 Width Height)))

(displayPrg
(glClear (| GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT))
(glLoadIdentity)
(glTranslatef 0.0 0.0 -3.0)
(glRotatef *AngleX 1 0 0)
(glRotatef *AngleY 0 1 0)
(glutSolidCube 1.0)

(glDisable GL_LIGHTING)
(glColor4f 0.4 0.4 0.4 1.0)
(glutWireCube 1.002)
(glEnable GL_LIGHTING)

(glFlush)
(glutSwapBuffers))

(glutMainLoop)

6 Rosetta Code Tasks starting with D 289

Draw a sphere

The task is to draw a sphere. The sphere can be represented graphically, or in ascii
art, depending on the language capabilities. Either static or rotational projection is
acceptable for this task.

This is for the 64-bit version.

(load "@lib/openGl.l")

(glutInit)
(glutInitDisplayMode (| GLUT_RGBA GLUT_DOUBLE GLUT_ALPHA GLUT_DEPTH))
(glutInitWindowSize 400 400)
(glutCreateWindow "Sphere")

(glEnable GL_LIGHTING)
(glEnable GL_LIGHT0)
(glLightiv GL_LIGHT0 GL_POSITION (10 10 -10 0))

(glEnable GL_COLOR_MATERIAL)
(glColorMaterial GL_FRONT_AND_BACK GL_AMBIENT_AND_DIFFUSE)

(glClearColor 0.3 0.3 0.5 0)
(glColor4f 0.0 0.8 0.0 1.0)

(displayPrg
(glClear (| GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT))
(glutSolidSphere 0.9 40 32)
(glFlush)
(glutSwapBuffers))

Exit upon mouse click
(mouseFunc ’((Btn State X Y) (bye)))
(glutMainLoop)

290 6 Rosetta Code Tasks starting with D

Dutch national flag problem

The Dutch national flag is composed of three coloured bands in the order red then
white and lastly blue. The problem posed by Edsger Dijkstra is:

Given a number of red, blue and white balls in random order, arrange them in the
order of the colours Dutch national flag.

When the problem was first posed, Dijkstra then went on to successively refine a
solution, minimising the number of swaps and the number of times the colour of a
ball needed to determined and restricting the balls to end in an array, . . .

This task is to

1. Generate a randomized order of balls ensuring that they are not in the order of
the Dutch national flag.

2. Sort the balls in a way idiomatic to your language.

3. Check the sorted balls are in the order of the Dutch national flag.

Cf.

• Dutch national flag problem

• Probabilistic analysis of algorithms for the Dutch national flag problem by Wei-
Mei Chen. (pdf)

(def ’Colors
(list

(def ’RED 1)
(def ’WHITE 2)
(def ’BLUE 3)))

(let (L (make (do 9 (link (get Colors (rand 1 3))))) S (by val sort L))
(prin "Original balls ")
(print L)
(prinl (unless (= L S) " not sorted"))
(prin "Sorted balls ")
(print S)
(prinl " are sorted"))

Output:

Original balls (RED BLUE WHITE BLUE BLUE RED WHITE WHITE WHITE) not sorted
Sorted balls (RED RED WHITE WHITE WHITE WHITE BLUE BLUE BLUE) are sorted

http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Dutch_national_flag_problem
https://www.google.co.uk/search?rlz=1C1DSGK_enGB472GB472&sugexp=chrome,mod=8&sourceid=chrome&ie=UTF-8&q=Dutch+national+flag+problem#hl=en&rlz=1C1DSGK_enGB472GB472&sclient=psy-ab&q=Probabilistic+analysis+of+algorithms+for+the+Dutch+national+flag+problem&oq=Probabilistic+analysis+of+algorithms+for+the+Dutch+national+flag+problem&gs_l=serp.3...60754.61818.1.62736.1.1.0.0.0.0.72.72.1.1.0...0.0.Pw3RGungndU&psj=1&bav=on.2,or.r_gc.r_pw.r_cp.r_qf.,cf.osb&fp=c33d18147f5082cc&biw=1395&bih=951

6 Rosetta Code Tasks starting with D 291

Dynamic variable names

Create a variable with a user-defined name. The variable name should not be written
in the program text, but should be taken from the user dynamically.

See also

• Eval in environment is a similar task.

(de userVariable ()
(prin "Enter a variable name: ")
(let Var (line T) # Read transient symbol

(prin "Enter a value: ")
(set Var (read)) # Set symbol’s value
(println ’Variable Var ’Value (val Var)))) # Print them

Output:
Enter a variable name: Tom
Enter a value: 42
Variable "Tom" Value 42
-> 42

Chapter 7

Rosetta Code Tasks starting with E

EBNF parser

[aka Parse EBNF]

Write a program that can parse a grammar in Extended Backus–Naur Form and
then parse something else according to the grammar. The program is only required
to decide whether or not the something else belongs to the language described by
the grammar, but for extra credit, it can output a syntax tree. See the tests.

(de EBNF
"expr : term ((PLUS | MINUS) term)* ;"
"term : factor ((MULT | DIV) factor)* ;"
"factor : NUMBER ;")

(for E EBNF
(use (@S @E)

(unless (and (match ’(@S : @E ;) (str E)) (not (cdr @S)))
(quit "Invalid EBNF" E))

(put (car @S) ’ebnf @E)))

293

294 7 Rosetta Code Tasks starting with E

(de matchEbnf (Pat)
(cond

((asoq Pat ’((PLUS . +) (MINUS . -) (MULT . *) (DIV . /)))
(let Op (cdr @)

(when (= Op (car *Lst))
(pop ’*Lst)
Op)))

((== ’NUMBER Pat)
(cond

((num? (car *Lst))
(pop ’*Lst)
@)

((and (= "-" (car *Lst)) (num? (cadr *Lst)))
(setq *Lst (cddr *Lst))
(- @))))

((get Pat ’ebnf) (parseLst @))
((atom Pat))
(T

(loop
(T (matchEbnf (pop ’Pat)) @)
(NIL Pat)
(NIL (== ’| (pop ’Pat)))
(NIL Pat)))))

(de parseLst (Pat)
(let (P (pop ’Pat) X (matchEbnf P))

(loop
(NIL Pat)
(if (n== ’* (cadr Pat))

(if (matchEbnf (pop ’Pat))
(setq X (list @ X))
(throw))

(loop
(NIL *Lst)
(NIL (matchEbnf (car Pat)))
(setq X (list @ X (or (matchEbnf P) (throw)))))

(setq Pat (cddr Pat))))
X))

(de parseEbnf (Str)
(let *Lst (str Str "")

(catch NIL
(parseLst (get ’expr ’ebnf)))))

Output:

: (parseEbnf "1 + 2 * -3 / 7 - 3 * 4")
-> (- (+ 1 (/ (* 2 -3) 7)) (* 3 4))

7 Rosetta Code Tasks starting with E 295

Echo server

Create a network service that sits on TCP port 12321, which accepts connec-
tions on that port, and which echoes complete lines (using a carriage-return/line-
feed sequence as line separator) back to clients. No error handling is required. For
the purposes of testing, it is only necessary to support connections from localhost
(127.0.0.1 or perhaps ::1). Logging of connection information to standard out-
put is recommended.

The implementation must be able to handle simultaneous connections from multiple
clients. A multi-threaded or multi-process solution may be used. Each connection
must be able to echo more than a single line.

The implementation must not stop responding to other clients if one client sends a
partial line or stops reading responses.

(setq Port (port 12321))

(loop
(setq Sock (listen Port)) # Listen
(NIL (fork) (close Port)) # Accepted
(close Sock)) # Parent: Close socket and continue

Child:
(prinl (stamp) " -- (Pid " *Pid ") Client connected from " *Adr)

(in Sock
(until (eof) # Echo lines

(out Sock (prinl (line)))))

(prinl (stamp) " -- (Pid " *Pid ") Client disconnected")
(bye) # Terminate child

296 7 Rosetta Code Tasks starting with E

Element-wise operations

Similar to Matrix multiplication and Matrix transposition, the task is to implement
basic element-wise matrix-matrix and scalar-matrix operations, which can be re-
ferred to in other, higher-order tasks. Implement addition, subtraction, multiplica-
tion, division and exponentiation.

Extend the task if necessary to include additional basic operations, which should not
require their own specialised task.

(de elementWiseMatrix (Fun Mat1 Mat2)
(mapcar ’((L1 L2) (mapcar Fun L1 L2)) Mat1 Mat2))

(de elementWiseScalar (Fun Mat Scalar)
(elementWiseMatrix Fun Mat (circ (circ Scalar))))

Test:

(let (S 10 M ’((7 11 13) (17 19 23) (29 31 37)))
(println (elementWiseScalar + M S))
(println (elementWiseScalar - M S))
(println (elementWiseScalar * M S))
(println (elementWiseScalar / M S))
(println (elementWiseScalar ** M S))
(prinl)
(println (elementWiseMatrix + M M))
(println (elementWiseMatrix - M M))
(println (elementWiseMatrix * M M))
(println (elementWiseMatrix / M M))
(println (elementWiseMatrix ** M M)))

Output:

((17 21 23) (27 29 33) (39 41 47))
((-3 1 3) (7 9 13) (19 21 27))
((70 110 130) (170 190 230) (290 310 370))
((0 1 1) (1 1 2) (2 3 3))
((282475249 25937424601 137858491849) (2015993900449 6131066257801 ...

((14 22 26) (34 38 46) (58 62 74))
((0 0 0) (0 0 0) (0 0 0))
((49 121 169) (289 361 529) (841 961 1369))
((1 1 1) (1 1 1) (1 1 1))
((823543 285311670611 302875106592253) (827240261886336764177 ...

7 Rosetta Code Tasks starting with E 297

Empty program

In this task, the goal is to create the simplest possible program that is still considered
“correct.”

(de foo ())

298 7 Rosetta Code Tasks starting with E

Empty string

Languages may have features for dealing specifically with empty strings (those con-
taining no characters).

The task is to:

• Demonstrate how to assign an empty string to a variable.

• Demonstrate how to check that a string is empty.

• Demonstrate how to check that a string is not empty.

The empty string is represented by
’[http://software-lab.de/doc/ref.html#nilSym NIL]’ in PicoLisp.
During input, two subsequent double qoutes ’""’ return the symbol
NIL.

To assign a variable an empty string:
(off String)
(setq String "")
(setq String NIL)

To check for an empty string:
(or String ..)
(ifn String ..)
(unless String ..)

or a non-empty string:
(and String ..)
(if String ..)
(when String ..)

7 Rosetta Code Tasks starting with E 299

Ensure that a file exists

In this task, the job is to verify that a file called “input.txt” and the directory called
“docs” exist. This should be done twice: once for the current working directory and
once for a file and a directory in the filesystem root.

(if (info "file.txt")
(prinl "Size: " (car @) " bytes, last modified " (stamp (cadr @) (cddr @)))
(prinl "File doesn’t exist"))

300 7 Rosetta Code Tasks starting with E

Enumerations

Create an enumeration of constants with and without explicit values.

Enumerations are not very useful in a symbolic language like PicoLisp. If
desired, an ’enum’ function could be defined:

(de enum "Args"
(mapc def "Args" (range 1 (length "Args"))))

: (enum A B C D E F)
-> F

: A
-> 1
: B
-> 2
: F
-> 6

7 Rosetta Code Tasks starting with E 301

Environment variables

Show how to get one of your process’s environment variables. The available vari-
ables vary by system; some of the common ones available on Unix include PATH,
HOME, USER.

: (sys "TERM")
-> "xterm"

: (sys "SHELL")
-> "/bin/bash"

http://en.wikipedia.org/wiki/Environment_variable

302 7 Rosetta Code Tasks starting with E

Equilibrium index

An equilibrium index of a sequence is an index into the sequence such that the sum
of elements at lower indices is equal to the sum of elements at higher indices. For
example, in a sequence A:

A0 = 7

A1 = 1

A2 = 5

A3 = 2

A4 = 4

A5 = 3

A6 = 0

3 is an equilibrium index, because:

A0 + A1 + A2 = A4 + A5 + A6

6 is also an equilibrium index, because:

A0 + A1 + A2 + A3 + A4 + A5 = 0

(sum of zero elements is zero)

7 is not an equilibrium index, because it is not a valid index of sequence A.

Write a function that, given a sequence, returns its equilibrium indices (if any).
Assume that the sequence may be very long.

(de equilibria (Lst)
(make

(let Sum 0
(for ((I . L) Lst L (cdr L))

(and (= Sum (sum prog (cdr L))) (link I))
(inc ’Sum (car L))))))

Output:

: (equilibria (-7 1 5 2 -4 3 0))
-> (4 7)

: (equilibria (make (do 10000 (link (rand -10 10)))))
-> (4091 6174 6198 7104 7112 7754)

7 Rosetta Code Tasks starting with E 303

Ethiopian multiplication

A method of multiplying integers using only addition, doubling, and halving.

Method:

1. Take two numbers to be multiplied and write them down at the top of two
columns.

2. In the left-hand column repeatedly halve the last number, discarding any remain-
ders, and write the result below the last in the same column, until you write a
value of 1.

3. In the right-hand column repeatedly double the last number and write the result
below. stop when you add a result in the same row as where the left hand column
shows 1.

4. Examine the table produced and discard any row where the value in the left col-
umn is even.

5. Sum the values in the right-hand column that remain to produce the result of
multiplying the original two numbers together

For example: 17 34

17 34

Halving the first column:

17 34
8
4
2
1

Doubling the second column:

17 34
8 68
4 136
2 272
1 544

Strike-out rows whose first cell is even:

17 34
8 68
4 136
2 272
1 544

304 7 Rosetta Code Tasks starting with E

Sum the remaining numbers in the right-hand column:

17 34
8 --
4 ---
2 ---
1 544

====
578

So 17 multiplied by 34, by the Ethiopian method is 578.

The task is to define three named functions/methods/procedures/subroutines:

1. one to halve an integer,

2. one to double an integer, and

3. one to state if an integer is even.

Use these functions to create a function that does Ethiopian multiplication.

References

• Ethiopian multiplication explained (Video)

• A Night Of Numbers - Go Forth And Multiply (Video)

• Ethiopian multiplication

• Russian Peasant Multiplication

• Programming Praxis: Russian Peasant Multiplication

(de halve (N)
(/ N 2))

(de double (N)
(* N 2))

(de even? (N)
(not (bit? 1 N)))

(de ethiopian (X Y)
(let R 0

(while (>= X 1)
(or (even? X) (inc ’R Y))
(setq

X (halve X)
Y (double Y)))

R))

http://www.bbc.co.uk/learningzone/clips/ethiopian-multiplication-explained/11232.html
http://www.youtube.com/watch?v=Nc4yrFXw20Q
http://www.ncetm.org.uk/blogs/3064
http://www.bbc.co.uk/dna/h2g2/A22808126
http://thedailywtf.com/Articles/Programming-Praxis-Russian-Peasant-Multiplication.aspx

7 Rosetta Code Tasks starting with E 305

Euler Method

Euler’s method numerically approximates solutions of first-order ordinary differen-
tial equations (ODEs) with a given initial value. It is an explicit method for solving
initial value problems (IVPs), as described in the wikipedia page. The ODE has to
be provided in the following form:

with an initial value

y(t0) = y0

To get a numeric solution, we replace the derivative on the LHS with a finite differ-
ence approximation:

then solve for y(t + h):

which is the same as

The iterative solution rule is then:

h is the step size, the most relevant parameter for accuracy of the solution. A smaller
step size increases accuracy but also the computation cost, so it has always has to
be hand-picked according to the problem at hand.

http://en.wikipedia.org/wiki/Euler_method

306 7 Rosetta Code Tasks starting with E

Example: Newton’s Cooling Law

Newton’s cooling law describes how an object of initial temperature T(t0) = T0 cools
down in an environment of temperature TR:

or

It says that the cooling rate of the object is proportional to the current tem-
perature difference T = (T(t) TR) to the surrounding environment.

The analytical solution, which we will compare to the numerical approximation, is

Task

The task is to implement a routine of Euler’s method and then to use it to solve the
given example of Newton’s cooling law with it for three different step sizes of 2 s,
5 s and 10 s and to compare with the analytical solution. The initial temperature T0
shall be 100 C, the room temperature TR 20 C, and the cooling constant k 0.07. The
time interval to calculate shall be from 0 s to 100 s.

A reference solution (Common Lisp) can be seen on below. We see that bigger step
sizes lead to reduced approximation accuracy.

7 Rosetta Code Tasks starting with E 307

308 7 Rosetta Code Tasks starting with E

(load "@lib/math.l")

(de euler (F Y A B H)
(while (> B A)

(prinl (round A) " " (round Y))
(inc ’Y (*/ H (F A Y) 1.0))
(inc ’A H)))

(de newtonCoolingLaw (A B)
(*/ -0.07 (- B 20.) 1.0))

(euler newtonCoolingLaw 100.0 0 100.0 2.0)
(euler newtonCoolingLaw 100.0 0 100.0 5.0)
(euler newtonCoolingLaw 100.0 0 100.0 10.0)

Output:

...
0.000 100.000
10.000 44.000
20.000 27.200
30.000 22.160
40.000 20.648
50.000 20.194
60.000 20.058
70.000 20.018
80.000 20.005
90.000 20.002

7 Rosetta Code Tasks starting with E 309

Evaluate binomial coefficients

This programming task, is to calculate ANY binomial coefficient.

However, it has to be able to output , which is 10.

This formula is recommended:

(de binomial (N K)
(let f ’((N) (apply * (range 1 N)))

(/ (f N) (* (f (- N K)) (f K)))))

Output:

: (binomial 5 3)
-> 10

310 7 Rosetta Code Tasks starting with E

Even or odd

Test whether an integer is even or odd.

There is more than one way to solve this task:

• Use the even and odd predicates, if the language provides them.

• Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff
i is even, or equals 1 iff i is odd.

• Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or
-1 iff i is odd.

• Use modular congruences:

– i 0 (mod 2) iff i is even.

– i 1 (mod 2) iff i is odd.

PicoLisp doesn’t have a built-in predicate for that. Using
’[http://software-lab.de/doc/refB.html#bit? bit?]’ is the easiest
and most efficient. The bit test with 1 will return NIL if the
number is even.

: (bit? 1 3)
-> 1 # Odd

: (bit? 1 4)
-> NIL # Even

http://en.wiktionary.org/wiki/iff

7 Rosetta Code Tasks starting with E 311

Events

Event is a synchronization object. An event has two states signaled and reset. A
task may await for the event to enter the desired state, usually the signaled state. It is
released once the state is entered. Releasing waiting tasks is called event notification.
Programmatically controlled events can be set by a task into one of its states.

In concurrent programming event also refers to a notification that some state has
been reached through an asynchronous activity. The source of the event can be:

• internal, from another task, programmatically;

• external, from the hardware, such as user input, timer, etc. Signaling an event
from the hardware is accomplished by means of hardware interrupts.

Event is a low-level synchronization mechanism. It neither identify the state that
caused it signaled, nor the source of, nor who is the subject of notification. Events
augmented by data and/or publisher-subscriber schemes are often referred as mes-
sages, signals etc.

In the context of general programming event-driven architecture refers to a design
that deploy events in order to synchronize tasks with the asynchronous activities
they must be aware of. The opposite approach is polling sometimes called busy
waiting, when the synchronization is achieved by an explicit periodic querying the
state of the activity. As the name suggests busy waiting consumes system resources
even when the external activity does not change its state.

Event-driven architectures are widely used in GUI design and SCADA systems.
They are flexible and have relatively short response times. At the same time event-
driven architectures suffer to the problems related to their unpredictability. They
face race condition, deadlocking, live locks and priority inversion. For this reason
real-time systems tend to polling schemes, trading performance for predictability in
the worst case scenario.

PicoLisp supports events from timers (via
’[http://software-lab.de/doc/refT.html#task task]’ and
’[http://software-lab.de/doc/refA.html#alarm alarm]’),
file descriptors (also ’task’) and various
’[http://software-lab.de/doc/refS.html#*Sig1 signals]’.
This will print a message after one second, then terminate the program after
another four seconds:

(alarm 1
(prinl "Exit in 4 seconds")
(alarm 4 (bye)))

312 7 Rosetta Code Tasks starting with E

Evolutionary algorithm

Starting with:

• The target string: "METHINKS IT IS LIKE A WEASEL".

• An array of random characters chosen from the set of upper-case letters together
with the space, and of the same length as the target string. (Call it the parent).

• A fitness function that computes the ‘closeness’ of its argument to the target
string.

• A mutate function that given a string and a mutation rate returns a copy of the
string, with some characters probably mutated.

• While the parent is not yet the target:

• copy the parent C times, each time allowing some random probability that
another character might be substituted using mutate.

• Assess the fitness of the parent and all the copies to the target and make
the most fit string the new parent, discarding the others.

• repeat until the parent converges, (hopefully), to the target.

Cf: Weasel algorithm and Evolutionary algorithm

Note: to aid comparison, try and ensure the variables and functions mentioned in
the task description appear in solutions

http://en.wikipedia.org/wiki/Weasel_program#Weasel_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm

7 Rosetta Code Tasks starting with E 313

This example uses ’gen’, the genetic function in "lib/simul.l"

(load "@lib/simul.l")

(setq *Target (chop "METHINKS IT IS LIKE A WEASEL"))

Generate random character
(de randChar ()

(if (=0 (rand 0 26))
" "
(char (rand ‘(char "A") ‘(char "Z")))))

Fitness function (Hamming distance)
(de fitness (A)

(cnt = A *Target))

Genetic algorithm
(gen

(make # Parent population
(do 100 # C = 100 children

(link
(make

(do (length *Target)
(link (randChar)))))))

’((A) # Termination condition
(prinl (maxi fitness A)) # Print the fittest element
(member *Target A)) # and check if solution is found

’((A B) # Recombination function
(mapcar

’((C D) (if (rand T) C D)) # Pick one of the chars
A B))

’((A) # Mutation function
(mapcar

’((C)
(if (=0 (rand 0 10)) # With a proability of 10\%

(randChar) # generate a new char, otherwise
C)) # return the current char

A))
fitness) # Selection function

Output:

RQ ASLWWWI ANSHPNABBAJ ZLTKX
DETGGNGHWITIKSXLIIEBA WAATPC
CETHINWS ITKESQGIKE A WSAGHO
METHBNWS IT NSQLIKE A WEAEWL
METHINKS IT ISCLIKE A WVASEL
METHINKS IT ISOLIKE A WEASEL
METHINKS IT IS LIKE A WEASEL

314 7 Rosetta Code Tasks starting with E

Exceptions

Control Structures

These are examples of control structures. You may also be interested in:

• Conditional structures

• Exceptions

• Flow-control structures

• Loops

This task is to give an example of an exception handling routine and to “throw” a
new exception.

Cf. Exceptions Through Nested Calls

[http://software-lab.de/doc/refC.html#catch catch],
[http://software-lab.de/doc/refT.html#throw throw] (and
[http://software-lab.de/doc/refF.html#finally finally]) can be used
for exception handling. ’throw’ will transfer control to a ’catch’
environment that was set up with the given label.

(catch ’thisLabel # Catch this label
(println 1) # Do some processing (print ’1’)
(throw ’thisLabel 2) # Abort processing and return ’2’
(println 3)) # This is never reached

Output:

1 # ’1’ is printed
-> 2 # ’2’ is returned

7 Rosetta Code Tasks starting with E 315

Exceptions/Catch an exception thrown in a nested call

Show how to create a user-defined exception and show how to catch an exception
raised from several nested calls away.

1. Create two user-defined exceptions, U0 and U1.

2. Have function foo call function bar twice.

3. Have function bar call function baz.

4. Arrange for function baz to raise, or throw exception U0 on its first call, then
exception U1 on its second.

5. Function foo should catch only exception U0, not U1.

Show/describe what happens when the program is run.

(de foo ()
(for Tag ’(U0 U1)

(catch ’U0
(bar Tag))))

(de bar (Tag)
(baz Tag))

(de baz (Tag)
(throw Tag))

(mapc trace ’(foo bar baz))
(foo)

Output:

foo :
bar : U0
baz : U0

bar : U1
baz : U1

[x:13] !? (throw Tag)
U1 -- Tag not found
? # Debug prompt

316 7 Rosetta Code Tasks starting with E

Executable library

The general idea behind an executable library is to create a library that when used
as a library does one thing; but has the ability to be run directly via command line.
Thus the API comes with a CLI in the very same source code file.

Task detail

• Create a library/module/dll/shared object/. . . for a programming language that
contains a function/method called hailstone that is a function taking a positive
integer and returns the Hailstone sequence for that number.

• The library, when executed directly should satisfy the remaining requirements of
the Hailstone sequence task:

2. Use the routine to show that the hailstone sequence for the number 27 has 112
elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1

3. Show the number less than 100,000 which has the longest hailstone sequence
together with that sequences length.

• Create a second executable to calculate the following:

– Use the libraries hailstone function, in the standard manner, (or document how
this use deviates from standard use of a library), together with extra code in
this executable, to find the hailstone length returned most often for 1 <= n <
100,000”

• Explain any extra setup/run steps needed to complete the task.

Notes:

• It is assumed that for a language that overwhelmingly ships in a compiled form,
such as C, the library must also be an executable and the compiled user of that
library is to do so without changing the compiled library. I.e. the compile tool-
chain is assumed not to be present in the runtime environment.

• Interpreters are present in the runtime environment.

7 Rosetta Code Tasks starting with E 317

There is no formal difference between libraries and other executable files in
PicoLisp. Any function in a library can be called from the command line by
prefixing it with ’-’. Create an executable file (chmod +x) "hailstone.l":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de hailstone (N)
(make

(until (= 1 (link N))
(setq N

(if (bit? 1 N)
(inc (* N 3))
(/ N 2))))))

(de hailtest ()
(let L (hailstone 27)

(test 112 (length L))
(test (27 82 41 124) (head 4 L))
(test (8 4 2 1) (tail 4 L)))

(let N (maxi ’((N) (length (hailstone N))) (range 1 100000))
(test 77031 N)
(test 351 (length (hailstone N))))

(println ’OK)
(bye))

and an executable file (chmod +x) "test.l":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "hailstone.l")

(let Len NIL
(for N 100000

(accu ’Len (length (hailstone N)) 1))
(let M (maxi cdr Len)

(prinl "The hailstone length returned most often is " (car M))
(prinl "It is returned " (cdr M) " times")))

(bye)

Test:

\$./hailstone.l -hailtest
OK

\$./test.l
The hailstone length returned most often is 72
It is returned 1467 times

318 7 Rosetta Code Tasks starting with E

Execute Brain****

Execute Brain**** is an implementation of Brainf***.

An implementation need only properly implement the ‘[’, ’]’, ‘+’, ’-’, ‘<’, ‘>’, ’,’,
and ’.’ instructions. Any cell size is allowed, EOF support is optional, as is whether
you have bounded or unbounded memory.

7 Rosetta Code Tasks starting with E 319

This solution uses a doubly-linked list for the cell space. That list consists
of a single cell initially, and grows automatically in both directions. The
value in each cell is unlimited.

(off "Program")

(de compile (File)
(let Stack NIL

(setq "Program"
(make

(in File
(while (char)

(case @
(">"

(link
’(setq Data

(or
(cddr Data)
(con (cdr Data) (cons 0 (cons Data)))))))

("<"
(link

’(setq Data
(or

(cadr Data)
(set (cdr Data) (cons 0 (cons NIL Data)))))))

("+" (link ’(inc Data)))
("-" (link ’(dec Data)))
("." (link ’(prin (char (car Data)))))
("," (link ’(set Data (char (read)))))
("["

(link
’(setq Code

((if (=0 (car Data)) cdar cdr) Code)))
(push ’Stack (chain (cons))))

("]"
(unless Stack

(quit "Unbalanced ’]’"))
(link

’(setq Code
((if (n0 (car Data)) cdar cdr) Code)))

(let (There (pop ’Stack) Here (cons There))
(chain (set There Here)))))))))

(when Stack
(quit "Unbalanced ’[’"))))

(de execute ()
(let Data (cons 0 (cons)) # Create initial cell

(for (Code "Program" Code) # Run program
(eval (pop ’Code)))

(while (cadr Data) # Find beginning of data
(setq Data @))

(filter prog Data ’(T NIL .)))) # Return data space

320 7 Rosetta Code Tasks starting with E

Output:

: (compile "hello.bf")
-> NIL

: (execute)
Goodbye, World!
-> (0 10 33 44 71 87 98 100 114 121)

7 Rosetta Code Tasks starting with E 321

Execute HQ9+

Implement a HQ9+ interpreter or compiler for Rosetta Code.

(de hq9+ (Code)
(let Accu 0

(for C (chop Code)
(case C

("H" (prinl "Hello, world"))
("Q" (prinl Code))
("9"

(for (N 99 (gt0 N))
(prinl N " bottles of beer on the wall")
(prinl N " bottles of beer")
(prinl "Take one down, pass it around")
(prinl (dec ’N) " bottles of beer on the wall")
(prinl)))

("+" (inc ’Accu))))
Accu))

322 7 Rosetta Code Tasks starting with E

Execute a Markov algorithm

Create an interpreter for a Markov Algorithm. Rules have the syntax:

<ruleset>::= ((<comment> | <rule>) <newline>+)*
<comment>::= # {<any character>}
<rule>::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace>::= (<tab> | <space>) [<whitespace>]

There is one rule per line. If there is a . present before the <replacement>, then
this is a terminating rule in which case the interpreter must halt execution. A ruleset
consists of a sequence of rules, with optional comments.

http://en.wikipedia.org/wiki/Markov_algorithm

7 Rosetta Code Tasks starting with E 323

(de markov (File Text)
(use (@A @Z R)

(let Rules
(make

(in File
(while (skip "#")

(when (match ’(@A " " "-" ">" " " @Z) (replace (line) "@" "#"))
(link (cons (clip @A) (clip @Z)))))))

(setq Text (chop Text))
(pack

(loop
(NIL

(find
’((R) (match (append ’(@A) (car R) ’(@Z)) Text))
Rules)

Text)
(T (= "." (cadr (setq R @)))

(append @A (cddr R) @Z))
(setq Text (append @A (cdr R) @Z)))))))

Output:

: (markov "r1" "I bought a B of As from T S.")
-> "I bought a bag of apples from my brother."

: (markov "r2" "I bought a B of As from T S.")
-> "I bought a bag of apples from T shop."

: (markov "r3" "I bought a B of As W my Bgage from T S.")
-> "I bought a bag of apples with my money from T shop."

: (markov "r4" "_1111*11111_")
-> "11111111111111111111"

: (markov "r5" "000000A000000")
-> "00011H1111000"

324 7 Rosetta Code Tasks starting with E

Execute a system command

In this task, the goal is to run either the ls (dir on Windows) system command, or
the pause system command.

(call "ls")

7 Rosetta Code Tasks starting with E 325

Exponentiation operator

Most all programming languages have a built-in implementation of exponentiation.
Re-implement integer exponentiation for both intint and floatint as both a procedure,
and an operator (if your language supports operator definition).

If the language supports operator (or procedure) overloading, then an overloaded
form should be provided for both intint and floatint variants.

This uses Knuth’s algorithm (The Art of Computer Programming, Vol.
2, page 442)

(de ** (X N) # N th power of X
(let Y 1

(loop
(when (bit? 1 N)

(setq Y (* Y X)))
(T (=0 (setq N (>> 1 N)))

Y)
(setq X (* X X)))))

326 7 Rosetta Code Tasks starting with E

Extend your language

Control Structures

These are examples of control structures. You may also be interested in:

• Conditional structures

• Exceptions

• Flow-control structures

• Loops

Some programming languages allow you to extend the language. While this can be
done to a certain degree in most languages (e.g. by using macros), other languages
go much further. Most notably in the Forth and Lisp families, programming per se
is done by extending the language without any formal distinction between built-in
and user-defined elements.

If your language supports it, show how to introduce a new flow control mechanism.
A practical and useful example is a four-way branch:

Occasionally, code must be written that depends on two conditions, resulting in up
to four branches (depending on whether both, only the first, only the second, or none
of the conditions are “true”). In a C-like language this could look like the following:

if (condition1isTrue) {
if (condition2isTrue)

bothConditionsAreTrue();
else

firstConditionIsTrue();
}
else if (condition2isTrue)

secondConditionIsTrue();
else

noConditionIsTrue();

Besides being rather cluttered, the statement(s) for ‘condition2isTrue’ must be writ-
ten down twice. If ‘condition2isTrue’ were a lengthy and involved expression, it
would be quite unreadable, and the code generated by the compiler might be unnec-
essarily large.

This can be improved by introducing a new keyword if2. It is similar to if, but takes
two conditional statements instead of one, and up to three ‘else’ statements. One
proposal (in pseudo-C syntax) might be:

if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();

else1

http://en.wikipedia.org/wiki/Extensible_programming

7 Rosetta Code Tasks starting with E 327

firstConditionIsTrue();
else2

secondConditionIsTrue();
else

noConditionIsTrue();

Pick the syntax which suits your language. The keywords ‘else1’ and ‘else2’ are just
examples. The new conditional expression should look, nest and behave analog to
the language’s built-in ‘if’ statement.

(undef ’if2) # Undefine the built-in ’if2’

(de if2 "P"
(if (eval (pop ’"P"))

(eval ((if (eval (car "P")) cadr caddr) "P"))
(if (eval (car "P"))

(eval (cadddr "P"))
(run (cddddr "P")))))

Usage:

(if2 (condition1isTrue) (condition2isTrue)
(bothConditionsAreTrue) # A single expression in each of the
(firstConditionIsTrue) # first three branches
(secondConditionIsTrue)
(noConditionIsTrue) # The final branch may contain
(...)) # an arbitrary number of expressions

As another example of language extension, see [[Anonymous recursion#PicoLisp]].

328 7 Rosetta Code Tasks starting with E

Extreme floating point values

The IEEE floating point specification defines certain ‘extreme’ floating point values
such as minus zero, -0.0, a value distinct from plus zero; not a number, NaN; and
plus and minus infinity.

The task is to use expressions involving other ‘normal’ floating point values in your
language to calculate these, (and maybe other), extreme floating point values in your
language and assign them to variables. Print the values of these variables if possible;
and show some arithmetic with these values and variables. If your language can
directly enter these extreme floating point values then show it.

C.f:

• What Every Computer Scientist Should Know About Floating-Point Arithmetic

• Infinity

• Detect division by zero

• Literals/Floating point

PicoLisp has only very limited built-in floating point support, and
handles the rest by calling native (typically C) libraries. Minus
zero and negative infinity cannot be represented, while NaN is
represented by NIL

(load "@lib/math.l")

: (exp 1000.0) # Too large for IEEE floats
-> T

: (+ 1 2 NIL 3) # NaN propagates
-> NIL

http://www-users.math.umd.edu/~jkolesar/mait613/floating_point_math.pdf

Chapter 8

Rosetta Code Tasks starting with F

Factorial

The Factorial Function of a positive integer, n, is defined as the product of the
sequence n, n-1, n-2, . . . 1 and the factorial of zero, 0, is defined as being 1.

Write a function to return the factorial of a number. Solutions can be iterative or
recursive. Support for trapping negative n errors is optional.

(de fact (N)
(if (=0 N)

1
(* N (fact (dec N)))))

or

(de fact (N)
(apply * (range 1 N)))

329

http://en.wikipedia.org/wiki/Factorial#Definition

330 8 Rosetta Code Tasks starting with F

Factors of a Mersenne number

A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne
number may be a Mersenne prime (if P is not prime, the Mersenne number is also not
prime). In the search for Mersenne prime numbers it is advantageous to eliminate
exponents by finding a small factor before starting a, potentially lengthy, Lucas-
Lehmer test. There are very efficient algorithms for determining if a number divides
2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have
built-in implementations of this exponent-and-mod operation (called modPow or
similar). The following is how to implement this modPow yourself:

For example, let’s compute 223 mod 47. Convert the exponent 23 to binary, you get
10111. Starting with square = 1, repeatedly square it. Remove the top bit of the
exponent, and if it’s 1 multiply square by the base of the exponentiation (2), then
compute square modulo 47. Use the result of the modulo from the last step as the
initial value of square in the next step:

Remove Optional
square top bit multiply by 2 mod 47
------------ ------- ------------- ------
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1

Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both
sides: 223-1 = 0 mod 47.) Since we’ve shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero.
Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).

These primality tests only work on Mersenne numbers where P is prime. For exam-
ple, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither
of which fit 2kP+1.

Task: Using the above method find a factor of 2929-1 (aka M929)

8 Rosetta Code Tasks starting with F 331

(de **Mod (X Y N)
(let M 1

(loop
(when (bit? 1 Y)

(setq M (\% (* M X) N)))
(T (=0 (setq Y (>> 1 Y)))

M)
(setq X (\% (* X X) N)))))

(de prime? (N)
(or

(= N 2)
(and

(> N 1)
(bit? 1 N)
(for (D 3 T (+ D 2))

(T (> D (sqrt N)) T)
(T (=0 (\% N D)) NIL)))))

(de mFactor (P)
(let (Lim (sqrt (dec (** 2 P))) K 0 Q)

(loop
(setq Q (inc (* 2 (inc ’K) P)))
(T (>= Q Lim) NIL)
(T

(and
(member (\% Q 8) (1 7))
(prime? Q)
(= 1 (**Mod 2 P Q)))

Q))))

332 8 Rosetta Code Tasks starting with F

Output:

: (for P (2 3 4 5 7 11 13 17 19 23 29 31 37 41 43 47 53 929)
(prinl

"M" P " = 2**" P "-1 is "
(cond

((not (prime? P)) "not prime")
((mFactor P) (pack "composite with factor " @))
(T "prime"))))

M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M4 = 2**4-1 is not prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

8 Rosetta Code Tasks starting with F 333

Factors of an integer

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Compute the factors of a positive integer. These factors are the positive integers by
which the number being factored can be divided to yield a positive integer result
(though the concepts function correctly for zero and negative integers, the set of
factors of zero is has countably infinite members, and the factors of negative inte-
gers can be obtained from the factors of related positive numbers without difficulty;
this task does not require handling of either of these cases). Note that even prime
numbers will have at least two factors; ‘1’ and themselves.

See also:

• Prime decomposition

(de factors (N)
(filter

’((D) (=0 (% N D)))
(range 1 N)))

http://en.wikipedia.org/wiki/Divisor

334 8 Rosetta Code Tasks starting with F

Fast Fourier transform

The purpose of this task is to calculate the FFT (Fast Fourier Transform) of an input
sequence. The most general case allows for complex numbers at the input and results
in a sequence of equal length, again of complex numbers. If you need to restrict
yourself to real numbers the output should be the magnitude (i.e. sqrt(re+im)) of the
complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia
has pseudocode for that. Further optimizations are possible but not required.

http://en.wikipedia.org/wiki/Cooley--Tukey_FFT_algorithm

8 Rosetta Code Tasks starting with F 335

{{works with|PicoLisp|3.1.0.3}}

apt-get install libfftw3-dev

(scl 4)

(de FFTW_FORWARD . -1)
(de FFTW_ESTIMATE . 64)

(de fft (Lst)
(let

(Len (length Lst)
In (native "libfftw3.so" "fftw_malloc" ’N (* Len 16))
Out (native "libfftw3.so" "fftw_malloc" ’N (* Len 16))
P (native "libfftw3.so" "fftw_plan_dft_1d" ’N

Len In Out FFTW_FORWARD FFTW_ESTIMATE))
(struct In NIL (cons 1.0 (apply append Lst)))
(native "libfftw3.so" "fftw_execute" NIL P)
(prog1 (struct Out (make (do Len (link (1.0 . 2)))))

(native "libfftw3.so" "fftw_destroy_plan" NIL P)
(native "libfftw3.so" "fftw_free" NIL Out)
(native "libfftw3.so" "fftw_free" NIL In))))

Test:

(for R (fft ’((1.0 0) (1.0 0) (1.0 0) (1.0 0) (0 0) (0 0) (0 0) (0 0)))
(tab (6 8)

(round (car R))
(round (cadr R))))

Output:

4.000 0.000
1.000 -2.414
0.000 0.000
1.000 -0.414
0.000 0.000
1.000 0.414
0.000 0.000
1.000 2.414

336 8 Rosetta Code Tasks starting with F

Fibonacci n-step number sequences

These number series are an expansion of the ordinary Fibonacci sequence where:

The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1

Write a function to generate the nth Fibonacci number. Solutions can be iterative
or recursive (though recursive solutions are generally considered too slow and are
mostly used as an exercise in recursion).

The sequence is sometimes extended into negative numbers by using a straightfor-
ward inverse of the positive definition:

Fn = Fn+2 - Fn+1, if n<0

Support for negative n in the solution is optional.

Cf.

• Fibonacci n-step number sequences

References

• Wikipedia, Fibonacci number

• Wikipedia, Lucas number

• MathWorld, Fibonacci Number

• Some identities for r-Fibonacci numbers

• OEIS Fibonacci numbers

• OEIS Lucas numbers

1. For n = 2 we have the Fibonacci sequence; with initial values [1,1] and

2. For n = 3 we have the tribonacci sequence; with initial values [1,1,2] and

3. For n = 4 we have the tetranacci sequence; with initial values [1,1,2,4] and

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Lucas_number
http://mathworld.wolfram.com/FibonacciNumber.html
http://www.math-cs.ucmo.edu/~curtisc/articles/howardcooper/genfib4.pdf
http://oeis.org/A000045
http://oeis.org/A000032

8 Rosetta Code Tasks starting with F 337

. . .

4. For general n > 2 we have the Fibonacci n-step sequence - ; with initial values

of the first n values of the (n 1)’th Fibonacci n-step sequence ; and k’th
value of this n’th sequence being

For small values of n, Greek numeric prefixes are sometimes used to individually
name each series.

n Series name Values

2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 . . .

3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 . . .

4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 . . .

5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 . . .

6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 . . .

7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 . . .

8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 . . .

9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 . . .

10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 . . .

Table 8.1: Fibonacci n-step sequences

Allied sequences can be generated where the initial values are changed:

The Lucas series sums the two preceeding values like the fibonacci series for n = 2
but uses [2,1] as its initial values.

http://en.wikipedia.org/wiki/Number_prefix#Greek_series
http://en.wikipedia.org/wiki/Lucas_number

338 8 Rosetta Code Tasks starting with F

The task is to

1. Write a function to generate Fibonacci n-step number sequences given its initial
values and assuming the number of initial values determines how many previous
values are summed to make the next number of the series.

2. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-
nacci and Lucas sequences.

Cf.

• Fibonacci sequence

• Wolfram Mathworld

• Hofstadter Q sequence

(de nacci (Init Cnt)
(let N (length Init)

(make
(made Init)
(do (- Cnt N)

(link (apply + (tail N (made))))))))

Test:
Fibonacci
: (nacci (1 1) 10)
-> (1 1 2 3 5 8 13 21 34 55)

Tribonacci
: (nacci (1 1 2) 10)
-> (1 1 2 4 7 13 24 44 81 149)

Tetranacci
: (nacci (1 1 2 4) 10)
-> (1 1 2 4 8 15 29 56 108 208)

Lucas
: (nacci (2 1) 10)
-> (2 1 3 4 7 11 18 29 47 76)

Decanacci
: (nacci (1 1 2 4 8 16 32 64 128 256) 15)
-> (1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172)

http://mathworld.wolfram.com/Fibonaccin-StepNumber.html

8 Rosetta Code Tasks starting with F 339

Fibonacci sequence

The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1

Write a function to generate the nth Fibonacci number. Solutions can be iterative
or recursive (though recursive solutions are generally considered too slow and are
mostly used as an exercise in recursion).

The sequence is sometimes extended into negative numbers by using a straightfor-
ward inverse of the positive definition:

Fn = Fn+2 - Fn+1, if n<0

Support for negative n in the solution is optional.

Cf.

• Fibonacci n-step number sequences

References

• Wikipedia, Fibonacci number

• Wikipedia, Lucas number

• MathWorld, Fibonacci Number

• Some identities for r-Fibonacci numbers

• OEIS Fibonacci numbers

• OEIS Lucas numbers

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Lucas_number
http://mathworld.wolfram.com/FibonacciNumber.html
http://www.math-cs.ucmo.edu/~curtisc/articles/howardcooper/genfib4.pdf
http://oeis.org/A000045
http://oeis.org/A000032

340 8 Rosetta Code Tasks starting with F

Recursive

(de fibo (N)
(if (> 2 N)

1
(+ (fibo (dec N)) (fibo (- N 2)))))

Recursive with Cache

Using a recursive version doesn’t need to be slow, as the following shows:

(de fibo (N)
(cache ’(NIL) (pack (char (hash N)) N) # Use a cache to accelerate

(if (> 2 N)
N
(+ (fibo (dec N)) (fibo (- N 2))))))

(bench (fibo 1000))

Output:

0.012 sec
-> 43466557686937456435688527675040625802564660517371780402481729089536555417949
05189040387984007925516929592259308032263477520968962323987332247116164299644090
6533187938298969649928516003704476137795166849228875

8 Rosetta Code Tasks starting with F 341

File IO

File IO is part of Short Circuit’s Console Program Basics selection.

In this task, the job is to create a file called “output.txt”, and place in it the contents
of the file “input.txt”, via an intermediate variable. In other words, your program
will demonstrate: (1) how to read from a file into a variable, and (2) how to write
a variable’s contents into a file. Oneliners that skip the intermediate variable are of
secondary interest — operating systems have copy commands for that.

Using a variable

(let V (in "input.txt" (till))
(out "output.txt" (prin V)))

Skipping intermediate variable

(in "input.txt"
(out "output.txt"

(echo)))

/wiki/Category:Selection/Short_Circuit/Console_Program_Basics

342 8 Rosetta Code Tasks starting with F

File modification time

This task will attempt to get and set the modification time of a file.

(let File "test.file"
(and

(info File)
(prinl (stamp (cadr @) (cddr @)))) # Print date and time in UTC

(call ’touch File)) # Set modification time to "now"

8 Rosetta Code Tasks starting with F 343

File size

In this task, the job is to verify the size of a file called “input.txt” for a file in the
current working directory and another one in the file system root.

(println (car (info "input.txt")))
(println (car (info "/input.txt")))

344 8 Rosetta Code Tasks starting with F

Filter

Select certain elements from an Array into a new Array in a generic way. To demon-
strate, select all even numbers from an Array.

As an option, give a second solution which filters destructively, by modifying the
original Array rather than creating a new Array.

(filter ’((N) (not (bit? 1 N)))
(1 2 3 4 5 6 7 8 9))

Output:

-> (2 4 6 8)

8 Rosetta Code Tasks starting with F 345

Find Common Directory Path

Create a routine that, given a set of strings representing directory paths and a sin-
gle character directory separator, will return a string representing that part of the
directory tree that is common to all the directories.

Test your routine using the forward slash ‘/’ character as the directory separator and
the following three strings as input paths:

’/home/user1/tmp/coverage/test’
’/home/user1/tmp/covert/operator’
’/home/user1/tmp/coven/members’

Note: The resultant path should be the valid directory ’/home/user1/tmp’ and
not the longest common string ’/home/user1/tmp/cove’.

If your language has a routine that performs this function (even if it does not have a
changeable separator character, then mention it as part of the task)

(de commonPath (Lst Chr)
(glue Chr

(make
(apply find

(mapcar ’((L) (split (chop L) Chr)) Lst)
’(@ (or (pass <>) (nil (link (next)))))))))

Output:

(commonPath
(quote

"/home/user1/tmp/coverage/test"
"/home/user1/tmp/covert/operator"
"/home/user1/tmp/coven/members")

"/")

-> "/home/user1/tmp"

346 8 Rosetta Code Tasks starting with F

Find first and last set bit of a long integer

Clarification: This task is asking for the position of two bits in the binary represen-
tation of a positive integer. Some parts of this task assume that this is the native rep-
resentation in the language you are working in. Any part of this task which makes
assumptions about native representation should be treated as a recommendation
which is only relevant in some contexts. A bit is defined as the exponent in a binary
polynomial – an exponent corresponding to a power of 2 which has a non-zero mul-
tiplier in the summation sequence of powers of two which yields the desired positive
integer, where the only allowed coefficients are 0 and 1.

Define routines (or operators) lwb and upb that find the first and last set bit in a
binary value. Implement using a binary search to find the location of the particular
upper/lower bit.

Also: Define the reverse routines (or operators) rlwb and rupb that find host’s pos-
itive integers least- and most-significant set bit in a binary value expressed in LSB
0 bit numbering, i.e. indexed from the extreme right bit.

Use primarily bit operations, such as and, or, and bit shifting. Avoid additions,
multiplications and especially avoid divisions.

Two implementations:

1. For the host word size on the host platform, implement the routine “efficiently”
in without looping or recursion.

2. For the extended precision/long word implement the algorithm more generally -
maybe as a template, and maybe with looping - so that any bits width for a binary
type can be accommodated.

Test cases:

1. For the host machine word size: Use the powers of 42 up to host’s the “natural”
word size to calculate the index of the first and last set bit.

2. For the extended precision: Use the powers of 1302 up to the host’s next “natural”
long host word size to calculate the index of the first and last set bit.

3. Output bit indexes in LSB 0 bit numbering.

Additionally:

In a particular language, there maybe (at least) two alternative approaches of calcu-
lating the required values:

• Using an external library.

• Using a built-in library.

If any of these approaches are available, then also note the library or built-in name.

http://en.wikipedia.org/wiki/Bit_numbering#LSB_0_bit_numbering
http://en.wikipedia.org/wiki/Bit_numbering#LSB_0_bit_numbering
http://en.wikipedia.org/wiki/Bit_numbering#LSB_0_bit_numbering

8 Rosetta Code Tasks starting with F 347

See also:

• Find the log base 2 of an N-bit integer in O(lg(N)) operations

• 80386 Instruction Set - BSF – Bit Scan Forward

(de msb (N)
(dec (length (bin (abs N)))))

(de lsb (N)
(length (stem (chop (bin N)) "1")))

Test:

(for N (1 42 717368321110468608 291733167875766667063796853374976)
(tab (33 6 6) N (lsb N) (msb N)))

Output:

1 0 0
42 1 5

717368321110468608 11 59
291733167875766667063796853374976 20 107

http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
http://pdos.csail.mit.edu/6.858/2011/readings/i386/BSF.htm

348 8 Rosetta Code Tasks starting with F

Find limit of recursion

Find limit of recursion is part of Short Circuit’s Console Program Basics selec-
tion.

Find the limit of recursion.

The 64-bit and the 32-bit version behave slightly different. While
the 32-bit version imposes no limit on its own, and relies on the
’ulimit’ setting of the caller, the 64-bit version segments the
available stack (likewise depending on ’ulimit’) and allows each
(co)routine a maximal stack size as configured by
’[http://software-lab.de/doc/refS.html#stack stack]’.

32-bit version

\$ ulimit -s
8192
\$ pil +
: (let N 0 (recur (N) (recurse (msg (inc N)))))
...
730395
730396
730397
Segmentation fault

64-bit version

\$ ulimit -s
unlimited
\$ pil +
: (stack) # The default stack segment size is 4 MB
-> 4

: (co ’a (yield y)) # Start a dummy coroutine
-> 7

: (let N 0 (recur (N) (recurse (println (inc N)))))
...
43642
43643
43644
Stack overflow
?

8 Rosetta Code Tasks starting with F 349

Find the missing permutation

These are all of the permutations of the symbols A, B, C and D, except for one that’s
not listed. Find that missing permutation.

(c.f. Permutations)

There is an obvious method : enumerating all permutations of A, B, C, D, and look-
ing for the missing one. There is an alternate method. Hint : if all permutations were
here, how many times would A appear in each position ? What is the parity of this
number ?

ABCD
CABD
ACDB
DACB
BCDA
ACBD
ADCB
CDAB
DABC
BCAD
CADB
CDBA
CBAD
ABDC
ADBC
BDCA
DCBA
BACD
BADC
BDAC
CBDA
DBCA
DCAB

350 8 Rosetta Code Tasks starting with F

(setq *PermList
(mapcar chop

(quote
"ABCD" "CABD" "ACDB" "DACB" "BCDA" "ACBD" "ADCB" "CDAB"
"DABC" "BCAD" "CADB" "CDBA" "CBAD" "ABDC" "ADBC" "BDCA"
"DCBA" "BACD" "BADC" "BDAC" "CBDA" "DBCA" "DCAB")))

(let (Lst (chop "ABCD") L Lst)
(recur (L) # Permute

(if (cdr L)
(do (length L)

(recurse (cdr L))
(rot L))

(unless (member Lst *PermList) # Check
(prinl Lst)))))

Output:

DBAC

8 Rosetta Code Tasks starting with F 351

First class environments

According to Wikipedia, “In computing, a first-class object . . . is an entity that can
be constructed at run-time, passed as a parameter, returned from a subroutine, or
assigned into a variable”.

Often this term is used in the context of “first class functions”. In an analogous way,
a programming language may support “first class environments”.

The environment is minimally, the set of variables accessable to a statement being
executed. Change the environments and the same statement could produce different
results when executed.

Often an environment is captured in a closure, which encapsulates a function to-
gether with an environment. That environment, however, is not first-class, as it can-
not be created, passed etc. independently from the function’s code.

Therefore, a first class environment is a set of variable bindings which can be con-
structed at run-time, passed as a parameter, returned from a subroutine, or assigned
into a variable. It is like a closure without code. A statement must be able to be ex-
ecuted within a stored first class environment and act according to the environment
variable values stored within.

The task: Build a dozen environments, and a single piece of code to be run repeat-
edly in each of these envionments.

Each environment contains the bindings for two variables: A value in the Hailstone
sequence, and a count which is incremented until the value drops to 1. The initial
hailstone values are 1 through 12, and the count in each environment is zero.

When the code runs, it calculates the next hailstone step in the current environment
(unless the value is already 1) and counts the steps. Then it prints the current value
in a tabular form.

When all hailstone values dropped to 1, processing stops, and the total number of
hailstone steps for each environment is printed.

http://en.wikipedia.org/wiki/First-class_object
http://en.wikipedia.org/wiki/Closure_(computer_science)

352 8 Rosetta Code Tasks starting with F

Runtime environments can be controlled with the
’[http://software-lab.de/doc/refJ.html#job job]’ function:

(let Envs
(mapcar

’((N) (list (cons ’N N) (cons ’Cnt 0))) # Build environments
(range 1 12))

(while (find ’((E) (job E (> N 1))) Envs) # Until all values are 1:
(for E Envs

(job E # Use environment ’E’
(prin (align 4 N))
(unless (= 1 N)

(inc ’Cnt) # Increment step count
(setq N

(if (bit? 1 N) # Calculate next hailstone value
(inc (* N 3))
(/ N 2))))))

(prinl))
(prinl (need 48 ’=))
(for E Envs # For each environment ’E’

(job E
(prin (align 4 Cnt)))) # print the step count

(prinl))

Output:

1 2 3 4 5 6 7 8 9 10 11 12
1 1 10 2 16 3 22 4 28 5 34 6
1 1 5 1 8 10 11 2 14 16 17 3
1 1 16 1 4 5 34 1 7 8 52 10
1 1 8 1 2 16 17 1 22 4 26 5
1 1 4 1 1 8 52 1 11 2 13 16
1 1 2 1 1 4 26 1 34 1 40 8
1 1 1 1 1 2 13 1 17 1 20 4
1 1 1 1 1 1 40 1 52 1 10 2
1 1 1 1 1 1 20 1 26 1 5 1
1 1 1 1 1 1 10 1 13 1 16 1
1 1 1 1 1 1 5 1 40 1 8 1
1 1 1 1 1 1 16 1 20 1 4 1
1 1 1 1 1 1 8 1 10 1 2 1
1 1 1 1 1 1 4 1 5 1 1 1
1 1 1 1 1 1 2 1 16 1 1 1
1 1 1 1 1 1 1 1 8 1 1 1
1 1 1 1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 1 2 1 1 1

==
0 1 7 2 5 8 16 3 19 6 14 9

8 Rosetta Code Tasks starting with F 353

First-class functions

A language has first-class functions if it can do each of the following without recur-
sively invoking a compiler or interpreter or otherwise metaprogramming:

• Create new functions from preexisting functions at run-time

• Store functions in collections

• Use functions as arguments to other functions

• Use functions as return values of other functions

Write a program to create an ordered collection A of functions of a real number.
At least one function should be built-in and at least one should be user-defined; try
using the sine, cosine, and cubing functions. Fill another collection B with the in-
verse of each function in A. Implement function composition as inFunctional Com-
position. Finally, demonstrate that the result of applying the composition of each
function in A and its inverse in B to a value, is the original value. (Within the limits
of computational accuracy).

(A solution need not actually call the collections “A” and “B”. These names are only
used in the preceding paragraph for clarity.)

C.f. First-class Numbers

http://en.wikipedia.org/wiki/First-class_function

354 8 Rosetta Code Tasks starting with F

(load "@lib/math.l")

(de compose (F G)
(curry (F G) (X)

(F (G X))))

(de cube (X)
(pow X 3.0))

(de cubeRoot (X)
(pow X 0.3333333))

(mapc
’((Fun Inv)

(prinl (format ((compose Inv Fun) 0.5) *Scl)))
’(sin cos cube)
’(asin acos cubeRoot))

Output:

0.500001
0.499999
0.500000

8 Rosetta Code Tasks starting with F 355

First-class functions/Use numbers analogously

In First-class functions, a language is showing how its manipulation of functions is
similar to its manipulation of other types.

This tasks aim is to compare and contrast a languages implementation of First class
functions, with its normal handling of numbers.

Write a program to create an ordered collection of a mixture of literally typed and
expressions producing a real number, together with another ordered collection of
their multiplicative inverses. Try and use the following pseudo-code to generate the
numbers for the ordered collections:

x = 2.0
xi = 0.5
y = 4.0
yi = 0.25
z = x + y
zi = 1.0 / (x + y)

Create a function multiplier, that given two numbers as arguments returns a func-
tion that when called with one argument, returns the result of multiplying the two
arguments to the call to multiplier that created it and the argument in the call:

new_function = multiplier(n1,n2)
where new_function(m) returns the result of n1 * n2 * m

Applying the multiplier of a number and its inverse from the two ordered collections
of numbers in pairs, show that the result in each case is one.

Compare and contrast the resultant program with the corresponding entry in
First-class functions. They should be close.

To paraphrase the task description: Do what was done before, but with numbers
rather than functions

356 8 Rosetta Code Tasks starting with F

(load "@lib/math.l")

(de multiplier (N1 N2)
(curry (N1 N2) (X)

(*/ N1 N2 X ‘(* 1.0 1.0))))

(let (X 2.0 Xi 0.5 Y 4.0 Yi 0.25 Z (+ X Y) Zi (*/ 1.0 1.0 Z))
(mapc

’((Num Inv)
(prinl (format ((multiplier Inv Num) 0.5) *Scl)))

(list X Y Z)
(list Xi Yi Zi)))

Output:

0.500000
0.500000
0.500001

8 Rosetta Code Tasks starting with F 357

Five weekends

The month of October in 2010 has five Fridays, five Saturdays, and five Sundays.

The task

1. Write a program to show all months that have this same characteristic of five full
weekends from the year 1900 through 2100 (Gregorian calendar).

2. Show the number of months with this property (there should be 201).

3. Show at least the first and last five dates, in order.

Algorithm suggestions

• Count the number of Fridays, Saturdays, and Sundays in every month.

• Find all of the 31-day months that begin on Friday.

Extra credit

Count and/or show all of the years which do not have at least one five-weekend
month (there should be 29).

358 8 Rosetta Code Tasks starting with F

(setq Lst
(make

(for Y (range 1900 2100)
(for M (range 1 12)

(and
(date Y M 31)
(= "Friday" (day (date Y M 1)))
(link (list (get *Mon M) Y)))))))

(prinl "There are " (length Lst) " months with five weekends:")
(mapc println (head 5 Lst))
(prinl "...")
(mapc println (tail 5 Lst))
(prinl)
(setq Lst (diff (range 1900 2100) (uniq (mapcar cadr Lst))))
(prinl "There are " (length Lst) " years with no five-weekend months:")
(println Lst)

Output:

There are 201 months with five weekends:
(Mar 1901)
(Aug 1902)
(May 1903)
(Jan 1904)
(Jul 1904)
...
(Mar 2097)
(Aug 2098)
(May 2099)
(Jan 2100)
(Oct 2100)

There are 29 years with no five-weekend months:
(1900 1906 1917 1923 1928 1934 1945 1951 1956 1962 1973 1979 1984 1990 2001 2007
2012 2018 2029 2035 2040 2046 2057 2063 2068 2074 2085 2091 2096)

8 Rosetta Code Tasks starting with F 359

FizzBuzz

Write a program that prints the numbers from 1 to 100. But for multiples of three
print “Fizz” instead of the number and for the multiples of five print “Buzz”. For
numbers which are multiples of both three and five print “FizzBuzz”. [1]

FizzBuzz was presented as the lowest level of comprehension required to illustrate
adequacy. [2]

We could simply use ’[http://software-lab.de/doc/refA.html#at at]’ here:

(for N 100
(prinl

(or (pack (at (0 . 3) "Fizz") (at (0 . 5) "Buzz")) N)))

Or do it the standard way:

(for N 100
(prinl

(cond
((=0 (\% N 15)) "FizzBuzz")
((=0 (\% N 3)) "Fizz")
((=0 (\% N 5)) "Buzz")
(T N))))

http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
http://www.codinghorror.com/blog/archives/000804.html

360 8 Rosetta Code Tasks starting with F

Flatten a list

Write a function to flatten the nesting in an arbitrary list of values. Your program
should work on the equivalent of this list:

[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]

Where the correct result would be the list:

[1, 2, 3, 4, 5, 6, 7, 8]

C.f. Tree traversal

(de flatten (X)
(make # Build a list

(recur (X) # recursively over ’X’
(if (atom X)

(link X) # Put atoms into the result
(mapc recurse X))))) # or recurse on sub-lists

More succinct (by armadillo):

(de flatten (X)
(fish atom X))

http://en.wikipedia.org/wiki/List_(computing)

8 Rosetta Code Tasks starting with F 361

Flow-control structures

Control Structures

These are examples of control structures. You may also be interested in:

• Conditional structures

• Exceptions

• Flow-control structures

• Loops

In this task, we document common flow-control structures. One common example
of a flow-control structure is the goto construct. Note that Conditional Structures
and Loop Structures have their own articles/categories.

As this task asks for the documentation of common flow control structures, we
refer here to the online documentation for more complete descriptions and
examples.

Relevant functions are:

fork
In this task, the goal is to spawn a new \href{/wiki/Process}{process}
which can run simultaneously with, and independently of, the original
parent process.
[http://software-lab.de/doc/refF.html#fork fork] creates a child process

task
[http://software-lab.de/doc/refT.html#task task] installs a background task
consisting of an environment and a list of executable expressions

alarm
[http://software-lab.de/doc/refA.html#alarm alarm] schedules a timer, which
runs a given list of executable expressions when it expires

abort
[http://software-lab.de/doc/refA.html#abort abort] runs a given list of
executable expressions, and aborts processing it if it takes longer than
a given time

quit
[http://software-lab.de/doc/refQ.html#quit quit] immediately stops all
execution and returns to the top level read-eval-print loop, optionally
signaling an error

362 8 Rosetta Code Tasks starting with F

wait
[http://software-lab.de/doc/refW.html#wait wait] delays current processing
(optionally to a maximal time) until an optionally given condition
evaluates to non-NIL

sync
[http://software-lab.de/doc/refS.html#sync sync] synchronizes with other
processes of the same family

protect
[http://software-lab.de/doc/refP.html#protect protect] delays the processing
of signals while a given list of executable expressions is executed

catch
[http://software-lab.de/doc/refC.html#catch catch] prepares for receiving a
’throw’ while running a given list of executable expressions

throw
[http://software-lab.de/doc/refT.html#throw throw] causes a non-local jump
to a specified ’catch’ environment

bye
[http://software-lab.de/doc/refB.html#bye bye] exits the interpreter

finally
[http://software-lab.de/doc/refF.html#finally finally] specifies a list of
executable expressions, to be run when current processing is done, even if
a ’throw’ or ’bye’ was executed, or an error occurred.

8 Rosetta Code Tasks starting with F 363

Floyd’s triangle

Floyd’s triangle lists the natural numbers in a right triangle aligned to the left where

• the first row is just 1

• successive rows start towards the left with the next number followed by succes-
sive naturals listing one more number than the line above.

The first few lines of a Floyd triangle looks like this:

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15

The task is to:

1. Write a program to generate and display here the first n lines of a Floyd triangle.
(Use n=5 and n=14 rows).

2. Ensure that when displayed in a monospace font, the numbers line up in vertical
columns as shown and that only one space separates numbers of the last row.

http://en.wikipedia.org/wiki/Floyd%27s_triangle

364 8 Rosetta Code Tasks starting with F

Calculate widths relative to lower left corner

(de floyd (N)
(let LLC (/ (* N (dec N)) 2)

(for R N
(for C R

(prin
(align

(length (+ LLC C))
(+ C (/ (* R (dec R)) 2))))

(if (= C R) (prinl) (space))))))

Pre-calculate all rows, and take format from last one

(de floyd (N)
(let

(Rows
(make

(for ((I . L) (range 1 (/ (* N (inc N)) 2)) L)
(link (cut I ’L))))

Fmt (mapcar length (last Rows)))
(map inc (cdr Fmt))
(for R Rows

(apply tab R Fmt))))

Output in both cases:

: (floyd 5)
1
2 3
4 5 6
7 8 9 10

11 12 13 14 15

: (floyd 14)
1
2 3
4 5 6
7 8 9 10

11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 75 76 77 78
79 80 81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 99 100 101 102 103 104 105

8 Rosetta Code Tasks starting with F 365

Forest fire

Implement the Drossel and Schwabl definition of the forest-fire model.

It is basically a 2D cellular automaton where each cell can be in three distinct states
(empty, tree and burning) and evolves according to the following rules (as given by
Wikipedia)

1. A burning cell turns into an empty cell

2. A tree will burn if at least one neighbor is burning

3. A tree ignites with probability f even if no neighbor is burning

4. An empty space fills with a tree with probability p

Neighborhood is the Moore neighborhood; boundary conditions are so that on the
boundary the cells are always empty (“fixed” boundary condition).

At the beginning, populate the lattice with empty and tree cells according to a spe-
cific probability (e.g. a cell has the probability 0.5 to be a tree). Then, let the system
evolve.

Task’s requirements do not include graphical display or the ability to change param-
eters (probabilities p and f) through a graphical or command line interface.

See also Conway’s Game of Life and Wireworld.

http://en.wikipedia.org/wiki/Forest-fire_model
http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Moore_neighborhood

366 8 Rosetta Code Tasks starting with F

(load "@lib/simul.l")

(scl 3)

(de forestFire (Dim ProbT ProbP ProbF)
(let Grid (grid Dim Dim)

(for Col Grid
(for This Col

(=: tree (> ProbT (rand 0 1.0)))))
(loop

(disp Grid NIL
’((This)

(cond
((: burn) "# ")
((: tree) "T ")
(T ". "))))

(wait 1000)
(for Col Grid

(for This Col
(=: next

(cond
((: burn) NIL)
((: tree)

(if
(or

(find # Neighbor burning?
’((Dir) (get (Dir This) ’burn))
(quote

west east south north
((X) (south (west X)))
((X) (north (west X)))
((X) (south (east X)))
((X) (north (east X)))))

(> ProbF (rand 0 1.0)))
’burn
’tree))

(T (and (> ProbP (rand 0 1.0)) ’tree))))))
(for Col Grid

(for This Col
(if (: next)

(put This @ T)
(=: burn)
(=: tree)))))))

Use:

(forestFire 26 0.5 0.01 0.001)

8 Rosetta Code Tasks starting with F 367

Fork

In this task, the goal is to spawn a new process which can run simultaneously with,
and independently of, the original parent process.

(unless (fork) # In child process
(println *Pid) # Print the child’s PID
(bye)) # and terminate

368 8 Rosetta Code Tasks starting with F

Formal power series

A power series is an infinite sum of the form

The ai are called the coefficients of the series. Such sums can be added, multiplied
etc., where the new coefficients of the powers of x are calculated according to the
usual rules.

If one is not interested in evaluating such a series for particular values of x, or in
other words, if convergence doesn’t play a role, then such a collection of coefficients
is called formal power series. It can be treated like a new kind of number.

Task: Implement formal power series as a numeric type. Operations should at least
include addition, multiplication, division and additionally non-numeric operations
like differentiation and integration (with an integration constant of zero). Take care
that your implementation deals with the potentially infinite number of coefficients.

As an example, define the power series of sine and cosine in terms of each other
using integration, as in

Goals: Demonstrate how the language handles new numeric types and delayed (or
lazy) evaluation.

8 Rosetta Code Tasks starting with F 369

With a ’lazy’ function, as a frontend to
’[http://software-lab.de/doc/refC.html#cache cache]’,

(de lazy Args
(def (car Args)

(list (cadr Args)
(cons ’cache (lit (cons))

(list ’pack (list ’char (list ’hash (caadr Args))) (caadr Args))
(cddr Args)))))

we can build a formal power series functionality:

(scl 20)

(de fpsOne (N)
(if (=0 N) 1.0 0))

(de fpsInverse (N X)
(last

(make
(let Res1 (- (link (*/ 1.0 1.0 (X 0))))

(for I N
(link

(*/
(sum ’((Res J) (*/ (X J) Res 1.0))

(made)
(range I 1))

Res1
1.0)))))))

(de fpsAdd (N X Y)
(+ (X N) (Y N)))

(de fpsSub (N X Y)
(- (X N) (Y N)))

(de fpsMul (N X Y)
(sum

’((I)
(*/ (X I) (Y (- N I)) 1.0))

(range 0 N)))

(de fpsDiv (N X Y)
(sum

’((I)
(*/ (X I) (fpsInverse (- N I) Y) 1.0))

(range 0 N)))

(de fpsDifferentiate (N)
(curry (X) (N)

(* (X (inc N)) N)))

370 8 Rosetta Code Tasks starting with F

(de fpsIntegrate (X)
(curry (X) (N)

(or
(=0 N)
(*/ (X (dec N)) N))))

(lazy fpsSin (N)
((fpsIntegrate fpsCos) N))

(lazy fpsCos (N)
(fpsSub N fpsOne (fpsIntegrate fpsSin)))

(lazy fpsTan (N)
(fpsDiv N fpsSin fpsCos))

(lazy fpsExp (N)
(if (=0 N)

1.0
((fpsIntegrate fpsExp) N)))

Test:

(prin "SIN:")
(for N (range 1 11 2)

(prin " " (round (fpsSin N) 9)))
(prinl)

(prin "COS:")
(for N (range 0 10 2)

(prin " " (round (fpsCos N) 9)))
(prinl)

(prin "TAN:")
(for N (range 1 13 2)

(prin " " (round (fpsTan N) 7)))
(prinl)

(prin "EXP:")
(for N (range 0 6)

(prin " " (round (fpsExp N) 7)))
(prinl)

Output:

SIN: 1.000000000 -0.166666667 0.008333333 -0.000198413 0.000002756 -0.000000025
COS: 1.000000000 -0.500000000 0.041666667 -0.001388889 0.000024802 -0.000000276
TAN: 1.0000000 0.3333333 0.1333333 0.0539683 0.0218695 0.0088632 0.0035921
EXP: 1.0000000 1.0000000 0.5000000 0.1666667 0.0416667 0.0083333 0.0013889

8 Rosetta Code Tasks starting with F 371

Formatted numeric output

Express a number in decimal as a fixed-length string with leading zeros.

For example, the number 7.125 could be expressed as “00007.125”.

(pad 9 (format 7125 3))
(pad 9 (format 7125 3 ",")) # European format

372 8 Rosetta Code Tasks starting with F

Forward difference

Provide code that produces a list of numbers which is the n-th order forward dif-
ference, given a non-negative integer (specifying the order) and a list of numbers.
The first-order forward difference of a list of numbers (A) is a new list (B) where
Bn = An+1 - An. List B should have one less element as a result. The second-order
forward difference of A will be the same as the first-order forward difference of B.
That new list will have two fewer elements than A and one less than B. The goal of
this task is to repeat this process up to the desired order.

For a more formal description, see the related Mathworld article.

Algorithmic options:

• Iterate through all previous forward differences and re-calculate a new array each
time.

• Use this formula (from Wikipedia):

(Pascal’s Triangle may be useful for this option)

(de fdiff (Lst)
(mapcar - (cdr Lst) Lst))

(for (L (90 47 58 29 22 32 55 5 55 73) L (fdiff L))
(println L))

Output:

(90 47 58 29 22 32 55 5 55 73)
(-43 11 -29 -7 10 23 -50 50 18)
(54 -40 22 17 13 -73 100 -32)
(-94 62 -5 -4 -86 173 -132)
(156 -67 1 -82 259 -305)
(-223 68 -83 341 -564)
(291 -151 424 -905)
(-442 575 -1329)
(1017 -1904)
(-2921)

http://mathworld.wolfram.com/ForwardDifference.html
http://en.wikipedia.org/wiki/Forward_difference

8 Rosetta Code Tasks starting with F 373

Four bit adder

The aim of this task is to ”simulate” a four-bit adder “chip”. This “chip” can be
realized using four 1-bit full adders. Each of these 1-bit full adders can be with two
half adders and an or gate. Finally a half adder can be made using a xor gate and an
and gate. The xor gate can be made using two nots, two ands and one or.

Not, or and and, the only allowed “gates” for the task, can be “imitated” by using
the bitwise operators of your language. If there is not a bit type in your language, to
be sure that the not does not “invert” all the other bits of the basic type (e.g. a byte)
we are not interested in, you can use an extra nand (and then not) with the constant
1 on one input.

Instead of optimizing and reducing the number of gates used for the final 4-bit adder,
build it in the most straightforward way, connecting the other “constructive blocks”,
in turn made of “simpler” and “smaller” ones.

Xor gate done with
ands, ors and nots A half adder A full adder A 4-bit adder

Table 8.2: Schematics of the “constructive blocks”

Solutions should try to be as descriptive as possible, making it as easy as possi-
ble to identify “connections” between higher-order “blocks”. It is not mandatory
to replicate the syntax of higher-order blocks in the atomic “gate” blocks, i.e. ba-
sic “gate” operations can be performed as usual bitwise operations, or they can be
“wrapped” in a block in order to expose the same syntax of higher-order blocks, at
implementers’ choice.

To test the implementation, show the sum of two four-bit numbers (in binary).

http://en.wikipedia.org/wiki/Adder_(electronics)#Full_adder
http://en.wikipedia.org/wiki/Adder_(electronics)#Half_adder
http://en.wikipedia.org/wiki/Logic_gate

374 8 Rosetta Code Tasks starting with F

(de halfAdder (A B) #> (Carry . Sum)
(cons

(and A B)
(xor A B)))

(de fullAdder (A B C) #> (Carry . Sum)
(let (Ha1 (halfAdder C A) Ha2 (halfAdder (cdr Ha1) B))

(cons
(or (car Ha1) (car Ha2))
(cdr Ha2))))

(de 4bitsAdder (A4 A3 A2 A1 B4 B3 B2 B1) #> (V S4 S3 S2 S1)
(let

(Fa1 (fullAdder A1 B1)
Fa2 (fullAdder A2 B2 (car Fa1))
Fa3 (fullAdder A3 B3 (car Fa2))
Fa4 (fullAdder A4 B4 (car Fa3)))

(list
(car Fa4)
(cdr Fa4)
(cdr Fa3)
(cdr Fa2)
(cdr Fa1))))

Output:

: (4bitsAdder NIL NIL NIL T NIL NIL NIL T)
-> (NIL NIL NIL T NIL)

: (4bitsAdder NIL T NIL NIL NIL NIL T T)
-> (NIL NIL T T T)

: (4bitsAdder NIL T T T NIL T T T)
-> (NIL T T T NIL)

: (4bitsAdder T T T T NIL NIL NIL T)
-> (T NIL NIL NIL NIL)

8 Rosetta Code Tasks starting with F 375

Fractal tree

Generate and draw a fractal tree.

To draw a fractal tree is simple:

1. Draw the trunk

2. At the end of the trunk, split by some angle and draw two branches

3. Repeat at the end of each branch until a sufficient level of branching is reached

This uses the ’brez’ line drawing function from
[[Bitmap/Bresenham’s line algorithm#PicoLisp]].

(load "@lib/math.l")

(de fractalTree (Img X Y A D)
(unless (=0 D)

(let (R (*/ A pi 180.0) DX (*/ (cos R) D 0.2) DY (*/ (sin R) D 0.2))
(brez Img X Y DX DY)
(fractalTree Img (+ X DX) (+ Y DY) (+ A 30.0) (dec D))
(fractalTree Img (+ X DX) (+ Y DY) (- A 30.0) (dec D)))))

(let Img (make (do 300 (link (need 400 0)))) # Create image 400 x 300
(fractalTree Img 200 300 -90.0 10) # Draw tree
(out "img.pbm" # Write to bitmap file

(prinl "P1")
(prinl 400 " " 300)
(mapc prinl Img)))

376 8 Rosetta Code Tasks starting with F

Function composition

Create a function, compose, whose two arguments f and g, are both functions with
one argument. The result of compose is to be a function of one argument, (lets call
the argument x), which works like applying function f to the result of applying
function g to x, i.e,

compose(f, g) (x) = f (g(x))

Reference: Function composition

Hint: In some languages, implementing compose correctly requires creating a clo-
sure.

(de compose (F G)
(curry (F G) (X)

(F (G X))))

(def ’a (compose inc dec))
(def ’b (compose ’inc ’dec))
(def ’c (compose ’((A) (inc A)) ’((B) (dec B))))

: (a 7)
-> 7

: (b 7)
-> 7

: (c 7)
-> 7

http://en.wikipedia.org/wiki/Function_composition_(computer_science)
http://en.wikipedia.org/wiki/Closure_(computer_science)
http://en.wikipedia.org/wiki/Closure_(computer_science)

8 Rosetta Code Tasks starting with F 377

Function definition

A function is a body of code that returns a value. The value returned may depend on
arguments provided to the function.

Write a definition of a function called “multiply” that takes two arguments and re-
turns their product. (Argument types should be chosen so as not to distract from
showing how functions are created and values returned).

(de multiply (A B)
(* A B))

378 8 Rosetta Code Tasks starting with F

Function frequency

Display - for a program or runtime environment (whatever suites the style of your
language) - the top ten most frequently occurring functions (or also identifiers or
tokens, if preferred).

This is a static analysis: The question is not how often each function is actually
executed at runtime, but how often it is used by the programmer.

Besides its practical usefulness, the intent of this task is to show how to do self-
inspection within the language.

8 Rosetta Code Tasks starting with F 379

(let Freq NIL
(for "L" (filter pair (extract getd (all)))

(for "F"
(filter atom

(fish ’((X) (or (circ? X) (getd X)))
"L"))

(accu ’Freq "F" 1)))
(for X (head 10 (flip (by cdr sort Freq)))

(tab (-7 4) (car X) (cdr X))))

Output, for the system in debug mode plus the above code:

quote 310
car 236
cdr 181
setq 148
let 136
if 127
and 124
cons 110
cadr 80
or 76

If the condition in the 5th line (getd X) is replaced with (sym? X), then all
symbols are counted, and the output is

X 566
quote 310
car 236
cdr 181
C 160
N 157
L 155
Lst 152
setq 148
T 144

And if it is replaced with (num? X), it is

1 71
0 38
2 27
3 17
7 9
-1 9
100 8
48 6
43 6
12 6

Chapter 9

Rosetta Code Tasks starting with G

GUI component interaction

Almost every application needs to communicate with the user in some way. There-
fore, a substantial part of the code deals with the interaction of program logic with
GUI components. Typically, the following is needed:

• put values into input fields under program control

• read and check input from the user

• pop up dialogs to query the user for further information

The task: For a minimal “application”, write a program that presents a form with
three components to the user: A numeric input field (“Value”) and two buttons (“in-
crement” and “random”).

The field is initialized to zero. The user may manually enter a new value into the
field, or increment its value with the “increment” button. Entering a non-numeric
value should be either impossible, or issue an error message.

Pressing the “random” button presents a confirmation dialog, and resets the field’s
value to a random value if the answer is “Yes”.

(This task may be regarded as an extension of the task Simple windowed applica-
tion).

381

382 9 Rosetta Code Tasks starting with G

The standard PicoLisp GUI is HTTP based. Connect your browser to
http://localhost:8080 after starting the following script.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@ext.l" "@lib/http.l" "@lib/xhtml.l" "@lib/form.l")

(de start ()
(and (app) (zero *Number))
(action

(html 0 "Increment" "@lib.css" NIL
(form NIL

(gui ’(+Var +NumField) ’*Number 20 "Value")
(gui ’(+JS +Button) "increment"

’(inc ’*Number))
(gui ’(+Button) "random"

’(ask "Reset to a random value?"
(setq *Number (rand))))))))

(server 8080 "!start")
(wait)

9 Rosetta Code Tasks starting with G 383

GUI enabling/disabling of controls

In addition to fundamental GUI component interaction, an application should dy-
namically enable and disable GUI components, to give some guidance to the user,
and prohibit (inter)actions which are inappropriate in the current state of the appli-
cation.

The task: Similar to the task GUI component interaction write a program that
presents a form with three components to the user: A numeric input field (“Value”)
and two buttons (“increment” and “decrement”).

The field is initialized to zero. The user may manually enter a new value into the
field, increment its value with the “increment” button, or decrement the value with
the “decrement” button.

The input field should be enabled only when its value is zero. The “increment”
button only as long as the field’s value is less then 10: When the value 10 is reached,
the button should go into a disabled state. Analogously, the “decrement” button
should be enabled only as long as the value is greater than zero.

Effectively, the user can now either increment up to 10, or down to zero. Manually
entering values outside that range is still legal, but the buttons should reflect that and
enable/disable accordingly.

The standard PicoLisp GUI is HTTP based. Connect your browser to
http://localhost:8080 after starting the following script.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@ext.l" "@lib/http.l" "@lib/xhtml.l" "@lib/form.l")

(de start ()
(and (app) (zero *Number))
(action

(html 0 "Enable/Disable" "@lib.css" NIL
(form NIL

(gui ’(+Var +Able +NumField) ’*Number ’(=0 *Number) 20 "Value")
(gui ’(+Able +JS +Button) ’(> 10 *Number) "increment"

’(inc ’*Number))
(gui ’(+Able +JS +Button) ’(gt0 *Number) "decrement"

’(dec ’*Number))))))

(server 8080 "!start")
(wait)

384 9 Rosetta Code Tasks starting with G

Galton box animation

Generate an animated simulation of Sir Francis Galton’s device. An example can be
found below.

Example of a Galton Box at the end of animation.

In a Galton box, there are a set of pins arranged in a triangular pattern. A number
of balls are dropped so that they fall in line with the top pin, deflecting to the left or
the right of the pin. The ball continues to fall to the left or right of subsequent pins
before arriving at one of the collection points between and to the sides of the bottom
row of pins.

For the purpose of this task the box should have at least 5 pins on the bottom row.
Your solution can use graphics or ASCII animation. Provide a sample of the out-
put/display such as a screenshot.

Your solution can have either one or more balls in flight at the same time. If multiple
balls are in flight, ensure they don’t interfere with each other.

Your solution should allow users to specify the number of balls or it should run until
full or a preset limit. Optionally, display the number of balls.

http://en.wikipedia.org/wiki/Bean_machine

9 Rosetta Code Tasks starting with G 385

(de galtonBox (Pins Height)
(let (Bins (need (inc (* 2 Pins)) 0) X 0 Y 0)

(until (= Height (apply max Bins))
(call ’clear)
(cond

((=0 Y) (setq X (inc Pins) Y 1))
((> (inc ’Y) Pins)

(inc (nth Bins X))
(zero Y)))

((if (rand T) inc dec) ’X)
(for Row Pins

(for Col (+ Pins Row 1)
(let D (dec (- Col (- Pins Row)))

(prin
(cond

((and (= X Col) (= Y Row)) "o")
((and (gt0 D) (bit? 1 D)) ".")
(T " ")))))

(prinl))
(prinl)
(for H (range Height 1)

(for B Bins
(prin (if (>= B H) "o" " ")))

(prinl))
(wait 200))))

386 9 Rosetta Code Tasks starting with G

Test:

(galtonBox 9 11)

Output:

Snapshot after a few seconds:
.
. .

. . .
. . . .

.
.o.

.
.
.

o
o o

o o o o

Final state:
.
. .

. . .
. . . .

.
.

.
.
.

o
o
o
o
o

o o
o o
o o
o o o
o o o o o

o o o o o o

9 Rosetta Code Tasks starting with G 387

Gamma function

Implement one algorithm (or more) to compute the Gamma (Γ) function (in the real
field only). If your language has the function as builtin or you know a library which
has it, compare your implementation’s results with the results of the builtin/library
function. The Gamma function can be defined as:

This suggests a straightforward (but inefficient) way of computing the Γ through
numerical integration. Better suggested methods:

• Lanczos approximation

• Stirling’s approximation

http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Lanczos_approximation
http://en.wikipedia.org/wiki/Stirling%27s_approximation

388 9 Rosetta Code Tasks starting with G

(scl 28)

(de *A
˜(flip

(1.00000000000000000000 0.57721566490153286061 -0.65587807152025388108
-0.04200263503409523553 0.16653861138229148950 -0.04219773455554433675
-0.00962197152787697356 0.00721894324666309954 -0.00116516759185906511
-0.00021524167411495097 0.00012805028238811619 -0.00002013485478078824
-0.00000125049348214267 0.00000113302723198170 -0.00000020563384169776
0.00000000611609510448 0.00000000500200764447 -0.00000000118127457049
0.00000000010434267117 0.00000000000778226344 -0.00000000000369680562
0.00000000000051003703 -0.00000000000002058326 -0.00000000000000534812
0.00000000000000122678 -0.00000000000000011813 0.00000000000000000119
0.00000000000000000141 -0.00000000000000000023 0.00000000000000000002)))

(de gamma (X)
(let (Y (- X 1.0) Sum (car *A))

(for A (cdr *A)
(setq Sum (+ A (*/ Sum Y 1.0))))

(*/ 1.0 1.0 Sum)))

Output:

: (for I (range 1 10)
(prinl (round (gamma (*/ I 1.0 3)) 14)))

2.67893853470775
1.35411793942640
1.00000000000000
0.89297951156925
0.90274529295093
1.00000000000000
1.19063934875900
1.50457548825154
1.99999999999397
2.77815847933858

9 Rosetta Code Tasks starting with G 389

Generator

A generator is an executable entity (like a function or procedure) that contains code
that yields a sequence of values, one at a time, so that each time you call the gener-
ator, the next value in the sequence is provided. Generators are often built on top of
coroutines or objects so that the internal state of the object is handled “naturally”.
Generators are often used in situations where a sequence is potentially infinite, and
where it is possible to construct the next value of the sequence with only minimal
state.

Task description

1. Create a function returning a generator of the m’th powers of the positive integers
starting from zero, in order, and without obvious or simple upper limit. (Any
upper limit to the generator should not be stated in the source but should be
down to factors such as the languages natural integer size limit or computational
time/size).

2. Use it to create a generator of:

a. Squares.

b. Cubes.

3. Create a new generator that filters all cubes from the generator of squares.

4. Drop the first 20 values from this last generator of filtered results then show the
next 10 values

Note that this task requires the use of generators in the calculation of the result.

See also

• Generator

http://en.wikipedia.org/wiki/Generator_(computer_science)

390 9 Rosetta Code Tasks starting with G

Coroutines are available only in the 64-bit version.

(de powers (M)
(co (intern (pack ’powers M))

(for (I 0 (inc ’I))
(yield (** I M)))))

(de filtered (N M)
(co ’filtered

(let (V (powers N) F (powers M))
(loop

(if (> V F)
(setq F (powers M))
(and (> F V) (yield V))
(setq V (powers N)))))))

(do 20 (filtered 2 3))
(do 10 (println (filtered 2 3)))

Output:

529
576
625
676
784
841
900
961
1024
1089

9 Rosetta Code Tasks starting with G 391

Generic swap

The task is to write a generic swap function or operator which exchanges the values
of two variables (or, more generally, any two storage places that can be assigned),
regardless of their types. If your solution language is statically typed please describe
the way your language provides genericity.

If variables are typed in the given language, it is permissible that the two variables
be constrained to having a mutually compatible type, such that each is permitted to
hold the value previously stored in the other without a type violation. That is to say,
solutions do not have to be capable of exchanging, say, a string and integer value,
if the underlying storage locations are not attributed with types that permit such an
exchange.

Generic swap is a task which brings together a few separate issues in programming
language semantics.

Dynamically typed languages deal with values in a generic way quite readily, but do
not necessarily make it easy to write a function to destructively swap two variables,
because this requires indirection upon storage places or upon the syntax designating
storage places.

Functional languages, whether static or dynamic, do not necessarily allow a destruc-
tive operation such as swapping two variables regardless of their generic capabili-
ties.

Some static languages have difficulties with generic programming due to a lack of
support for (Parametric Polymorphism).

Do your best!

[http://software-lab.de/doc/refX.html#xchg xchg] works with any data type
(let (A 1 B 2)

(xchg ’A ’B)
(println A B))

(let (Lst1 ’(a b c) Lst2 ’(d e f))
(xchg (cdr Lst1) (cdr Lst2))
(println Lst1 Lst2))

Output:

2 1
(a e c) (d b f)

392 9 Rosetta Code Tasks starting with G

Globally replace text in several files

The task is to replace every occuring instance of a piece of text in a group of text
files with another one. For this task we want to replace the text “Goodbye London!”
with “Hello New York!” for a list of files.

(for File ’(a.txt b.txt c.txt)
(call ’mv File (tmp File))
(out File

(in (tmp File)
(while (echo "Goodbye London!")

(prin "Hello New York!")))))

9 Rosetta Code Tasks starting with G 393

Go Fish

Write a program to let the user play Go Fish against a computer opponent. Use the
following rules:

• Each player is dealt nine cards to start with.

• On their turn, a player asks their opponent for a given rank (such as threes or
kings). A player must already have at least one card of a given rank to ask for
more.

– If the opponent has any cards of the named rank, they must hand over all such
cards, and the requester can ask again.

– If the opponent has no cards of the named rank, the requester draws a card
and ends their turn.

• A book is a collection of every card of a given rank. Whenever a player completes
a book, they may remove it from their hand.

• If at any time a player’s hand is empty, they may immediately draw a new card,
so long as any new cards remain in the deck.

• The game ends when every book is complete. The player with the most books
wins.

The game’s AI need not be terribly smart, but it should use at least some strategy.
That is, it shouldn’t choose legal moves entirely at random.

You may want to use code from Playing Cards.

http://en.wikipedia.org/wiki/Go_Fish

394 9 Rosetta Code Tasks starting with G

(de *Ranks
Ace 2 3 4 5 6 7 8 9 10 Jack Queen King)

(de goFish ()
(let

(Ocean (by ’(NIL (rand)) sort (mapcan ’((R) (need 4 R)) *Ranks))
Your (cut 9 ’Ocean)
Mine (cut 9 ’Ocean)
YouHave NIL
YouDont NIL
YourBooks NIL
MyBooks NIL
Reply NIL
Options NIL
Request NIL)

(loop
(prin "Your Books: ")
(println YourBooks)
(prin "My Books: ")
(println MyBooks)
(T (nor Your Mine Ocean)

(let (Y (length YourBooks) M (length MyBooks))
(prinl

(cond
((= Y M) "Tie game")
((> Y M) "You won!")
(T "I won!")))))

(prin "You have ")
(println Your)
(prinl "I have " (length Mine) " cards")

9 Rosetta Code Tasks starting with G 395

(loop
(prin

(if Ocean
"Ask for a rank, lay down a book, or ’draw’ a card: "
"Ask for a rank or lay down a book: "))

(T (member (setq Reply (read)) *Ranks)
(ifn (filter = Mine (circ Reply))

(prinl
" I don’t have any card of rank "
(push ’YouHave Reply))

(prin " I give you ")
(println @)
(setq

Mine (diff Mine @)
Your (append @ Your)
YouHave (append @ YouHave)
YouDont (diff YouDont @))))

(T (and Ocean (== ’draw Reply))
(prinl " You draw a " (push ’Your (pop ’Ocean)))
(off YouDont))

(cond
((atom Reply)

(prin " The rank must be one of ")
(println *Ranks))

((and (cdddr Reply) (member (car Reply) *Ranks) (not (cdr (uniq Reply))))
(prin " You lay down the book ")
(println (push ’YourBooks Reply))
(setq

Your (diff Your Reply)
YouHave (diff YouHave Reply)))

(T (prinl " A book consists of four ranks, e.g. (7 7 7 7)"))))

396 9 Rosetta Code Tasks starting with G

(cond
((setq Options (diff (rot Mine) YouDont))

(setq Request
(car

(or
(sect

(filter
’((Opt) (= 3 (cnt = Mine (circ Opt))))
Options)

YouHave)
(sect Options YouHave)
Options)))

(loop
(prin "Please give me all your " Request "s (or NIL): ")
(NIL (setq Reply (read))

(push ’YouDont Request)
(ifn Ocean

(prinl " I pass")
(prinl " I draw a card")
(push ’Mine (pop ’Ocean))))

(T (and (pair Reply) (member Request Reply) (not (cdr (uniq Reply))))
(setq

Your (diff Your Reply)
YouHave (diff YouHave Reply)
Mine (append Reply Mine)))

(prinl " I expect a list of " Request "s")))
(Ocean

(prinl " I draw a card")
(push ’Mine (pop ’Ocean)))

(T (prinl " I pass")))
(while (find ’((R) (= 4 (cnt = Mine (circ R)))) *Ranks)

(let B (need 4 @)
(prin " I lay down the book ")
(println (push ’MyBooks B))
(setq Mine (diff Mine B))))

(prinl))))

9 Rosetta Code Tasks starting with G 397

Gray code

Gray code is a form of binary encoding where transitions between consecutive num-
bers differ by only one bit. This is a useful encoding for reducing hardware data haz-
ards with values that change rapidly and/or connect to slower hardware as inputs. It
is also useful for generating inputs for Karnaugh maps in order from left to right or
top to bottom.

Create functions to encode a number to and decode a number from Gray code.
Display the normal binary representations, Gray code representations, and decoded
Gray code values for all 5-bit binary numbers (0-31 inclusive, leading 0’s not nec-
essary).

There are many possible Gray codes. The following encodes what is called “binary
reflected Gray code.”

Encoding (MSB is bit 0, b is binary, g is Gray code):

if b[i-1] = 1
g[i] = not b[i]

else
g[i] = b[i]

Or:

g = b xor (b logically right shifted 1 time)

Decoding (MSB is bit 0, b is binary, g is Gray code):

b[0] = g[0]

for other bits:
b[i] = g[i] xor b[i-1]

Reference

• Converting Between Gray and Binary Codes. It includes step-by-step animations.

http://en.wikipedia.org/wiki/Gray_code
http://en.wikipedia.org/wiki/Karnaugh_map
http://www.wisc-online.com/Objects/ViewObject.aspx?ID=IAU8307

398 9 Rosetta Code Tasks starting with G

(de grayEncode (N)
(bin (x| N (>> 1 N))))

(de grayDecode (G)
(bin

(pack
(let X 0

(mapcar
’((C) (setq X (x| X (format C))))
(chop G))))))

Test:

(prinl " Binary Gray Decoded")
(for I (range 0 31)

(let G (grayEncode I)
(tab (4 9 9 9) I (bin I) G (grayDecode G))))

Output:

Binary Gray Decoded
0 0 0 0
1 1 1 1
2 10 11 2
3 11 10 3
4 100 110 4
5 101 111 5
6 110 101 6
7 111 100 7
8 1000 1100 8
9 1001 1101 9
10 1010 1111 10
11 1011 1110 11
12 1100 1010 12
13 1101 1011 13
14 1110 1001 14
15 1111 1000 15
16 10000 11000 16
17 10001 11001 17
18 10010 11011 18
19 10011 11010 19
20 10100 11110 20
21 10101 11111 21
22 10110 11101 22
23 10111 11100 23
24 11000 10100 24
25 11001 10101 25
26 11010 10111 26
27 11011 10110 27
28 11100 10010 28
29 11101 10011 29
30 11110 10001 30
31 11111 10000 31

9 Rosetta Code Tasks starting with G 399

Grayscale image

Many image processing algorithms are defined for grayscale (or else monochro-
matic) images. Extend the data storage type defined on this page to support grayscale
images. Define two operations, one to convert a color image to a grayscale image
and one for the backward conversion. To get luminance of a color use the formula
recommended by CIE:

L = 0.2126R + 0.7152G + 0.0722B

When using floating-point arithmetic make sure that rounding errors would not
cause run-time problems or else distorted results when calculated luminance is
stored as an unsigned integer.

http://en.wikipedia.org/wiki/Grayscale
http://www.cie.co.at/index_ie.html

400 9 Rosetta Code Tasks starting with G

Convert color image (PPM) to greyscale image (PGM)
(de ppm->pgm (Ppm)

(mapcar
’((Y)

(mapcar
’((C)

(/
(+

(* (car C) 2126) # Red
(* (cadr C) 7152) # Green
(* (caddr C) 722)) # Blue

10000))
Y))

Ppm))

Convert greyscale image (PGM) to color image (PPM)
(de pgm->ppm (Pgm)

(mapcar
’((Y)

(mapcar
’((G) (list G G G))
Y))

Pgm))

Write greyscale image (PGM) to file
(de pgmWrite (Pgm File)

(out File
(prinl "P5")
(prinl (length (car Pgm)) " " (length Pgm))
(prinl 255)
(for Y Pgm (apply wr Y))))

Create an empty image of 120 x 90 pixels
(setq *Ppm (make (do 90 (link (need 120)))))

Fill background with green color
(ppmFill *Ppm 0 255 0)

Draw a diagonal line
(for I 80 (ppmSetPixel *Ppm I I 0 0 0))

Convert to greyscale image (PGM)
(setq *Pgm (ppm->pgm *Ppm))

Write greyscale image to .pgm file
(pgmWrite *Pgm "img.pgm")

Convert to color image and write to .ppm file
(ppmWrite (pgm->ppm *Pgm) "img.ppm")

9 Rosetta Code Tasks starting with G 401

Greatest common divisor

This task requires the finding of the greatest common divisor of two integers.

(de gcd (A B)
(until (=0 B)

(let M (\% A B)
(setq A B B M)))

(abs A))

402 9 Rosetta Code Tasks starting with G

Greatest element of a list

Create a function that returns the maximum value in a provided set of values, where
the number of values may not be known until runtime.

: (max 2 4 1 3) # Return the maximal argument
-> 4
: (apply max (2 4 1 3)) # Apply to a list
-> 4
: (maxi abs (2 -4 -1 3)) # Maximum according to given function
-> -4

9 Rosetta Code Tasks starting with G 403

Greatest subsequential sum

Given a sequence of integers, find a continuous subsequence which maximizes the
sum of its elements, that is, the elements of no other single subsequence add up to a
value larger than this one. An empty subsequence is considered to have the sum 0;
thus if all elements are negative, the result must be the empty sequence.

(maxi ’((L) (apply + L))
(mapcon ’((L) (maplist reverse (reverse L)))

(-1 -2 3 5 6 -2 -1 4 -4 2 -1)))

Output:

-> (3 5 6 -2 -1 4)

404 9 Rosetta Code Tasks starting with G

Greyscale bars/Display

The task is to display a series of vertical greyscale bars (contrast bars) with a suffi-
cient number of bars to span the entire width of the display.

For the top quarter of the display, the left hand bar should be black, and we then
incrementally step through six shades of grey until we have a white bar on the right
hand side of the display. (This gives a total of 8 bars)

For the second quarter down, we start with white and step down through 14 shades
of gray, getting darker until we have black on the right hand side of the display.
(This gives a total of 16 bars).

Halfway down the display, we start with black, and produce 32 bars, ending in white,
and for the last quarter, we start with white and step through 62 shades of grey,
before finally arriving at black in the bottom right hand corner, producing a total of
64 bars for the bottom quarter.

(let Pgm # Create PGM of 384 x 288 pixels
(make

(for N 4
(let L

(make
(for I (* N 8)

(let C (*/ (dec I) 255 (dec (* N 8)))
(unless (bit? 1 N)

(setq C (- 255 C)))
(do (/ 48 N) (link C)))))

(do 72 (link L)))))
(out ’(display) # Pipe to ImageMagick

(prinl "P5") # NetPBM format
(prinl (length (car Pgm)) " " (length Pgm))
(prinl 255)
(for Y Pgm (apply wr Y))))

9 Rosetta Code Tasks starting with G 405

Guess the number

The task is to write a program where the program chooses a number between 1
and 10. A player is then prompted to enter a guess. If the player guess wrong then
the prompt appears again until the guess is correct. When the player has made a
successful guess the computer will give a “Well guessed!” message, and the program
will exit.

A conditional loop may be used to repeat the guessing until the user is correct.

Cf. Guess the number/With Feedback, Bulls and cows

(de guessTheNumber ()
(let Number (rand 1 9)

(loop
(prin "Guess the number: ")
(T (= Number (read))

(prinl "Well guessed!"))
(prinl "Sorry, this was wrong"))))

406 9 Rosetta Code Tasks starting with G

Guess the number/With Feedback

The task is to write a game that follows the following rules:

The computer will choose a number between given set limits and asks the player
for repeated guesses until the player guesses the target number correctly. At each
guess, the computer responds with whether the guess was higher than, equal to, or
less than the target - or signals that the input was inappropriate.

C.f: Guess the number/With Feedback (Player)

(de guessTheNumber ()
(use (Low High Guess)

(until
(and

(prin "Enter low limit : ")
(setq Low (read))
(prin "Enter high limit: ")
(setq High (read))
(> High Low)))

(seed (time))
(let Number (rand Low High)

(loop
(prin "Guess what number I have: ")
(T (= Number (setq Guess (read)))

(prinl "You got it!"))
(prinl

"Your guess is too "
(if (> Number Guess) "low" "high")
".")))))

Output:

: (guessTheNumber)
Enter low limit : 1
Enter high limit: 64
Guess what number I have: 32
Your guess is too high.
Guess what number I have: 16
Your guess is too low.
Guess what number I have: 24
You got it!

9 Rosetta Code Tasks starting with G 407

Guess the number/With Feedback (Player)

The task is to write a player for the game that follows the following rules:

The scorer will choose a number between set limits. The computer player will print
a guess of the target number. The computer asks for a score of whether its guess is
higher than, lower than, or equal to the target. The computer guesses, and the scorer
scores, in turn, until the computer correctly guesses the target number.

The computer should guess intelligently based on the accumulated scores given.
One way is to use a Binary search based algorithm.

Cf.

• Guess the number/With Feedback

• Bulls and cows/Player

408 9 Rosetta Code Tasks starting with G

(de guessTheNumber (Min Max)
(prinl "Think of a number between " Min " and " Max ".")
(prinl "On every guess of mine you should state whether my guess was")
(prinl "too high, too low, or equal to your number by typing ’h’, ’l’, Or ’=’")
(use Guess

(loop
(NIL (> Max Min)

(prinl "I think somthing is strange here..."))
(prin

"My guess is "
(setq Guess (+ Min (/ (- Max Min) 2)))
",is this correct? ")

(flush)
(NIL

(case (uppc (car (line)))
("H" (setq Max Guess))
("L" (setq Min Guess))
("=" (nil (prinl "I did it!")))
(T (prinl "I do not understand that...")))))))

Output:

: (guessTheNumber 1 99)
Think of a number between 1 and 99.
On every guess of mine you should state whether my guess was
too high, too low, or equal to your number by typing ’h’, ’l’, Or ’=’
My guess is 50,is this correct? h
My guess is 25,is this correct? h
My guess is 13,is this correct? l
My guess is 19,is this correct? l
My guess is 22,is this correct? =
I did it!

Chapter 10

Rosetta Code Tasks starting with H

HTTP

Access and print a URL’s content (the located resource) to the console. There is a
separate task for HTTPS Requests.

(load "@lib/http.l")

(client "rosettacode.org" 80 NIL # Connect to rosettacode
(out NIL (echo))) # Echo to standard output

409

http://en.wikipedia.org/wiki/Uniform_Resource_Locator

410 10 Rosetta Code Tasks starting with H

HTTPS

Print an HTTPS URL’s content to the console. Checking the host certificate for
validity is recommended. The client should not authenticate itself to the server —
the webpage https://sourceforge.net/ supports that access policy — as that is the
subject of other tasks.

Readers may wish to contrast with the HTTP Request task, and also the task on
HTTPS request with authentication.

PicoLisp has no functionality for communicating with a HTTPS server (only for
the other direction), but it is easy to use an external tool

(in ’(curl "https://sourceforge.net") # Open a pipe to ’curl’
(out NIL (echo))) # Echo to standard output

https://sourceforge.net/

10 Rosetta Code Tasks starting with H 411

HTTPS/Authenticated

The goal of this task is to demonstrate HTTPS requests with authentication. Imple-
mentations of this task should not use client certificates for this: that is the subject
of another task.

(let (User "Bill" Pass "T0p5ecRet" Url "https://www.example.com")
(in (list ’curl "-u" (pack User ’: Pass) Url)

(while (line)
(doSomeProcessingWithLine @))))

412 10 Rosetta Code Tasks starting with H

HTTPS/Client-authenticated

Demonstrate how to connect to a web server over HTTPS where that server requires
that the client present a certificate to prove who (s)he is. Unlike with the HTTPS
request with authentication task, it is not acceptable to perform the authentication
by a username/password or a set cookie.

This task is in general useful for use with webservice clients as it offers a high level
of assurance that the client is an acceptable counterparty for the server. For example,
Amazon Web Services uses this style of authentication.

(in ’(curl "-E" "myCert.pem" "https://www.example.com")
(while (line)

(doSomeProcessingWithLine @)))

http://aws.amazon.com/

10 Rosetta Code Tasks starting with H 413

Hailstone sequence

The Hailstone sequence of numbers can be generated from a starting positive inte-
ger, n by:

• If n is 1 then the sequence ends.

• If n is even then the next n of the sequence = n/2

• If n is odd then the next n of the sequence = (3 * n) + 1

The (unproven), Collatz conjecture is that the hailstone sequence for any starting
number always terminates.

Task Description:

1. Create a routine to generate the hailstone sequence for a number.

2. Use the routine to show that the hailstone sequence for the number 27 has 112
elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1

3. Show the number less than 100,000 which has the longest hailstone sequence
together with that sequences length.
(But don’t show the actual sequence)!

See Also:

• xkcd (humourous).

(de hailstone (N)
(make

(until (= 1 (link N))
(setq N

(if (bit? 1 N)
(inc (* N 3))
(/ N 2))))))

(let L (hailstone 27)
(println 27 (length L) (head 4 L) ’- (tail 4 L)))

(let N (maxi ’((N) (length (hailstone N))) (range 1 100000))
(println N (length (hailstone N))))

Output:

27 112 (27 82 41 124) - (8 4 2 1)
77031 351

http://en.wikipedia.org/wiki/Collatz_conjecture
http://xkcd.com/710

414 10 Rosetta Code Tasks starting with H

Hamming numbers

Hamming numbers are numbers of the form

.

Hamming numbers are also known as ugly numbers and also 5-smooth numbers
(numbers whose prime divisors are less or equal to 5).

Generate the sequence of Hamming numbers, in increasing order. In particular:

1. Show the first twenty Hamming numbers.

2. Show the 1691st Hamming number (the last one below 231).

3. Show the one millionth Hamming number (if the language – or a convenient
library – supports arbitrary-precision integers).

References

1. wp:Hamming numbers

2. wp:Smooth number

3. Hamming problem from Dr. Dobb’s CodeTalk (dead link as of Sep 2011; parts
of the thread here and here).

(de hamming (N)
(let (L (1) H)

(do N
(for (X L X (cadr X)) # Find smallest result

(setq H (car X)))
(idx ’L H NIL) # Remove it
(for I (2 3 5) # Generate next results

(idx ’L (* I H) T)))
H))

(println (make (for N 20 (link (hamming N)))))
(println (hamming 1691))
(println (hamming 1000000))

Output:

(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36)
2125764000
51931278044838873608958984375000
(took almost 2 hours)

http://en.wikipedia.org/wiki/Hamming_numbers#Algorithms
http://en.wikipedia.org/wiki/Hamming_numbers
http://en.wikipedia.org/wiki/Smooth_number
http://dobbscodetalk.com/index.php?option=com_content&task=view&id=913&Itemid=85
http://drdobbs.com/blogs/architecture-and-design/228700538
http://www.jsoftware.com/jwiki/Essays/Hamming%20Number

10 Rosetta Code Tasks starting with H 415

Handle a signal

Most general purpose operating systems provide interrupt facilities, sometimes
called signals. Unhandled signals generally terminate a program in a disorderly
manner. Signal handlers are created so that the program behaves in a well-defined
manner upon receipt of a signal.

For this task you will provide a program that displays a single integer on each line of
output at the rate of one integer in each half second. Upon receipt of the SigInt signal
(often created by the user typing ctrl-C) the program will cease printing integers to
its output, print the number of seconds the program has run, and then the program
will terminate.

Put the following into a file, set it to executable, and run it

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(push ’*Bye ’(println (*/ (usec) 1000000)) ’(prinl))

(let Cnt 0
(loop

(println (inc ’Cnt))
(wait 500)))

416 10 Rosetta Code Tasks starting with H

Happy numbers

From Wikipedia, the free encyclopedia:

A happy number is defined by the following process. Starting with any positive
integer, replace the number by the sum of the squares of its digits, and repeat the
process until the number equals 1 (where it will stay), or it loops endlessly in a cycle
which does not include 1. Those numbers for which this process ends in 1 are happy
numbers, while those that do not end in 1 are unhappy numbers. Display an example
of your output here.

Task: Find and print the first 8 happy numbers.

See also: The happy numbers on OEIS

(de happy? (N)
(let Seen NIL

(loop
(T (= N 1) T)
(T (member N Seen))
(setq N

(sum ’((C) (** (format C) 2))
(chop (push ’Seen N)))))))

(let H 0
(do 8

(until (happy? (inc ’H)))
(printsp H)))

Output:

1 7 10 13 19 23 28 31

http://en.wikipedia.org/wiki/Happy_number
http://oeis.org/A007770

10 Rosetta Code Tasks starting with H 417

Hash from two arrays

Using two Arrays of equal length, create a Hash object where the elements from one
array (the keys) are linked to the elements of the other (the values)

(let (Keys ’(one two three) Values (1 2 3))
(mapc println

(mapcar cons Keys Values)))

Output:

(one . 1)
(two . 2)
(three . 3)

418 10 Rosetta Code Tasks starting with H

Haversine formula

The haversine formula is an equation important in navigation, giving great-circle
distances between two points on a sphere from their longitudes and latitudes. It
is a special case of a more general formula in spherical trigonometry, the law of
haversines, relating the sides and angles of spherical “triangles”.

Task: Implement a great-circle distance function, or use a library function, to
show the great-circle distance between Nashville International Airport (BNA) in
Nashville, TN, USA: N 367.2’, W 8640.2’ (36.12, -86.67) and Los Angeles Inter-
national Airport (LAX) in Los Angeles, CA, USA: N 3356.4’, W 11824.0’ (33.94,
-118.40).

(scl 12)
(load "@lib/math.l")

(de haversine (Th1 Ph1 Th2 Ph2)
(setq

Ph1 (*/ (- Ph1 Ph2) pi 180.0)
Th1 (*/ Th1 pi 180.0)
Th2 (*/ Th2 pi 180.0))

(let
(DX (- (*/ (cos Ph1) (cos Th1) 1.0) (cos Th2))

DY (*/ (sin Ph1) (cos Th1) 1.0)
DZ (- (sin Th1) (sin Th2)))

(* ‘(* 2 6371)
(asin

(/
(sqrt (+ (* DX DX) (* DY DY) (* DZ DZ)))
2)))))

Test:

(prinl
"Haversine distance: "
(round (haversine 36.12 -86.67 33.94 -118.4))
" km")

Output:

Haversine distance: 2,886.444 km

10 Rosetta Code Tasks starting with H 419

Hello world/Graphical

In this User Output task, the goal is to display the string “Goodbye, World!” on a
GUI object (alert box, plain window, text area, etc.).

See also: Hello world/Text

(call ’dialog "--msgbox" "Goodbye, World!" 5 20)

420 10 Rosetta Code Tasks starting with H

Hello world/Line printer

Cause a line printer attached to the computer to print a line containing the message
Hello World!

Note: A line printer is not the same as standard output. A line printer was an older-
style printer which prints one line at a time to a continuous ream of paper. With
some systems, a line printer can be any device attached to an appropriate port (such
as a parallel port).

(out ’(lpr "-P" "Printer01")
(prinl "Hello world"))

http://en.wikipedia.org/wiki/line_printer

10 Rosetta Code Tasks starting with H 421

Hello world/Newline omission

Some languages automatically insert a newline after outputting a string, unless mea-
sures are taken to prevent its output. The purpose of this task is to output the string
“Goodbye, World!” preventing a trailing newline from occuring.

See also

• Hello world/Graphical

• Hello world/Line Printer

• Hello world/Standard error

(prin "Goodbye, world")

422 10 Rosetta Code Tasks starting with H

Hello world/Standard error

Hello world/Standard error is part of Short Circuit’s Console Program Basics
selection.

A common practice in computing is to send error messages to a different output
stream than normal text console messages. The normal messages print to what is
called “standard output” or “standard out”. The error messages print to “standard
error”. This separation can be used to redirect error messages to a different place
than normal messages.

Show how to print a message to standard error by printing “Goodbye, World!”
on that stream.

(out 2 (prinl "Goodbye, World!"))

10 Rosetta Code Tasks starting with H 423

Hello world/Text

Hello world/Text is part of Short Circuit’s Console Program Basics selection.

In this User Output task, the goal is to display the string “Goodbye, World!” [sic]
on a text console.

See also

– Hello world/Graphical

– Hello world/Line Printer

– Hello world/Newline omission

– Hello world/Standard error

– Hello world/Web server

(prinl "Goodbye, World!")

424 10 Rosetta Code Tasks starting with H

Hello world/Web server

The browser is the new GUI!

The task is to serve our standard text “Goodbye, World!” to http://localhost:8080/
so that it can be viewed with a web browser. The provided solution must start or
implement a server that accepts multiple client connections and serves text as
requested.

Note that starting a web browser or opening a new window with this URL is not
part of the task. Additionally, it is permissible to serve the provided page as a
plain text file (there is no requirement to serve properly formatted HTML here).
The browser will generally do the right thing with simple text like this.

Contents of the file "goodbye.l":

(html 0 "Bye" NIL NIL
"Goodbye, World!")

Start server:

\$ pil @lib/http.l @lib/xhtml.l -’server 8080 "goodbye.l"’ -wait

http://localhost:8080/

10 Rosetta Code Tasks starting with H 425

Here document

A here document (or “heredoc”) is a way of specifying a text block, preserv-
ing the line breaks, indentation and other whitespace within the text. Depending
on the language being used a here document is constructed using a command
followed by “<<” (or some other symbol) followed by a token string. The text
block will then start on the next line, and will be followed by the chosen to-
ken at the beginning of the following line, which is used to mark the end of the
textblock.

The task is to demonstrate the use of here documents within the language.

We can use the ’[http://software-lab.de/doc/refH.html#here here]’ function:

(out "file.txt" # Write to "file.txt"
(prinl "### This is before the text ###")
(here "TEXT-END")
(prinl "### This is after the text ###"))

"There must be some way out of here", said the joker to the thief
"There’s too much confusion, I can’t get no relief"
TEXT-END

(in "file.txt" (echo)) # Show "file.txt"

Output:

This is before the text
"There must be some way out of here", said the joker to the thief
"There’s too much confusion, I can’t get no relief"
This is after the text

426 10 Rosetta Code Tasks starting with H

Higher-order functions

Pass a function as an argument to another function.

C.f. First-class functions

: (de first (Fun)
(Fun))

-> first

: (de second ()
"second")

-> second

: (first second)
-> "second"

: (de add (A B)
(+ A B))

-> add

: (add 1 2)
-> 3

: (de call-it (Fun X Y)
(Fun X Y))

-> call-it

: (call-it add 1 2)
-> 3

: (mapcar inc (1 2 3 4 5))
-> (2 3 4 5 6)

: (mapcar + (1 2 3) (4 5 6))
-> (5 7 9)

: (mapcar add (1 2 3) (4 5 6))
-> (5 7 9)

10 Rosetta Code Tasks starting with H 427

History variables

Storing the history of objects in a program is a common task. Maintaining the
history of an object in a program has traditionally required programmers either
to write specific code for handling the historical data, or to use a library which
supports history logging.

History variables are variables in a programming language which store not only
their current value, but also the values they have contained in the past. Some
existing languages do provide support for history variables. However these lan-
guages typically have many limits and restrictions on use of history variables.

“History Variables: The Semantics, Formal Correctness, and Implementation
of History Variables in an Imperative Programming Language” by Mallon and
Takaoka

Concept also discussed on LtU and Patents.com.

Task

Demonstrate History variable support:

– enable history variable support (if needed)

– define a history variable

– assign three values

– non-destructively display the history

– recall the three values.

For extra points, if the language of choice does not support history variables,
demonstrate how this might be implemented.

http://www.bod.com/index.php?id=3435&objk_id=148050
http://www.bod.com/index.php?id=3435&objk_id=148050
http://www.bod.com/index.php?id=3435&objk_id=148050
http://lambda-the-ultimate.org/node/3111
http://www.patents.com/us-7111283.html

428 10 Rosetta Code Tasks starting with H

(de setH ("Var" Val)
(when (val "Var")

(with "Var"
(=: history (cons @ (: history)))))

(set "Var" Val))

(de restoreH ("Var")
(set "Var" (pop (prop "Var" ’history))))

Test:

: (setH ’A "Hello world")
-> "Hello world"

: (setH ’A ’(a b c d))
-> (a b c d)

: (setH ’A 123)
-> 123

: A
-> 123

: (get ’A ’history)
-> ((a b c d) "Hello world")

: (restoreH ’A)
-> (a b c d)

: (restoreH ’A)
-> "Hello world"

: A
-> "Hello world"

: (restoreH ’A)
-> NIL

10 Rosetta Code Tasks starting with H 429

Hofstadter Figure-Figure sequences

These two sequences of positive integers are defined as:

The sequence S(n) is further defined as the sequence of positive integers not
present in R(n).

Sequence R starts: 1, 3, 7, 12, 18, . . .

Sequence S starts: 2, 4, 5, 6, 8, . . .

Task:

1. Create two functions named ffr and ffs that when given n return R(n) or S(n)
respectively.
(Note that R(1) = 1 and S(1) = 2 to avoid off-by-one errors).

2. No maximum value for n should be assumed.

3. Calculate and show that the first ten values of R are: 1, 3, 7, 12, 18, 26, 35, 45,
56, and 69

4. Calculate and show that the first 40 values of ffr plus the first 960 values of ffs
include all the integers from 1 to 1000 exactly once.

References

– Sloane’s A005228 and A030124.

– Wolfram Mathworld

– Wikipedia: Hofstadter Figure-Figure sequences.

http://oeis.org/A005228
http://oeis.org/A030124
http://mathworld.wolfram.com/HofstadterFigure-FigureSequence.html
http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Figure-Figure_sequences

430 10 Rosetta Code Tasks starting with H

(setq *RNext 2)

(de ffr (N)
(cache ’(NIL) (pack (char (hash N)) N)

(if (= 1 N)
1
(+ (ffr (dec N)) (ffs (dec N))))))

(de ffs (N)
(cache ’(NIL) (pack (char (hash N)) N)

(if (= 1 N)
2
(let S (inc (ffs (dec N)))

(when (= S (ffr *RNext))
(inc ’S)
(inc ’*RNext))

S))))

Test:

: (mapcar ffr (range 1 10))
-> (1 3 7 12 18 26 35 45 56 69)

: (=
(range 1 1000)
(sort (conc (mapcar ffr (range 1 40)) (mapcar ffs (range 1 960)))))

-> T

10 Rosetta Code Tasks starting with H 431

Hofstadter Q sequence

The Hofstadter Q sequence is defined as:

It is defined like the Fibonacci sequence, but whereas the next term in the Fi-
bonacci sequence is the sum of the previous two terms, in the Q sequence the
previous two terms tell you how far to go back in the Q sequence to find the two
numbers to sum to make the next term of the sequence.

Task

– Confirm and display that the first ten terms of the sequence are: 1, 1, 2, 3, 3,
4, 5, 5, 6, and 6

– Confirm and display that the 1000’th term is: 502

Optional extra credit

– Count and display how many times a member of the sequence is less than its
preceding term for terms up to and including the 100,000’th term.

– Ensure that the extra credit solution ‘safely’ handles being initially asked for
an n’th term where n is large.
(This point is to ensure that caching and/or recursion limits, if it is a concern,
is correctly handled).

http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Q_sequence

432 10 Rosetta Code Tasks starting with H

(de q (N)
(cache ’(NIL) (pack (char (hash N)) N)

(if (>= 2 N)
1
(+

(q (- N (q (dec N))))
(q (- N (q (- N 2))))))))

Test:

: (mapcar q (range 1 10))
-> (1 1 2 3 3 4 5 5 6 6)

: (q 1000)
-> 502

: (let L (mapcar q (range 1 100000)) (!)
(cnt < (cdr L) L))

-> 49798

10 Rosetta Code Tasks starting with H 433

Hofstadter-Conway $10,000 sequence

The definition of the sequence is colloquially described as:

– Starting with the list [1,1],

– Take the last number in the list so far: 1, I’ll call it x.

– Count forward x places from the beginning of the list to find the first number
to add (1)

– Count backward x places from the end of the list to find the second number to
add (1)

– Add the two indexed numbers from the list and the result becomes the next
number in the list (1+1)

– This would then produce [1,1,2] where 2 is the third element of the sequence.

Note that indexing for the description above starts from alternately the left and
right ends of the list and starts from an index of one.

A less wordy description of the sequence is:

a(1)=a(2)=1
a(n)=a(a(n-1))+a(n-a(n-1))

The sequence begins:

1, 1, 2, 2, 3, 4, 4, 4, 5, ...

Interesting features of the sequence are that:

– a(n)/n tends to 0.5 as n grows towards infinity.

– a(n)/n where n is a power of 2 is 0.5

– For n>4 the maximal value of a(n)/n between successive powers of 2 de-
creases.

434 10 Rosetta Code Tasks starting with H

The sequence is so named because John Conway offered a prize of $10,000 to
the first person who could find the first position, p in the sequence where

|a(n)/n| < 0.55 for all n > p.

It was later found that Hofstadter had also done prior work on the sequence.

The ‘prize’ was won quite quickly by Dr. Colin L. Mallows who proved the
properties of the sequence and allowed him to find the value of n. (Which is
much smaller than the 3,173,375,556. quoted in the NYT article)

http://en.wikipedia.org/wiki/John_Horton_Conway
http://www.nytimes.com/1988/08/30/science/intellectual-duel-brash-challenge-swift-response.html
http://en.wikipedia.org/wiki/Douglas_Hofstadter
http://www.research.avayalabs.com/gcm/usa/en-us/people/all/mallows.htm

10 Rosetta Code Tasks starting with H 435

The task is to:

1. Create a routine to generate members of theH ofstadter-Conway $10,000 se-
quence.

2. Use it to show the maxima of a(n)/n between successive powers of two up to
2**20

3. As a stretch goal: Compute the value of n that would have won the prize and
confirm it is true for n up to 2**20

References:

– Conways Challenge Sequence, Mallows’ own account.

– Mathworld Article.

http://www.jstor.org/stable/2324028
http://mathworld.wolfram.com/Hofstadter-Conway10000-DollarSequence.html

436 10 Rosetta Code Tasks starting with H

(de hofcon (N)
(cache ’(NIL) (pack (char (hash N)) N)

(if (>= 2 N)
1
(+

(hofcon (hofcon (dec N)))
(hofcon (- N (hofcon (dec N))))))))

(scl 20)

(de sequence (M)
(let (Lim 4 Max 0 4k\$ 0)

(for (N 3 (>= M N) (inc N))
(let V (*/ (hofcon N) 1.0 N)

(setq Max (max Max V))
(when (>= V 0.55)

(setq 4k\$ N))
(when (= N Lim)

(prinl
"Maximum between " (/ Lim 2)
" and " Lim
" was " (format Max ‘*Scl))

(inc ’Lim Lim)
(zero Max))))

(prinl
"Win with " (inc 4k\$)
" (the task requests ’n >= p’)")))

(sequence (** 2 20))

Output:

Maximum between 2 and 4 was 0.66666666666666666667
Maximum between 4 and 8 was 0.66666666666666666667
Maximum between 8 and 16 was 0.63636363636363636364
Maximum between 16 and 32 was 0.60869565217391304348
Maximum between 32 and 64 was 0.59090909090909090909
Maximum between 64 and 128 was 0.57608695652173913043
Maximum between 128 and 256 was 0.56741573033707865169
Maximum between 256 and 512 was 0.55945945945945945946
Maximum between 512 and 1024 was 0.55493741307371349096
Maximum between 1024 and 2048 was 0.55010087424344317418
Maximum between 2048 and 4096 was 0.54746289264756644805
Maximum between 4096 and 8192 was 0.54414474786396381303
Maximum between 8192 and 16384 was 0.54244270878036220067
Maximum between 16384 and 32768 was 0.54007109751158709445
Maximum between 32768 and 65536 was 0.53878402058425570614
Maximum between 65536 and 131072 was 0.53704365699986594575
Maximum between 131072 and 262144 was 0.53602006781156104419
Maximum between 262144 and 524288 was 0.53464543107811232092
Maximum between 524288 and 1048576 was 0.53377922996336783427
Win with 1490 (the task requests ’n >= p’)

10 Rosetta Code Tasks starting with H 437

Holidays related to Easter

Calculate the date of Easter, Ascension Thursday, Pentecost, Trinity Sunday &
Corpus Christi feast.

As the example calculate for the first year of each century from 400 to 2100 CE
and also for years 2010 to 2020 CE.

Note: From year 325 CE on, Easter Sunday is the Sunday following the rst Eccle-
siastical full moon not earlier than the equinox date in 325 — 21 March. The Ec-
clesiastical full moon does not always correspond to the astronomical full moon
since in 325 ne details of Lunar dynamics were not yet fully understood.

Metonic cycle: Taking a year to be 1/19th of this 6940-day cycle gives a year
length of 365 + 1/4 + 1/76 days (the unrounded cycle is much more accurate),
which is slightly more than 12 synodic months. To keep the 12-month lunar year
in pace with the solar year, an intercalary 13th month would have to be added on
seven occasions during the nineteen-year period. Meton introduced a formula for
intercalation in circa 432 BC.

(load "@lib/cal.l") # For ’easter’ function

(de dayMon (Dat)
(let D (date Dat)

(list (day Dat *Day) " " (align 2 (caddr D)) " " (get *Mon (cadr D)))))

(for Y (append (range 400 2100 100) (range 2010 2020))
(let E (easter Y)

(prinl
(align 4 Y)
E = Easter, A = Ascension, P = Pentecost, T = Trinity, C = Corpus
" E: " (dayMon E)
", A: " (dayMon (+ E 39))
", P: " (dayMon (+ E 49))
", T: " (dayMon (+ E 56))
", C: " (dayMon (+ E 60)))))

http://en.wikipedia.org/wiki/Easter
http://en.wikipedia.org/wiki/Ascension_Thursday
http://en.wikipedia.org/wiki/Pentecost
http://en.wikipedia.org/wiki/Trinity_Sunday
http://en.wikipedia.org/wiki/Corpus_Christi_(feast)
http://en.wikipedia.org/wiki/Common_Era
http://en.wikipedia.org/wiki/Easter_Sunday
http://en.wikipedia.org/wiki/Ecclesiastical_full_moon
http://en.wikipedia.org/wiki/Ecclesiastical_full_moon
http://en.wikipedia.org/wiki/Metonic_cycle
http://en.wikipedia.org/wiki/intercalary

438 10 Rosetta Code Tasks starting with H

[E = Easter, A = Ascension, P = Pentecost, T = Trinity, C = Corpus]

Output:

400 E: Sun 2 Apr, A: Thu 11 May, P: Sun 21 May, T: Sun 28 May, C: Thu 1 Jun
500 E: Sun 4 Apr, A: Thu 13 May, P: Sun 23 May, T: Sun 30 May, C: Thu 3 Jun
600 E: Sun 13 Apr, A: Thu 22 May, P: Sun 1 Jun, T: Sun 8 Jun, C: Thu 12 Jun
700 E: Sun 15 Apr, A: Thu 24 May, P: Sun 3 Jun, T: Sun 10 Jun, C: Thu 14 Jun
800 E: Sun 23 Apr, A: Thu 1 Jun, P: Sun 11 Jun, T: Sun 18 Jun, C: Thu 22 Jun
900 E: Sun 28 Mar, A: Thu 6 May, P: Sun 16 May, T: Sun 23 May, C: Thu 27 May

1000 E: Sun 30 Mar, A: Thu 8 May, P: Sun 18 May, T: Sun 25 May, C: Thu 29 May
1100 E: Sun 8 Apr, A: Thu 17 May, P: Sun 27 May, T: Sun 3 Jun, C: Thu 7 Jun
1200 E: Sun 9 Apr, A: Thu 18 May, P: Sun 28 May, T: Sun 4 Jun, C: Thu 8 Jun
1300 E: Sun 18 Apr, A: Thu 27 May, P: Sun 6 Jun, T: Sun 13 Jun, C: Thu 17 Jun
1400 E: Sun 20 Apr, A: Thu 29 May, P: Sun 8 Jun, T: Sun 15 Jun, C: Thu 19 Jun
1500 E: Sun 1 Apr, A: Thu 10 May, P: Sun 20 May, T: Sun 27 May, C: Thu 31 May
1600 E: Sun 2 Apr, A: Thu 11 May, P: Sun 21 May, T: Sun 28 May, C: Thu 1 Jun
1700 E: Sun 11 Apr, A: Thu 20 May, P: Sun 30 May, T: Sun 6 Jun, C: Thu 10 Jun
1800 E: Sun 13 Apr, A: Thu 22 May, P: Sun 1 Jun, T: Sun 8 Jun, C: Thu 12 Jun
1900 E: Sun 15 Apr, A: Thu 24 May, P: Sun 3 Jun, T: Sun 10 Jun, C: Thu 14 Jun
2000 E: Sun 23 Apr, A: Thu 1 Jun, P: Sun 11 Jun, T: Sun 18 Jun, C: Thu 22 Jun
2100 E: Sun 28 Mar, A: Thu 6 May, P: Sun 16 May, T: Sun 23 May, C: Thu 27 May
2010 E: Sun 4 Apr, A: Thu 13 May, P: Sun 23 May, T: Sun 30 May, C: Thu 3 Jun
2011 E: Sun 24 Apr, A: Thu 2 Jun, P: Sun 12 Jun, T: Sun 19 Jun, C: Thu 23 Jun
2012 E: Sun 8 Apr, A: Thu 17 May, P: Sun 27 May, T: Sun 3 Jun, C: Thu 7 Jun
2013 E: Sun 31 Mar, A: Thu 9 May, P: Sun 19 May, T: Sun 26 May, C: Thu 30 May
2014 E: Sun 20 Apr, A: Thu 29 May, P: Sun 8 Jun, T: Sun 15 Jun, C: Thu 19 Jun
2015 E: Sun 5 Apr, A: Thu 14 May, P: Sun 24 May, T: Sun 31 May, C: Thu 4 Jun
2016 E: Sun 27 Mar, A: Thu 5 May, P: Sun 15 May, T: Sun 22 May, C: Thu 26 May
2017 E: Sun 16 Apr, A: Thu 25 May, P: Sun 4 Jun, T: Sun 11 Jun, C: Thu 15 Jun
2018 E: Sun 1 Apr, A: Thu 10 May, P: Sun 20 May, T: Sun 27 May, C: Thu 31 May
2019 E: Sun 21 Apr, A: Thu 30 May, P: Sun 9 Jun, T: Sun 16 Jun, C: Thu 20 Jun
2020 E: Sun 12 Apr, A: Thu 21 May, P: Sun 31 May, T: Sun 7 Jun, C: Thu 11 Jun

10 Rosetta Code Tasks starting with H 439

Horizontal sundial calculations

A program that calculates the hour, sun hour angle, dial hour line angle from 6am
to 6pm for an operator entered location.

As the example the user is prompted for a location and inputs the latitude and
longitude 457S 15030W (4.95S 150.5W) of Jules Verne’s Lincoln Island, aka
Ernest Legouve Reef). With a legal meridian of 150W.

Wikipedia: A sundial is a device that measures time by the position of the Sun.
In common designs such as the horizontal sundial, the sun casts a shadow from
its style (also called its Gnomon, a thin rod or a sharp, straight edge) onto a
flat surface marked with lines indicating the hours of the day. As the sun moves
across the sky, the shadow-edge progressively aligns with different hour-lines on
the plate. Such designs rely on the style being aligned with the axis of the Earth’s
rotation. Hence, if such a sundial is to tell the correct time, the style must point
towards true north (not the north or south magnetic pole) and the style’s angle
with horizontal must equal the sundial’s geographical latitude.

http://en.wikipedia.org/wiki/Jules_Verne
http://en.wikipedia.org/wiki/The_Mysterious_Island
http://en.wikipedia.org/wiki/Ernest_Legouve_Reef
http://en.wikipedia.org/wiki/sundial
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/shadow
http://en.wikipedia.org/wiki/Gnomon
http://en.wikipedia.org/wiki/true_north
http://en.wikipedia.org/wiki/North_Magnetic_Pole
http://en.wikipedia.org/wiki/Magnetic_South_Pole
http://en.wikipedia.org/wiki/latitude

440 10 Rosetta Code Tasks starting with H

(load "@lib/math.l")

(de prompt (Str . Arg)
(prin Str " => ")
(set (car Arg) (in NIL (read))))

(use (Lat Lng Ref)
(prompt "Enter latitude " Lat)
(prompt "Enter longitude " Lng)
(prompt "Enter legal meridian" Ref)
(prinl)
(let Slat (sin (*/ Lat pi 180.0))

(prinl " sine of latitude: " (round Slat))
(prinl " diff longitude: " (round (- Lng Ref)))
(prinl)
(prinl "Hour, sun hour angle, dial hour line angle from 6am to 6pm")
(for H (range -6 6)

(let Hra (- (* 15.0 H) (- Lng Ref))
(let Hla (*/ (atan (*/ Slat (tan (*/ Hra pi 180.0)) 1.0)) 180.0 pi)

(prinl
"HR="
(align 3 H)
"; HRA="
(align 8 (round Hra))
"; HLA="
(align 8 (round Hla))))))))

Output:

Enter latitude => -4.95
Enter longitude => -150.5
Enter legal meridian => -150. # Don’t omit the ’.’ here

sine of latitude: -0.086
diff longitude: -0.500

Hour, sun hour angle, dial hour line angle from 6am to 6pm
HR= -6; HRA= -89.500; HLA= 84.225
HR= -5; HRA= -74.500; HLA= 17.283
HR= -4; HRA= -59.500; HLA= 8.334
HR= -3; HRA= -44.500; HLA= 4.847
HR= -2; HRA= -29.500; HLA= 2.795
HR= -1; HRA= -14.500; HLA= 1.278
HR= 0; HRA= 0.500; HLA= -0.043
HR= 1; HRA= 15.500; HLA= -1.371
HR= 2; HRA= 30.500; HLA= -2.910
HR= 3; HRA= 45.500; HLA= -5.018
HR= 4; HRA= 60.500; HLA= -8.671
HR= 5; HRA= 75.500; HLA= -18.451
HR= 6; HRA= 90.500; HLA= 84.225

10 Rosetta Code Tasks starting with H 441

Horner’s rule for polynomial evaluation

A fast scheme for evaluating a polynomial such as:

when

is to arrange the computation as follows:

And compute the result from the innermost brackets outwards as in this pseu-
docode:

coefficients := [-19, 7, -4, 6] # list coefficients of all xˆ0..xˆn in order
x := 3
accumulator := 0
for i in length(coefficients) downto 1 do

Assumes 1-based indexing for arrays
accumulator := (accumulator * x) + coefficients[i]

done
accumulator now has the answer

Task Description

Create a routine that takes a list of coefficients of a polynomial in order of in-
creasing powers of x; together with a value of x to compute its value at, and
return the value of the polynomial at that value using Horner’s rule.

Cf. Formal power series

(de horner (Coeffs X)
(let Res 0

(for C (reverse Coeffs)
(setq Res (+ C (* X Res))))))

: (horner (-19.0 7.0 -4.0 6.0) 3.0)
-> 128

http://www.physics.utah.edu/~detar/lessons/c++/array/node1.html

442 10 Rosetta Code Tasks starting with H

Host introspection

Print the word size and endianness of the host machine.

See also: Variable size/Get

(in (cmd) # Inspect ELF header
(rd 4) # Skip "7F" and ’E’, ’L’ and ’F’
(prinl

(case (rd 1) # Get EI_CLASS byte
(1 "32 bits")
(2 "64 bits")
(T "Bad EI_CLASS")))

(prinl
(case (rd 1) # Get EI_DATA byte

(1 "Little endian")
(2 "Big endian")
(T "Bad EI_DATA"))))

http://en.wikipedia.org/wiki/Word_size#Word_size_choice
http://en.wikipedia.org/wiki/Endianness

10 Rosetta Code Tasks starting with H 443

Hostname

Find the name of the host on which the routine is running.

This will just print the hostname:

(call ’hostname)

To use it as a string in a program:

(in ’(hostname) (line T))

444 10 Rosetta Code Tasks starting with H

Huffman coding

Huffman encoding is a way to assign binary codes to symbols that reduces the
overall number of bits used to encode a typical string of those symbols.

For example, if you use letters as symbols and have details of the frequency of
occurrence of those letters in typical strings, then you could just encode each
letter with a fixed number of bits, such as in ASCII codes. You can do better than
this by encoding more frequently occurring letters such as e and a, with smaller
bit strings; and less frequently occurring letters such as q and x with longer bit
strings.

Any string of letters will be encoded as a string of bits that are no-longer of the
same length per letter. To successfully decode such as string, the smaller codes
assigned to letters such as ‘e’ cannot occur as a prefix in the larger codes such as
that for ‘x’.

If you were to assign a code 01 for ‘e’ and code 011 for ‘x’, then if the bits to
decode started as 011. . . then you would not know if you should decode an ‘e’
or an ‘x’.

The Huffman coding scheme takes each symbol and its weight (or frequency of
occurrence), and generates proper encodings for each symbol taking account of
the weights of each symbol, so that higher weighted symbols have less bits in
their encoding. (See the WP article for more information).

A Huffman encoding can be computed by first creating a tree of nodes:

1. Create a leaf node for each symbol and add it to the priority queue.

2. While there is more than one node in the queue:

a. Remove the node of highest priority (lowest probability) twice to get two
nodes.

b. Create a new internal node with these two nodes as children and with prob-
ability equal to the sum of the two nodes’ probabilities.

c. Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.

http://en.wikipedia.org/wiki/Huffman_coding

10 Rosetta Code Tasks starting with H 445

Traverse the constructed binary tree from root to leaves assigning and accumu-
lating a ‘0’ for one branch and a ‘1’ for the other at each node. The accumulated
zeros and ones at each leaf constitute a Huffman encoding for those symbols and
weights:

Using the characters and their frequency from the string “this is an example
for huffman encoding”, create a program to generate a Huffman encoding
for each character as a table.

446 10 Rosetta Code Tasks starting with H

Using a cons cells (freq . char) for leaves, and two cells (freq left . right)
for nodes.

(de prio (Idx)
(while (cadr Idx) (setq Idx @))
(car Idx))

(let (A NIL P NIL L NIL)
(for C (chop "this is an example for huffman encoding")

(accu ’A C 1)) # Count characters
(for X A # Build index tree as priority queue

(idx ’P (cons (cdr X) (car X)) T))
(while (or (cadr P) (cddr P)) # Remove entries, insert as nodes

(let (A (car (idx ’P (prio P) NIL)) B (car (idx ’P (prio P) NIL)))
(idx ’P (cons (+ (car A) (car B)) A B) T)))

(setq P (car P))
(recur (P L) # Traverse and print

(if (atom (cdr P))
(prinl (cdr P) " " L)
(recurse (cadr P) (cons 0 L))
(recurse (cddr P) (cons 1 L)))))

Output:

n 000
m 0100
o 1100
s 0010
c 01010
d 11010
g 00110
l 10110
p 01110
r 11110
t 00001
u 10001
a 1001

101
e 0011
f 1011
i 0111
x 01111
h 11111

Chapter 11

Rosetta Code Tasks starting with I

IPC via named pipe

Named pipe, or FIFO, is a way of providing inter-process communications (IPC).
To demonstrate how it works, create two pipes, say, “in” and “out” (choose suit-
able names for your system), and write a program that works the two pipes such
that:

1. Data written to the “in” FIFO will be discarded except the byte count, which
will be added to a total tally kept by the program;

2. Whenever another process reads the “out” FIFO, it should receive the total
count so far.

Possible issues:

– Chances are you don’t already have “in” and “out” pipes lying around. Create
them within your program or without, at your discretion. You may assume
they are already created for you.

– Your program may assume it’s the sole reader on “in” and the sole writer on
“out”.

– Read/write operations on pipes are generally blocking. Make your program
responsive to both pipes, so that it won’t block trying to read the “in” pipe
while leaving another process hanging on the other end of “out” pipe indefi-
nitely – or vice versa. You probably need to either poll the pipes or use multi-
threading.

– You may assume other processes using the pipes behave; specificially, your
program may assume the process at the other end of a pipe will not unexpect-
edly break away before you finish reading or writing.

447

http://en.wikipedia.org/wiki/Named_pipe
http://en.wikipedia.org/wiki/Blocking_(computing)

448 11 Rosetta Code Tasks starting with I

(call ’mkfifo "in" "out") # Create pipes

(zero *Cnt) # Initialize byte counter

(unless (fork) # Handle "out" pipe
(loop

(out "out"
(sync)
(tell)
(prinl *Cnt))))

(unless (fork) # Handle "in" pipe
(let P (open "in")

(loop
(in P # Open twice, to avoid broken pipes

(while (rd 1) # (works on Linux, perhaps not POSIX)
(tell ’inc ’’*Cnt))))))

(push ’*Bye ’(call ’rm "in" "out")) # Remove pipes upon exit
(wait) # (Terminate with Ctrl-C)

Test:

\$ line <out
0
\$ echo abc >in
\$ line <out
4
\$ echo >in
\$ line <out
11

11 Rosetta Code Tasks starting with I 449

Identity matrix

Build an identity matrix of a size known at runtime. An identity matrix is a square
matrix, of size n n, where the diagonal elements are all 1s, and the other elements
are all 0s.

(de identity (Size)
(let L (need Size (1) 0)

(make
(do Size

(link (copy (rot L)))))))

Test:

: (identity 3)
-> ((1 0 0) (0 1 0) (0 0 1))

: (mapc println (identity 5))
(1 0 0 0 0)
(0 1 0 0 0)
(0 0 1 0 0)
(0 0 0 1 0)
(0 0 0 0 1)

http://en.wikipedia.org/wiki/identity_matrix

450 11 Rosetta Code Tasks starting with I

Image convolution

One class of image digital filters is described by a rectangular matrix of real co-
efficients called kernel convoluted in a sliding window of image pixels. Usually
the kernel is square Kkl, where k, l are in the range -R,-R+1,..,R-1,R. W=2R+1 is
the kernel width. The filter determines the new value of a monochromatic image
pixel Pij as a convolution of the image pixels in the window centered in i, j and
the kernel values:

Color images are usually split into the channels which are filtered independently.
A color model can be changed as well, i.e. filtration is performed not necessarily
in RGB. Common kernels sizes are 3x3 and 5x5. The complexity of filtrating
grows quadratically (O(n2)) with the kernel width.

Task: Write a generic convolution 3x3 kernel filter. Optionally show some end
user filters that use this generic one.

(You can use, to test the functions below, these input and output solutions.)

11 Rosetta Code Tasks starting with I 451

(scl 3)

(de ppmConvolution (Ppm Kernel)
(let (Len (length (car Kernel)) Radius (/ Len 2))

(make
(chain (head Radius Ppm))
(for (Y Ppm T (cdr Y))

(NIL (nth Y Len)
(chain (tail Radius Y)))

(link
(make

(chain (head Radius (get Y (inc Radius))))
(for (X (head Len Y) T)

(NIL (nth X 1 Len)
(chain (tail Radius (get X (inc Radius)))))

(link
(make

(for C 3
(let Val 0

(for K Len
(for L Len

(inc ’Val
(* (get X K L C) (get Kernel K L)))))

(link (min 255 (max 0 (*/ Val 1.0))))))))
(map pop X))))))))

Test using ’ppmRead’ from [[Bitmap/Read a PPM file#PicoLisp]] and ’ppmWrite’
from [[Bitmap/Write a PPM file#PicoLisp]]:

Sharpen
(ppmWrite

(ppmConvolution
(ppmRead "Lenna100.ppm")
’((-1.0 -1.0 -1.0) (-1.0 +9.0 -1.0) (-1.0 -1.0 -1.0)))

"a.ppm")

Blur
(ppmWrite

(ppmConvolution
(ppmRead "Lenna100.ppm")
’((0.1 0.1 0.1) (0.1 0.1 0.1) (0.1 0.1 0.1)))

"b.ppm")

452 11 Rosetta Code Tasks starting with I

Image Noise

Generate a random black and white 320x240 image continuously, showing FPS
(frames per second).

Sample image:

11 Rosetta Code Tasks starting with I 453

This solution works on ErsatzLisp, the Java version of PicoLisp. It creates a
’JFrame’ window, and calls inlined Java code to handle the image.

(javac "ImageNoise" "JPanel" NIL
"java.util.*"
"java.awt.*" "java.awt.image.*" "javax.swing.*")

int DX, DY;
int[] Pixels;
MemoryImageSource Source;
Image Img;
Random Rnd;

public ImageNoise(int dx, int dy) {
DX = dx;
DY = dy;
Pixels = new int[DX * DY];
Source = new MemoryImageSource(DX, DY, Pixels, 0, DX);
Source.setAnimated(true);
Img = createImage(Source);
Rnd = new Random();

}

public void paint(Graphics g) {update(g);}
public void update(Graphics g) {g.drawImage(Img, 0, 0, this);}

public void draw() {
for (int i = 0; i < Pixels.length; ++i) {

int c = Rnd.nextInt(255);
Pixels[i] = 0xFF000000 | c<<16 | c<<8 | c;

}
Source.newPixels();
paint(getGraphics());

}
/**/

(de imageNoise (DX DY Fps)
(let

(Frame (java "javax.swing.JFrame" T "Image Noise")
Noise (java "ImageNoise" T DX DY)
Button (java "javax.swing.JButton" T "OK"))

(java Frame "add" Noise)
(java Frame "add" "South" Button)
(java Button "addActionListener"

(interface "java.awt.event.ActionListener"
’actionPerformed ’((Ev) (bye))))

(java Frame "setSize" DX DY)
(java Frame "setVisible" T)
(task (/ -1000 Fps) 0

Image Noise
(java Image "draw"))))

Start with 25 frames per second
(imageNoise 320 240 25)

454 11 Rosetta Code Tasks starting with I

Include a file

The task is to demonstrate the language’s ability to include source code from
other files.

The function ’[http://software-lab.de/doc/refL.html#load load]’ is used for
recursively executing the contents of files.

(load "file1.l" "file2.l" "file3.l")

11 Rosetta Code Tasks starting with I 455

Increment a numerical string

This task is about incrementing a numerical string.

(format (inc (format "123456")))

456 11 Rosetta Code Tasks starting with I

Infinity

Write a function which tests if infinity is supported for floating point numbers
(this step should be omitted for languages where the language specification al-
ready demands the existence of infinity, e.g. by demanding IEEE numbers), and
if so, returns positive infinity. Otherwise, return the largest possible positive float-
ing point number.

For languages with several floating point types, use the type of the literal constant
1.5 as floating point type.

C.F. Extreme floating point values

The symbol ’[http://software-lab.de/doc/refT.html#T T]’ is used to represent
infinite values, e.g. for the length of circular lists, and is greater than any
other value in comparisons. PicoLisp has only very limited floating point
support (scaled bignum arithmetics), but some functions return ’T’ for infinite
results.

(load "@lib/math.l")

: (exp 1000.0)
-> T

11 Rosetta Code Tasks starting with I 457

Inheritance/Multiple

Multiple inheritance allows to specify that one class is a subclass of several other
classes. Some languages allow multiple inheritance for arbitrary classes, others
restrict it to interfaces, some don’t allow it at all.

Write two classes (or interfaces) Camera and MobilePhone, then write a class
CameraPhone which is both a Camera and a MobilePhone.

There is no need to implement any functions for those classes.

(class +Camera)

(class +MobilePhone)

(class +CameraPhone +Camera +MobilePhone)
(class +Camera)

(class +MobilePhone)

(class +CameraPhone +Camera +MobilePhone)

458 11 Rosetta Code Tasks starting with I

Inheritance/Single

This task is about derived types; for implementation inheritance, see Polymor-
phism.

Inheritance is an operation of type algebra that creates a new type from one or
several parent types. The obtained type is called derived type. It inherits some
of the properties of its parent types. Usually inherited properties are:

– methods

– components

– parts of the representation

The class of the new type is a subclass of the classes rooted in the parent types.
When all (in certain sense) properties of the parents are preserved by the derived
type, it is said to be a Liskov subtype. When properties are preserved then the
derived type is substitutable for its parents in all contexts. Usually full substi-
tutability is achievable only in some contexts.

Inheritance is

– single, when only one parent is allowed

– multiple, otherwise

Some single inheritance languages usually allow multiple inheritance for certain
abstract types, interfaces in particular.

Inheritance can be considered as a relation parent-child. Parent types are some-
times called supertype, the derived ones are subtype. This relation is transitive
and reflexive. Types bound by the relation form a wp:Directed acyclic graph di-
rected acyclic graph (ignoring reflexivity). With single inheritance it becomes a
tree.

http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Directed_acyclic_graph_directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph_directed_acyclic_graph
http://en.wikipedia.org/wiki/Tree_(graph_theory)

11 Rosetta Code Tasks starting with I 459

Task: Show a tree of types which inherit from each other. The top of the tree
should be a class called Animal. The second level should have Dog and Cat.
Under Dog should be Lab and Collie. None of the classes need to have any func-
tions, the only thing they need to do is inherit from the specified superclasses
(overriding functions should be shown in Polymorphism). The tree should look
like this:

Animal
/\

/ \
/ \
Dog Cat
/\

/ \
/ \

Lab Collie

(class +Animal)

(class +Dog +Animal)

(class +Cat +Animal)

(class +Lab +Dog)

(class +Collie +Dog)

: (dep ’+Animal)
+Animal

+Cat
+Dog

+Collie
+Lab

460 11 Rosetta Code Tasks starting with I

Input loop

Input loop is part of Short Circuit’s Console Program Basics selection.

Read from a text stream either word-by-word or line-by-line until the stream runs
out of data. The stream will have an unknown amount of data on it.

This reads all lines in a file, and returns them as a list of lists

(in "file.txt"
(make

(until (eof)
(link (line)))))

11 Rosetta Code Tasks starting with I 461

Integer comparison

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data
type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Get two integers from the user, and then output if the first one is less, equal or
greater than the other. Test the condition for each case separately, so that all
three comparison operators are used in the code.

(prin "Please enter two values: ")

(in NIL # Read from standard input
(let (A (read) B (read))

(prinl
"The first one is "
(cond

((> A B) "greater than")
((= A B) "equal to")
(T "less than"))

" the second.")))

Output:

Please enter two values: 4 3
The first one is greater than the second.

462 11 Rosetta Code Tasks starting with I

Integer sequence

Create a program that, when run, would display all integers from 1 to (or any
relevant implementation limit), in sequence (i.e. 1, 2, 3, 4, etc) if given enough
time.

An example may not be able to reach arbitrarily-large numbers based on imple-
mentations limits. For example, if integers are represented as a 32-bit unsigned
value with 0 as the smallest representable value, the largest representable value
would be 4,294,967,295. Some languages support arbitrarily-large numbers as a
built-in feature, while others make use of a module or library.

If appropriate, provide an example which reflect the language implementation’s
common built-in limits as well as an example which supports arbitrarily large
numbers, and describe the nature of such limitations—or lack thereof.

(for (I 1 T (inc I))
(printsp I))

11 Rosetta Code Tasks starting with I 463

Interactive programming

Many language implementations come with an interactive mode. This is a
command-line interpreter that reads lines from the user and evaluates these lines
as statements or expressions. An interactive mode may also be known as a com-
mand mode, a read-eval-print loop (REPL), or a shell.

Show how to start this mode, then, as a small example of its use, interactively
create a function of two strings and a separator that returns the strings separated
by two concatenated instances of the separator.

For example, f(’Rosetta’, ’Code’, ’:’) should return ’Rosetta::Code’

Note: this task is not about creating your own interactive mode.

\$ pil +

: (de f (Str1 Str2 Sep)
(pack Str1 Sep Sep Str2))

-> f

: (f "Rosetta" "Code" ":")
-> "Rosetta::Code"

http://en.wikipedia.org/wiki/command-line_interpreter
http://en.wikipedia.org/wiki/read-eval-print_loop

464 11 Rosetta Code Tasks starting with I

Introspection

This task asks to

– verify the version/revision of your currently running (compiler/interpreter/byte-
compiler/runtime environment/whatever your language uses) and exit if it is
too old.

– check whether the variable “bloop” exists and whether the math-function
“abs()” is available and if yes compute abs(bloop).

Extra credit:

– Report the number of integer variables in global scope, and their sum.

(unless (>= (version T) (3 0 1)) # Check version (only in the 64-bit version)
(bye))

(setq bloop -7) # Uncomment this to get the output ’7’

(and
(num? bloop) # When ’bloop’ is bound to a number
(getd ’abs) # and ’abs’ defined as a function
(println (abs bloop))) # then print the absolute value

11 Rosetta Code Tasks starting with I 465

Inverted index

An Inverted Index is a data structure used to create full text search.

Given a set of text files, implement a program to create an inverted index. Also
create a user interface to do a search using that inverted index which returns a list
of files that contain the query term / terms. The search index can be in memory.

http://en.wikipedia.org/wiki/Inverted_index

466 11 Rosetta Code Tasks starting with I

Assuming three files "file1", "file2" and "file3":

\$ cat file1
it is what it is

\$ cat file2
what is it

\$ cat file3
it is a banana

we can read them into a binary tree in the global variable ’*MyIndex’

(off *MyIndex)

(use Word
(for File ’("file1" "file2" "file3")

(in File
(while (skip)

(if (idx ’*MyIndex (setq Word (till " ˆIˆJˆM" T)) T)
(push1 (car @) File)
(set Word (cons File)))))))

(de searchFor @
(apply sect

(extract
’((Word) (val (car (idx ’*MyIndex Word))))
(rest))))

Output:

: (searchFor "what" "is" "it")
-> ("file2" "file1")

: (searchFor "a" "banana")
-> ("file3")

: (searchFor "it" "is")
-> ("file3" "file2" "file1")

11 Rosetta Code Tasks starting with I 467

Inverted syntax

Inverted syntax with conditional expressions

In traditional syntax conditional expressions are usually shown before the action
within a statement or code block:

IF raining=true THEN needumbrella=true

In inverted syntax, the action is listed before the conditional expression in the
statement or code block:

needumbrella=true IF raining=true

Inverted syntax with assignment

In traditional syntax, assignments are usually expressed with the variable appear-
ing before the expression:

a = 6

In inverted syntax, the expression appears before the variable:

6 = a

Task

The task is to demonstrate support for inverted syntax forms within the language
by showing both the traditional and inverted forms.

468 11 Rosetta Code Tasks starting with I

We define a read macro for reverted syntax

(de rv Prg
(append (last Prg) (head -1 Prg)))

Test:

(de needUmbrella (Raining)
‘(rv # Inverted syntax

(on *NeedUmbrella)
(println ’Need ’an ’umbrella)
(when Raining)))

(de keepUmbrella (Raining)
‘(rv # Inverted syntax

(on *KeepUmbrella)
(println ’Still ’need ’an ’umbrella)
(while Raining)))

Output:

: (pp ’needUmbrella)
(de needUmbrella (Raining)

(when Raining # Traditional syntax
(on *NeedUmbrella)
(println ’Need ’an ’umbrella)))

: (pp ’keepUmbrella)
(de keepUmbrella (Raining)

(while Raining # Traditional syntax
(on *KeepUmbrella)
(println ’Still ’need ’an ’umbrella)))

Chapter 12

Rosetta Code Tasks starting with J

JSON

Load a JSON string into a data structure. Also create a new data structure and
serialize it into JSON. Use objects and arrays (as appropriate for your language)
and make sure your JSON is valid (http://www.jsonlint.com/). However, beware
that this web application accepts extra commas, so [1,2,3,] validates as correct,
which is at odds with the grammar given at json.org [1].

469

http://en.wikipedia.org/wiki/JSON
http://www.jsonlint.com/
http://www.json.org/fatfree.html

470 12 Rosetta Code Tasks starting with J

PicoLisp has no JSON library, but it is easy enough to write one. The following
supports only fixpoint numbers (no floating point, as it doesn’t exist in
PicoLisp), no arrays (uses lists instead), and no unicode escapes (UTF-8 can be
used directly):

(de checkJson (X Item)
(unless (= X Item)

(quit "Bad JSON" Item)))

(de readJson ()
(case (read "_")

("{"
(make

(for (X (readJson) (not (= "}" X)) (readJson))
(checkJson ":" (readJson))
(link (cons X (readJson)))
(T (= "}" (setq X (readJson))))
(checkJson "," X))))

("["
(make

(link T) # Array marker
(for (X (readJson) (not (= "]" X)) (readJson))

(link X)
(T (= "]" (setq X (readJson))))
(checkJson "," X))))

(T
(let X @

(if (and (= "-" X) (format (peek)))
(- (read))
X)))))

(de printJson (Item) # For simplicity, without indentation
(cond

((atom Item) (if Item (print @) (prin "{}")))
((=T (car Item))

(prin "[")
(map

’((X)
(printJson (car X))
(and (cdr X) (prin ", ")))

(cdr Item))
(prin "]"))

(T
(prin "{")
(map

’((X)
(print (caar X))
(prin ": ")
(printJson (cdar X))
(and (cdr X) (prin ", ")))

Item)
(prin "}"))))

12 Rosetta Code Tasks starting with J 471

This reads/prints JSON from/to files, pipes, sockets etc. To read from a string,
a pipe can be used:

: (pipe (prinl "{ \"foo\": 1, \"bar\": [10, \"apples\"] }")
(readJson))

-> (("foo" . 1) ("bar" T 10 "apples"))

: (printJson
(quote

("name" . "Smith")
("age" . 25)
("address"

("street" . "21 2nd Street")
("city" . "New York")
("state" . "NY")
("zip" . "10021"))

("phone" T "212 555-1234" "646 555-4567")))
{"name": "Smith", "age": 25, ... {"street": ... "phone": ["212 555-1234", ...

472 12 Rosetta Code Tasks starting with J

Jensen’s Device

This task is an exercise in call by name.

Jensen’s Device is a computer programming technique devised by Danish com-
puter scientist Jrn Jensen after studying the ALGOL 60 Report.

The following program was proposed to illustrate the technique. It computes the
100th harmonic number:

begin
integer i;
real procedure sum (i, lo, hi, term);

value lo, hi;
integer i, lo, hi;
real term;
comment term is passed by-name, and so is i;

begin
real temp;
temp := 0;
for i := lo step 1 until hi do

temp := temp + term;
sum := temp

end;
comment note the correspondence between

the mathematical notation and the call to sum;
print (sum (i, 1, 100, 1/i))

end

The above exploits call by name to produce the correct answer (5.187. . .). It de-
pends on the assumption that an expression passed as an actual parameter to a
procedure would be re-evaluated every time the corresponding formal parame-
ter’s value was required. If the last parameter to sum had been passed by value,
and assuming the initial value of i were 1, the result would have been 100 1/1 =
100.

Moreover, the first parameter to sum, representing the “bound” variable of the
summation, must also be passed by name, otherwise it would not be possible to
compute the values to be added. (On the other hand, the global variable does not
have to use the same identifier, in this case i, as the formal parameter.)

Donald Knuth later proposed the Man or Boy Test as a more rigorous exercise.

http://en.wikipedia.org/wiki/Call-by-name#Call_by_name
http://en.wikipedia.org/wiki/J%C3%B8rn_Jensen
http://en.wikipedia.org/wiki/Harmonic_number
http://en.wikipedia.org/wiki/Call-by-name#Call_by_name
http://en.wikipedia.org/wiki/Donald_Knuth

12 Rosetta Code Tasks starting with J 473

(scl 6)

(de jensen (I Lo Hi Term)
(let Temp 0

(set I Lo)
(while (>= Hi (val I))

(inc ’Temp (Term))
(inc I))

Temp))

(let I (box) # Create indirect reference
(format

(jensen I 1 100 ’(() (*/ 1.0 (val I))))

*Scl))

Output:

-> "5.187383"

474 12 Rosetta Code Tasks starting with J

Joystick position

The task is to determine the joystick position and represent this on the display
via a crosshair. For a centred joystick, the crosshair should appear in the centre
of the screen. If the joystick is pushed left or right, then the cross hair should
move left or right according to the extent that the joystick is pushed. If the joy-
stick is pushed forward or pulled back, then the crosshair should move up or
down according to the extent that that joystick is pushed or pulled. The edges of
the display represent maximum extents for joystick movement. For example, a
joystick pushed fully forward would raise the crosshair to the top centre of the
screen. A joystick pulled backwards and to the right would move the crosshair
to the bottom right of the screen (except for a small area reserved to show joy-
stick status). Implementations can use a graphical display method to produce the
crosshair, or alternatively represent the crosshair using a plus symbol on a ter-
minal, and move the plus symbol position according to the joystick. The bottom
part of the display can hide or show an alphanumeric sequence to represent the
buttons pressed. For example, if pushbuttons 1,4 and 10 are depressed, we could
display “1 4 A”. The implemented code should continue to redraw the crosshair
according to the joystick position and show the current pushbutton statuses until
the task is terminated. Digital joysticks that produce no extent data, should have
their position indicated as full extent movement of the crosshair.

For the purpose of this task, we assume that the joystick is calibrated and that the
first joystick is being used. The task implementer could at their option provide
a solution that includes a joystick selection facility, enabling the user to choose
which joystick is to be used for this task.

12 Rosetta Code Tasks starting with J 475

This is for the 64-bit version.

Note: The code is not yet tested with a real joystick (I don’t have one), it was
just simulated with dummy functions. Can somebody having a joystick please test
it, and remove this message?

(load "@lib/openGl.l")

(setq *JoyX 0.0 *JoyY 0.0)

(glutInit)
(glutInitDisplayMode (| GLUT_RGBA GLUT_DOUBLE GLUT_ALPHA GLUT_DEPTH))
(glutInitWindowSize 400 400)
(glutCreateWindow "Joystick")

(glClearColor 0.3 0.3 0.5 0)

(displayPrg
(glClear GL_COLOR_BUFFER_BIT)
(glBegin GL_LINES)
(glVertex2f *JoyX (- *JoyY 0.1)) # Draw crosshair
(glVertex2f *JoyX (+ *JoyY 0.1))
(glVertex2f (- *JoyX 0.1) *JoyY)
(glVertex2f (+ *JoyX 0.1) *JoyY)
(glEnd)
(glFlush)
(glutSwapBuffers))

Track joystick position
(native ‘*GlutLib "glutJoystickFunc" NIL

(lisp ’joystickFunc
’((Btn X Y Z)

(msg # Display buttons
(make

(for (B 1 (n0 Btn) (inc B))
(and (bit? 1 Btn) (link B))
(setq Btn (>> 1 Btn)))))

(setq # Move crosshair

JoyX (/ X 1.0 1000)

JoyY (/ Y 1.0 1000))
(glutPostRedisplay)))

100)

Exit upon mouse click
(mouseFunc ’((Btn State X Y) (bye)))
(glutMainLoop)

476 12 Rosetta Code Tasks starting with J

Jump anywhere

Imperative programs like to jump around, but some languages restrict these
jumps. Many structured languages restrict their conditional structures and loops
to local jumps within a function. Some assembly languages limit certain jumps
or branches to a small range.

This task is demonstrate a local jump and a global jump and the various other
types of jumps that the language supports. For the purpose of this task, the jumps
need not be used for a single purpose and you have the freedom to use these
jumps for different purposes. You may also defer to more specific tasks, like
Exceptions or Generator. This task provides a “grab bag” for several types of
jumps. There are non-local jumps across function calls, or long jumps to any-
where within a program. Anywhere means not only to the tops of functions!

– Some languages can go to any global label in a program.

– Some languages can break multiple function calls, also known as unwinding
the call stack.

– Some languages can save a continuation. The program can later continue from
the same place. So you can jump anywhere, but only if you have a previous
visit there (to save the continuation).

These jumps are not all alike. A simple goto never touches the call stack. A
continuation saves the call stack, so you can continue a function call after it ends.

Use your language to demonstrate the various types of jumps that it supports.
Because the possibilities vary by language, this task is not specific. You have the
freedom to use these jumps for different purposes. You may also defer to more
specific tasks, like Exceptions or Generator.

12 Rosetta Code Tasks starting with J 477

PicoLisp supports non-local jumps to a previously setup environment (see
[[Exceptions#PicoLisp|exceptions]]) via
’[http://software-lab.de/doc/refC.html#catch catch]’ and
’[http://software-lab.de/doc/refT.html#throw throw]’, or to some location in
another coroutine with ’[http://software-lab.de/doc/refY.html#yield yield]’ (see
[[Generator#PicoLisp|generator]]).

’[http://software-lab.de/doc/refQ.html#quit quit]’ is similar to ’throw’, but
doesn’t require a corresponding ’catch’, as it directly jumps to the error
handler (where the program may catch that error again).

There is no ’go’ or ’goto’ function in PicoLisp, but it can be emulated with
normal list processing functions. This allows "jumps" to arbitrary locations
within (the same or other) functions. The following example implements a "loop":

(de foo (N)
(prinl "This is ’foo’")
(printsp N)
(or (=0 (dec ’N)) (run (cddr foo))))

Test:

: (foo 7)
This is ’foo’
7 6 5 4 3 2 1 -> 0

Chapter 13

Rosetta Code Tasks starting with K

Kaprekar numbers

A positive integer is a Kaprekar number if:

– It is 1

– The decimal representation of its square may be split once into two parts con-
sisting of positive integers which sum to the original number. Note that a split
resulting in a part consisting purely of 0s is not valid, as 0 is not considered
positive.

Example Kaprekar numbers

– 2223 is a Kaprekar number, as 2223 * 2223 = 4941729, 4941729 may be split
to 494 and 1729, and 494 + 1729 = 2223.

– The series of Kaprekar numbers is known as A006886, and begins as 1,9,45,55,. . . .

Example process

10000 (1002) splitting from left to right:

– The first split is [1, 0000], and is invalid; the 0000 element consists entirely of
0s, and 0 is not considered positive.

– Slight optimization opportunity: When splitting from left to right, once the
right part consists entirely of 0s, no further testing is needed; all further splits
would also be invalid.

479

http://en.wikipedia.org/wiki/Kaprekar_number
http://oeis.org/A006886

480 13 Rosetta Code Tasks starting with K

Task description

Generate and show all Kaprekar numbers less than 10,000.

Extra credit

Optionally, count (and report the count of) how many Kaprekar numbers are less
than 1,000,000.

Extra extra credit

The concept of Kaprekar numbers is not limited to base 10 (i.e. decimal num-
bers); if you can, show that Kaprekar numbers exist in other bases too. For this
purpose, do the following:

– Find all Kaprekar numbers for base 17 between 1 and 1,000,000 (one million);

– Display each of them in base 10 representation;

– Optionally, using base 17 representation (use letters ‘a’ to ‘g’ for digits 10(10)
to 16(10)), display each of the numbers, its square, and where to split the
square. For example, 225(10) is “d4” in base 17, its square “a52g”, and a5(17)
+ 2g(17) = d4(17), so the display would be something like:

225 d4 a52g a5 + 2g

Reference

– The Kaprekar Numbers by Douglas E. Iannucci (2000). PDF version

(de kaprekar (N)
(let L (cons 0 (chop (* N N)))

(for ((I . R) (cdr L) R (cdr R))
(NIL (gt0 (format R)))
(T (= N (+ @ (format (head I L)))) N))))

Output:

: (filter kaprekar (range 1 10000))
-> (1 9 45 55 99 297 703 999 2223 2728 4879 4950 5050 5292 7272 7777 9999)

: (cnt kaprekar (range 1 1000000))
-> 54

http://www.cs.uwaterloo.ca/journals/JIS/VOL3/iann2a.html
http://pictor.math.uqam.ca/~plouffe/OEIS/jis/The%20Kaprekar%20Numbers.pdf

13 Rosetta Code Tasks starting with K 481

Keyboard macros

Show how to link user defined methods to user defined keys. An example of this
is the facility provided by emacs for key bindings. These key bindings may be
application-specific or system-wide; state which you have done.

The ’fkey’ function associates a key with an executable body. Some common key
codes are predefined in "lib/term.l". Here we use ’F1’ to store the value 1 in
a global variable, ’Up’ and ’Down’ arrows to increment or decrement that value,
and ’Home’ to print the current value to the console.

(load "@lib/term.l")

(fkey *XtF1
(prinl "Initialized value to " (setq *Number 1)))

(fkey *XtUp
(prinl "Incremented to " (inc ’*Number)))

(fkey *XtDown
(prinl "Decremented to " (dec ’*Number)))

(fkey *XtHome
(prinl "Current value is " *Number))

Output when hitting ’F1’, ’Down’, ’Up’, ’Up’ and ’Home’:

Initialized value to 1
Decremented to 0
Incremented to 1
Incremented to 2
Current value is 2

http://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Bindings.html

482 13 Rosetta Code Tasks starting with K

Knapsack problem/0-1

A tourist wants to make a good trip at the weekend with his friends. They will
go to the mountains to see the wonders of nature, so he needs to pack well for
the trip. He has a good knapsack for carrying things, but knows that he can carry
a maximum of only 4kg in it and it will have to last the whole day. He creates a
list of what he wants to bring for the trip but the total weight of all items is too
much. He then decides to add columns to his initial list detailing their weights
and a numerical value representing how important the item is for the trip.

The tourist can choose to take any combination of items from the list, but only
one of each item is available. He may not cut or diminish the items, so he can
only take whole units of any item.

Which items does the tourist carry in his knapsack so that their total weight
does not exceed 400 dag [4 kg], and their total value is maximised?

Here is the list:

13 Rosetta Code Tasks starting with K 483

item weight (dag) value

map 9 150

compass 13 35

water 153 200

sandwich 50 160

glucose 15 60

tin 68 45

banana 27 60

apple 39 40

cheese 23 30

beer 52 10

suntan cream 11 70

camera 32 30

T-shirt 24 15

trousers 48 10

umbrella 73 40

waterproof trousers 42 70

waterproof overclothes 43 75

note-case 22 80

sunglasses 7 20

towel 18 12

socks 4 50

book 30 10

knapsack 400 dag ?

Table 13.1: Table of potential knapsack
items (dag = decagram = 10 grams)

484 13 Rosetta Code Tasks starting with K

(de *Items
("map" 9 150) ("compass" 13 35)
("water" 153 200) ("sandwich" 50 160)
("glucose" 15 60) ("tin" 68 45)
("banana" 27 60) ("apple" 39 40)
("cheese" 23 30) ("beer" 52 10)
("suntan cream" 11 70) ("camera" 32 30)
("t-shirt" 24 15) ("trousers" 48 10)
("umbrella" 73 40) ("waterproof trousers" 42 70)
("waterproof overclothes" 43 75) ("note-case" 22 80)
("sunglasses" 7 20) ("towel" 18 12)
("socks" 4 50) ("book" 30 10))

Dynamic programming solution
(de knapsack (Lst W)

(when Lst
(cache ’*KnapCache (pack (length Lst) ":" W)

(let X (knapsack (cdr Lst) W)
(if (ge0 (- W (cadar Lst)))

(let Y (cons (car Lst) (knapsack (cdr Lst) @))
(if (> (sum caddr X) (sum caddr Y)) X Y))

X)))))

(let K (knapsack *Items 400)
(for I K

(apply tab I (3 -24 6 6) NIL))
(tab (27 6 6) NIL (sum cadr K) (sum caddr K)))

Output:

map 9 150
compass 13 35
water 153 200
sandwich 50 160
glucose 15 60
banana 27 60
suntan cream 11 70
waterproof trousers 42 70
waterproof overclothes 43 75
note-case 22 80
sunglasses 7 20
socks 4 50

396 1030

13 Rosetta Code Tasks starting with K 485

Knapsack problem/Bounded

A tourist wants to make a good trip at the weekend with his friends. They will
go to the mountains to see the wonders of nature. So he needs some items during
the trip. Food, clothing, etc. He has a good knapsack for carrying the things, but
he knows that he can carry only 4 kg weight in his knapsack, because they will
make the trip from morning to evening. He creates a list of what he wants to
bring for the trip, but the total weight of all items is too much. He adds a value to
each item. The value represents how important the thing for the tourist. The list
contains which items are the wanted things for the trip, what is the weight and
value of an item, and how many units does he have from each items.

The tourist can choose to take any combination of items from the list, and some
number of each item is available (see the column “Piece(s)” of the list!). He may
not cut the items, so he can only take whole units of any item.

Which items does the tourist carry in his knapsack so that their total weight
does not exceed 4 kg, and their total value is maximised?

See also: Knapsack problem/Unbounded, Knapsack problem/0-1

This is the list:

486 13 Rosetta Code Tasks starting with K

item weight (dag) (each) value (each) piece(s)

map 9 150 1

compass 13 35 1

water 153 200 2

sandwich 50 60 2

glucose 15 60 2

tin 68 45 3

banana 27 60 3

apple 39 40 3

cheese 23 30 1

beer 52 10 3

suntan cream 11 70 1

camera 32 30 1

T-shirt 24 15 2

trousers 48 10 2

umbrella 73 40 1

waterproof trousers 42 70 1

waterproof overclothes 43 75 1

note-case 22 80 1

sunglasses 7 20 1

towel 18 12 2

socks 4 50 1

book 30 10 2

knapsack 400 dag ? ?

Table 13.2: Table of potential knapsack items (dag = decagram =
10 grams)

13 Rosetta Code Tasks starting with K 487

(de *Items
("map" 9 150 1) ("compass" 13 35 1)
("water" 153 200 3) ("sandwich" 50 60 2)
("glucose" 15 60 2) ("tin" 68 45 3)
("banana" 27 60 3) ("apple" 39 40 3)
("cheese" 23 30 1) ("beer" 52 10 3)
("suntan cream" 11 70 1) ("camera" 32 30 1)
("t-shirt" 24 15 2) ("trousers" 48 10 2)
("umbrella" 73 40 1) ("waterproof trousers" 42 70 1)
("waterproof overclothes" 43 75 1) ("note-case" 22 80 1)
("sunglasses" 7 20 1) ("towel" 18 12 2)
("socks" 4 50 1) ("book" 30 10 2))

Dynamic programming solution
(de knapsack (Lst W)

(when Lst
(cache ’*KnapCache (pack (length Lst) ":" W)

(let X (knapsack (cdr Lst) W)
(if (ge0 (- W (cadar Lst)))

(let Y (cons (car Lst) (knapsack (cdr Lst) @))
(if (> (sum caddr X) (sum caddr Y)) X Y))

X)))))

(let K
(knapsack

(mapcan # Expand multiple items
’((X) (need (cadddr X) NIL X))

*Items)
400)

(for I K
(apply tab I (3 -24 6 6) NIL))

(tab (27 6 6) NIL (sum cadr K) (sum caddr K)))

Output:

map 9 150
compass 13 35
water 153 200
glucose 15 60
glucose 15 60
banana 27 60
banana 27 60
banana 27 60
cheese 23 30
suntan cream 11 70
waterproof overclothes 43 75
note-case 22 80
sunglasses 7 20
socks 4 50

396 1010

488 13 Rosetta Code Tasks starting with K

Knapsack problem/Continuous

A robber burgles a butcher’s shop, where he can select from some items. He
knows the weights and prices of each items. Because he has a knapsack with
15 kg maximal capacity, he wants to select the items such that he would have his
profit maximized. He may cut the items; the item has a reduced price after cutting
that is proportional to the original price by the ratio of masses. That means: half
of an item has half the price of the original.

This is the item list in the butcher’s:

Item Weight (kg) Price (Value)

beef 3.8 36

pork 5.4 43

ham 3.6 90

greaves 2.4 45

flitch 4.0 30

brawn 2.5 56

welt 3.7 67

salami 3.0 95

sausage 5.9 98

Knapsack <=15 kg ?

Table 13.3: Table of potential knap-
sack items

Which items does the robber carry in his knapsack so that their total weight
does not exceed 15 kg, and their total value is maximised?

See also: Knapsack problem and Wikipedia.

http://en.wikipedia.org/wiki/Continuous_knapsack_problem

13 Rosetta Code Tasks starting with K 489

(scl 2)

(de *Items
("beef" 3.8 36.0)
("pork" 5.4 43.0)
("ham" 3.6 90.0)
("greaves" 2.4 45.0)
("flitch" 4.0 30.0)
("brawn" 2.5 56.0)
("welt" 3.7 67.0)
("salami" 3.0 95.0)
("sausage" 5.9 98.0))

(let K
(make

(let Weight 0
(for I (by ’((L) (*/ (caddr L) -1.0 (cadr L))) sort *Items)

(T (= Weight 15.0))
(inc ’Weight (cadr I))
(T (> Weight 15.0)

(let W (- (cadr I) Weight -15.0)
(link (list (car I) W (*/ W (caddr I) (cadr I))))))

(link I))))
(for I K

(tab (3 -9 8 8)
NIL
(car I)
(format (cadr I) *Scl)
(format (caddr I) *Scl)))

(tab (12 8 8)
NIL
(format (sum cadr K) *Scl)
(format (sum caddr K) *Scl)))

Output:

salami 3.00 95.00
ham 3.60 90.00
brawn 2.50 56.00
greaves 2.40 45.00
welt 3.50 63.38

15.00 349.38

490 13 Rosetta Code Tasks starting with K

Knapsack problem/Unbounded

A traveller gets diverted and has to make an unscheduled stop in what turns out
to be Shangri La. Opting to leave, he is allowed to take as much as he likes of
the following items, so long as it will fit in his knapsack, and he can carry it. He
knows that he can carry no more than 25 ‘weights’ in total; and that the capacity
of his knapsack is 0.25 ‘cubic lengths’.

Looking just above the bar codes on the items he finds their weights and volumes.
He digs out his recent copy of a financial paper and gets the value of each item.

Item Explanation Value (each) weight Volume (each)

panacea (vials of) Incredible healing properties 3000 0.3 0.025

ichor (ampules of) Vampires blood 1800 0.2 0.015

gold (bars) Shiney shiney 2500 2.0 0.002

Knapsack For the carrying of - <=25 <=0.25

He can only take whole units of any item, but there is much more of any item
than he could ever carry

How many of each item does he take to maximise the value of items he is
carrying away with him?

Note:

1. There are four solutions that maximise the value taken. Only one need be
given.

See also: Knapsack problem/Bounded, Knapsack problem/0-1

13 Rosetta Code Tasks starting with K 491

Brute force solution

(de *Items
("panacea" 3 25 3000)
("ichor" 2 15 1800)
("gold" 20 2 2500))

(de knapsack (Lst W V)
(when Lst

(let X (knapsack (cdr Lst) W V)
(if (and (ge0 (dec ’W (cadar Lst))) (ge0 (dec ’V (caddar Lst))))

(maxi
’((L) (sum cadddr L))
(list

X
(cons (car Lst) (knapsack (cdr Lst) W V))
(cons (car Lst) (knapsack Lst W V))))

X))))

(let K (knapsack *Items 250 250)
(for (L K L)

(let (N 1 X)
(while (= (setq X (pop ’L)) (car L))

(inc ’N))
(apply tab X (4 2 8 5 5 7) N "x")))

(tab (14 5 5 7) NIL (sum cadr K) (sum caddr K) (sum cadddr K)))

Output:

15 x ichor 2 15 1800
11 x gold 20 2 2500

250 247 54500

492 13 Rosetta Code Tasks starting with K

Knight’s tour

Problem: you have a standard 8x8 chessboard, empty but for a single knight on
some square. Your task is to emit a series of legal knight moves that result in the
knight visiting every square on the chessboard exactly once. Note that it is not a
requirement that the tour be “closed”; that is, the knight need not end within a
single move of its start position.

Input and output may be textual or graphical, according to the conventions of
the programming environment. If textual, squares should be indicated in alge-
braic notation. The output should indicate the order in which the knight visits
the squares, starting with the initial position. The form of the output may be a
diagram of the board with the squares numbered ordering to visitation sequence,
or a textual list of algebraic coordinates in order, or even an actual animation of
the knight moving around the chessboard.

Input: starting square

Output: move sequence

Cf.

– N-queens problem

http://en.wikipedia.org/wiki/Knight%27s_tour
http://en.wikipedia.org/wiki/Algebraic_chess_notation
http://en.wikipedia.org/wiki/Algebraic_chess_notation

13 Rosetta Code Tasks starting with K 493

(load "@lib/simul.l")

Build board
(grid 8 8)

Generate legal moves for a given position
(de moves (Tour)

(extract
’((Jump)

(let? Pos (Jump (car Tour))
(unless (memq Pos Tour)

Pos)))
(quote # (taken from "games/chess.l")

((This) (: 0 1 1 0 -1 1 0 -1 1)) # South Southwest
((This) (: 0 1 1 0 -1 1 0 1 1)) # West Southwest
((This) (: 0 1 1 0 -1 -1 0 1 1)) # West Northwest
((This) (: 0 1 1 0 -1 -1 0 -1 -1)) # North Northwest
((This) (: 0 1 -1 0 -1 -1 0 -1 -1)) # North Northeast
((This) (: 0 1 -1 0 -1 -1 0 1 -1)) # East Northeast
((This) (: 0 1 -1 0 -1 1 0 1 -1)) # East Southeast
((This) (: 0 1 -1 0 -1 1 0 -1 1))))) # South Southeast

Build a list of moves, using Warnsdorffs algorithm
(let Tour ’(b1) # Start at b1

(while
(mini

’((P) (length (moves (cons P Tour))))
(moves Tour))

(push ’Tour @))
(flip Tour))

Output:

-> (b1 a3 b5 a7 c8 b6 a8 c7 a6 b8 d7 f8 h7 g5 h3 g1 e2 c1 a2 b4 c2 a1 b3 a5 b7
d8 c6 d4 e6 c5 a4 c3 d1 b2 c4 d2 f1 h2 f3 e1 d3 e5 f7 h8 g6 h4 g2 f4 d5 e7 g8
h6 g4 e3 f5 d6 e8 g7 h5 f6 e4 g3 h1 f2)

494 13 Rosetta Code Tasks starting with K

Knuth’s algorithm S

This is a method of randomly sampling n items from a set of M items, with
equal probability; where M >= n and M, the number of items is unknown until
the end. This means that the equal probability sampling should be maintained
for all successive items > n as they become available (although the content of
successive samples can change).

The algorithm

1. Select the first n items as the sample as they become available;

2. For the i-th item where i > n, have a random chance of n/i of keeping it. If
failing this chance, the sample remains the same. If not, have it randomly (1/n)
replace one of the previously selected n items of the sample.

3. Repeat #2 for any subsequent items.

The Task

1. Create a function s of n creator that given n the maximum sample size,
returns a function s of n that takes one parameter, item.

2. Function s of n when called with successive items returns an equi-weighted
random sample of up to n of its items so far, each time it is called, calculated
using Knuths Algorithm S.

3. Test your functions by printing and showing the frequency of occurrences of
the selected digits from 100,000 repetitions of:

1. Use the s of n creator with n == 3 to generate an s of n.

2. call s of n with each of the digits 0 to 9 in order, keeping the returned three
digits of its random sampling from its last call with argument item=9.

Note: A class taking n and generating a callable instance/function might also be
used.

Reference

– The Art of Computer Programming, Vol 2, 3.4.2 p.142

Cf.

– One of n lines in a file

– Accumulator factory

13 Rosetta Code Tasks starting with K 495

(de s_of_n_creator (@N)
(curry (@N (I . 0) (Res)) (Item)

(cond
((>= @N (inc ’I)) (push ’Res Item))
((>= @N (rand 1 I)) (set (nth Res (rand 1 @N)) Item)))

Res))

(let Freq (need 10 0)
(do 100000

(let S_of_n (s_of_n_creator 3)
(for I (mapc S_of_n (0 1 2 3 4 5 6 7 8 9))

(inc (nth Freq (inc I))))))
Freq)

Output:

-> (30003 29941 29918 30255 29848 29875 30056 29839 30174 30091)

496 13 Rosetta Code Tasks starting with K

Knuth shuffle

Implement the Knuth shuffle (a.k.a. the Fisher-Yates shuffle) for an integer array
(or, if possible, an array of any type). The Knuth shuffle is used to create a random
permutation of an array.

(de shuffle (Lst)
(make

(for (N (length Lst) (gt0 N))
(setq Lst

(conc
(cut (rand 0 (dec ’N)) ’Lst)
(prog (link (car Lst)) (cdr Lst)))))))

http://en.wikipedia.org/wiki/Knuth_shuffle

Chapter 14

Rosetta Code Tasks starting with L

LZW compression

The Lempel-Ziv-Welch (LZW) algorithm provides lossless data compression.
You can read a complete description of it in the Wikipedia article on the subject.
It was patented, but it fell in the public domain in 2004.

497

http://en.wikipedia.org/wiki/Lempel-Ziv-Welch

498 14 Rosetta Code Tasks starting with L

(de lzwCompress (Lst)
(let (Codes 255 Dict)

(balance ’Dict
(make

(for C Codes
(link (cons (char C) C)))))

(make
(let W (pop ’Lst)

(for C Lst
(let WC (pack W C)

(if (lup Dict WC)
(setq W WC)
(link (cdr (lup Dict W)))
(idx ’Dict (cons WC (inc ’Codes)) T)
(setq W C))))

(and W (link (cdr (lup Dict W))))))))

(de lzwDecompress (Lst)
(let (Codes 255 Dict)

(balance ’Dict
(make

(for C Codes
(link (list C (char C))))))

(make
(let W NIL

(for N Lst
(let WC (if (lup Dict N) (cdr @) (cons (last W) W))

(chain (reverse WC))
(when W

(idx ’Dict (cons (inc ’Codes) (cons (last WC) W)) T))
(setq W WC)))))))

Test:

: (lzwCompress (chop "TOBEORNOTTOBEORTOBEORNOT"))
-> (84 79 66 69 79 82 78 79 84 256 258 260 265 259 261 263)

: (pack (lzwDecompress @))
-> "TOBEORNOTTOBEORTOBEORNOT"

14 Rosetta Code Tasks starting with L 499

Last Fridays of year

Write a program or a script that returns the last Fridays of each month of a given
year. The year may be given through any simple input method in your language
(command line, std in, etc.).

Example of an expected output:

./last_fridays 2012
2012-01-27
2012-02-24
2012-03-30
2012-04-27
2012-05-25
2012-06-29
2012-07-27
2012-08-31
2012-09-28
2012-10-26
2012-11-30
2012-12-28

Cf.

– Five weekends

– Day of the week

500 14 Rosetta Code Tasks starting with L

(de lastFridays (Y)
(for M ‘(range 1 12)

(prinl
(dat\$

(find ’((D) (= "Friday" (day D)))
(mapcar ’((D) (date Y M D)) ‘(range 31 22)))

"-"))))

Test:

: (lastFridays 2012)
2012-01-27
2012-02-24
2012-03-30
2012-04-27
2012-05-25
2012-06-29
2012-07-27
2012-08-31
2012-09-28
2012-10-26
2012-11-30
2012-12-28

14 Rosetta Code Tasks starting with L 501

Last letter-first letter

A certain childrens game involves starting with a word in a particular category.
Each participant in turn says a word, but that word must begin with the final
letter of the previous word. Once a word has been given, it cannot be repeated.
If an opponent cannot give a word in the category, they fall out of the game. For
example, with “animals” as the category,

Child 1: dog
Child 2: goldfish
Child 1: hippopotamus
Child 2: snake
...

Task Description

Take the following selection of 70 English Pokemon names (extracted from
Wikipedia’s list of Pokemon) and generate the/a sequence with the highest pos-
sible number of Pokemon names where the subsequent name starts with the final
letter of the preceding name. No Pokemon name is to be repeated.

audino bagon baltoy banette bidoof braviary bronzor carracosta charmeleon
cresselia croagunk darmanitan deino emboar emolga exeggcute gabite
girafarig gulpin haxorus heatmor heatran ivysaur jellicent jumpluff kangaskhan
kricketune landorus ledyba loudred lumineon lunatone machamp magnezone mamoswine
nosepass petilil pidgeotto pikachu pinsir poliwrath poochyena porygon2
porygonz registeel relicanth remoraid rufflet sableye scolipede scrafty seaking
sealeo silcoon simisear snivy snorlax spoink starly tirtouga trapinch treecko
tyrogue vigoroth vulpix wailord wartortle whismur wingull yamask

Extra brownie points for dealing with the full list of 646 names.

http://en.wikipedia.org/wiki/List_of_Pok%C3%A9mon

502 14 Rosetta Code Tasks starting with L

(de pokemonChain (File)
(let Names (make (in File (while (read) (link @))))

(for Name Names
(let C (last (chop Name))

(set Name
(filter ’((Nm) (pre? C Nm)) Names))))

(let Res NIL
(for Name Names

(let Lst NIL
(recur (Name Lst)

(if (or (memq Name Lst) (not (val (push ’Lst Name))))
(when (> (length Lst) (length Res))

(setq Res Lst))
(mapc recurse (val Name) (circ Lst))))))

(flip Res))))

Test:

: (pokemonChain "pokemon.list")
-> (machamp poliwrath haxorus scrafty yamask kangaskhan nidoking gabite emboar
registeel landorus seaking girafarig gulpin noctowl loudred darmanitan nosepass
simisear rufflet tyrogue exeggcute emolga audino)

: (length @)
-> 24

14 Rosetta Code Tasks starting with L 503

Leap year

Determine whether a given year is a leap year in the Gregorian calendar.

See Also

– Leap year (wiki)

(de isLeapYear (Y)
(bool (date Y 2 29)))

Output:

: (isLeapYear 2010)
-> NIL

: (isLeapYear 2008)
-> T

: (isLeapYear 1600)
-> T

: (isLeapYear 1700)
-> NIL

http://en.wikipedia.org/wiki/Leap_year

504 14 Rosetta Code Tasks starting with L

Least common multiple

Compute the least common multiple of two integers.

Given m and n, the least common multiple is the smallest positive integer that
has both m and n as factors. For example, the least common multiple of 12 and
18 is 36, because 12 is a factor (12 3 = 36), and 18 is a factor (18 2 = 36), and
there is no positive integer less than 36 that has both factors. As a special case, if
either m or n is zero, then the least common multiple is zero.

One way to calculate the least common multiple is to iterate all the multiples of
m, until you find one that is also a multiple of n.

If you already have gcd for greatest common divisor, then this formula calculates
lcm.

One can also find lcm by merging the prime decompositions of both m and n.

References: MathWorld, Wikipedia.

Using ’gcd’ from [[Greatest common divisor#PicoLisp]]:

(de lcm (A B)
(abs (*/ A B (gcd A B))))

http://mathworld.wolfram.com/LeastCommonMultiple.html
http://en.wikipedia.org/wiki/Least_common_multiple

14 Rosetta Code Tasks starting with L 505

Letter frequency

Open a text file and count the occurrences of each letter.

Some of these programs count all characters (including punctuation), but some
only count letters A to Z.

(let Freq NIL
(in "file.txt"

(while (char) (accu ’Freq @ 1)))
(sort Freq))

For a "file.txt":

abcd
cdef

Output:

-> (("ˆJ" . 2) ("a" . 1) ("b" . 1) ("c" . 2) ("d" . 2) ("e" . 1) ("f" . 1))

506 14 Rosetta Code Tasks starting with L

Levenshtein distance

In information theory and computer science, the Levenshtein distance is a met-
ric for measuring the amount of difference between two sequences (i.e. an edit
distance). The Levenshtein distance between two strings is defined as the min-
imum number of edits needed to transform one string into the other, with the
allowable edit operations being insertion, deletion, or substitution of a single
character.

For example, the Levenshtein distance between ”kitten” and ”sitting” is 3, since
the following three edits change one into the other, and there is no way to do it
with fewer than three edits:

1. kitten sitten (substitution of ‘k’ with ’s’)

2. sitten sittin (substitution of ‘e’ with ‘i’)

3. sittin sitting (insert ‘g’ at the end).

The Levenshtein distance between ”rosettacode“,”raisethysword” is 8; The dis-
tance between two strings is same as that when both strings is reversed.

Task : Implements a Levenshtein distance function, or uses a library function, to
show the Levenshtein distance between “kitten” and “sitting”.

Other edit distance at Rosettacode.org :

– Longest common subsequence

http://en.wikipedia.org/wiki/string_metric
http://en.wikipedia.org/wiki/string_metric
http://en.wikipedia.org/wiki/edit_distance
http://en.wikipedia.org/wiki/edit_distance

14 Rosetta Code Tasks starting with L 507

(de levenshtein (A B)
(let D

(cons
(range 0 (length A))
(mapcar

’((I) (cons I (copy A)))
(range 1 (length B))))

(for (J . Y) B
(for (I . X) A

(set
(nth D (inc J) (inc I))
(if (= X Y)

(get D J I)
(inc

(min
(get D J (inc I))
(get D (inc J) I)
(get D J I)))))))))

or, using ’map’ to avoid list indexing:

(de levenshtein (A B)
(let D

(cons
(range 0 (length A))
(mapcar

’((I) (cons I (copy A)))
(range 1 (length B))))

(map
’((B Y)

(map
’((A X P)

(set (cdr P)
(if (= (car A) (car B))

(car X)
(inc (min (cadr X) (car P) (car X))))))

A
(car Y)
(cadr Y)))

B
D)))

Output in both cases:

: (levenshtein (chop "kitten") (chop "sitting"))
-> 3

508 14 Rosetta Code Tasks starting with L

Linear congruential generator

The linear congruential generator is a very simple example of a random num-
ber generator. All linear congruential generators use this formula:

·

Where:

· r0 is a seed.

· r1, r2, r3, . . . , are the random numbers.

· a, c, m are constants.

If one chooses the values of a, c and m with care, then the generator produces
a uniform distribution of integers from 0 to m 1.

LCG numbers have poor quality. rn and rn + 1 are not independent, as true
random numbers would be. Anyone who knows rn can predict rn + 1, there-
fore LCG is not cryptographically secure. The LCG is still good enough for
simple tasks like Miller-Rabin primality test, or FreeCell deals. Among the
benefits of the LCG, one can easily reproduce a sequence of numbers, from
the same r0. One can also reproduce such sequence with a different program-
ming language, because the formula is so simple.

The task is to replicate two historic random number generators. One is the
rand() function from BSD libc, and the other is the rand() function from
the Microsoft C Runtime (MSCVRT.DLL). Each replica must yield the same
sequence of integers as the original generator, when starting from the same
seed.

In these formulas, the seed becomes state0. The random sequence is rand1,
rand2 and so on.

BSD formula:

·

· randn = staten

· randn is in range 0 to 2147483647.

Microsoft formula:

·

·

· randn is in range 0 to 32767.

http://en.wikipedia.org/wiki/linear_congruential_generator

14 Rosetta Code Tasks starting with L 509

The BSD formula was so awful that FreeBSD switched to a different formula.
More info is at Random number generator (included)#C.

(zero *BsdSeed *MsSeed)

(de bsdRand ()
(setq *BsdSeed

(\& (+ 12345 (* 1103515245 *BsdSeed)) ‘(dec (** 2 31)))))

(de msRand ()
(>> 16

(setq *MsSeed
(\& (+ 2531011 (* 214013 *MsSeed)) ‘(dec (** 2 31))))))

Output:

: (do 7 (printsp (bsdRand)))
12345 1406932606 654583775 1449466924 229283573 1109335178 1051550459 -> 1051550459

: (do 12 (printsp (msRand)))
38 7719 21238 2437 8855 11797 8365 32285 10450 30612 5853 28100 -> 28100

510 14 Rosetta Code Tasks starting with L

List comprehensions

A list comprehension is a special syntax in some programming languages to
describe lists. It is similar to the way mathematicians describe sets, with a set
comprehension, hence the name.

Some attributes of a list comprehension are that:

1. They should be distinct from (nested) for loops within the syntax of the
language.

2. They should return either a list or an iterator (something that returns suc-
cessive members of a collection, in order).

3. The syntax has parts corresponding to that of set-builder notation.

Write a list comprehension that builds the list of all Pythagorean triples with
elements between 1 and n. If the language has multiple ways for express-
ing such a construct (for example, direct list comprehensions and generators),
write one example for each.

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation

14 Rosetta Code Tasks starting with L 511

PicoLisp doesn’t have list comprehensions.
We might use a generator function, pipe, coroutine or pilog predicate.

Using a generator function

(de pythag (N)
(job ’((X . 1) (Y . 1) (Z . 0))

(loop
(when (> (inc ’Z) N)

(when (> (inc ’Y) N)
(setq Y (inc ’X)))

(setq Z Y))
(T (> X N))
(T (= (+ (* X X) (* Y Y)) (* Z Z))

(list X Y Z)))))

(while (pythag 20)
(println @))

Using a pipe

(pipe
(for X 20

(for Y (range X 20)
(for Z (range Y 20)

(when (= (+ (* X X) (* Y Y)) (* Z Z))
(pr (list X Y Z))))))

(while (rd)
(println @)))

Using a coroutine

Coroutines are available only in the 64-bit version.

(de pythag (N)
(co ’pythag

(for X N
(for Y (range X N)

(for Z (range Y N)
(when (= (+ (* X X) (* Y Y)) (* Z Z))

(yield (list X Y Z))))))))

(while (pythag 20)
(println @))

512 14 Rosetta Code Tasks starting with L

Output in all three cases:

(3 4 5)
(5 12 13)
(6 8 10)
(8 15 17)
(9 12 15)
(12 16 20)

Using Pilog

{{works with|PicoLisp|3.0.9.7}}

(be pythag (@N @X @Y @Z)
(for @X @N)
(for @Y @X @N)
(for @Z @Y @N)
(@ let (X (-> @X) Y (-> @Y) Z (-> @Z))

(= (+ (* X X) (* Y Y)) (* Z Z))))

Test:

: (? (pythag 20 @X @Y @Z))
@X=3 @Y=4 @Z=5
@X=5 @Y=12 @Z=13
@X=6 @Y=8 @Z=10
@X=8 @Y=15 @Z=17
@X=9 @Y=12 @Z=15
@X=12 @Y=16 @Z=20

-> NIL

14 Rosetta Code Tasks starting with L 513

Literals/Floating point

Programming languages have different ways of expressing floating-point lit-
erals. Show how floating-point literals can be expressed in your language:
decimal or other bases, exponential notation, and any other special features.

You may want to include a regular expression or BNF/ABNF/EBNF defining
allowable formats for your language.

See also Literals/Integer.

PicoLisp does not support floating point literals in the base language, only
fixed point (scaled) decimal integers of unlimited size and precision. See
[http://software-lab.de/doc/ref.html#num-io Numbers] in the reference.

514 14 Rosetta Code Tasks starting with L

Literals/Integer

Some programming languages have ways of expressing integer literals in
bases other than the normal base ten.

Show how integer literals can be expressed in as many bases as your language
allows.

Note: this should not involve the calling of any functions/methods but should
be interpreted by the compiler or interpreter as an integer written to a given
base.

Also show any other ways of expressing literals, e.g. for different types of
integers.

See also Literals/Floating point.

Cf. Extreme floating point values

In the strict sense of this task, PicoLisp reads only integers at bases which
are a power of ten (scaled fixpoint numbers). This is controlled via the global
variable ’[http://software-lab.de/doc/refS.html#*Scl *Scl]’:

: (setq *Scl 4)
-> 4

: 123.456789
-> 1234568

However, the reader is normally augmented by read macros, which can read any
base or any desired format. Read macros are not executed at runtime, but
intially when the sources are read.

: ’(a ‘(hex "7F") b ‘(oct "377") c)
-> (a 127 b 255 c)

In addition to standard formats like
’[http://software-lab.de/doc/refH.html#hex hex]’ (hexadecimal) and
’[http://software-lab.de/doc/refO.html#oct oct]’ (octal),
there are also more esoteric formats like
’[http://software-lab.de/doc/refF.html#fmt64 fmt64]’ (base 64) and
’[http://software-lab.de/doc/refH.html#hax hax]’ (hexadecimal numbers
coded with alphabetic characters).

14 Rosetta Code Tasks starting with L 515

Literals/String

Show literal specification of characters and strings. If supported, show how
verbatim strings (quotes where escape sequences are quoted literally) and
here-strings work. Also, discuss which quotes expand variables.

· Related tasks: Special characters, Here document

PicoLisp doesn’t have a string data type. Instead, symbols are used. Certain
uninterned symbols, called
[http://software-lab.de/doc/ref.html#transient "transient symbols"],
however, look and behave like strings on other languages.

Syntactically, transient symbols (called "strings" in the following) are
surrounded by double quotes.

: "ab\"cd"
-> "ab\"cd"

Double quotes in strings are escaped with a backslash.

ASCII control characters can be written using the hat (’ˆ’) character:

: "abˆIcdˆJef" # Tab, linefeed

There is no special character type or representation. Individual characters are
handled as single-character strings:

: (chop "abc")
-> ("a" "b" "c")

: (pack (reverse @))
-> "cba"

A limited handling of here-strings is available with the
’[http://software-lab.de/doc/refH.html#here here]’ function.

516 14 Rosetta Code Tasks starting with L

Logical operations

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic
data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Write a function that takes two logical (boolean) values, and outputs the result
of “and” and “or” on both arguments as well as “not” on the first arguments. If
the programming language doesn’t provide a separate type for logical values,
use the type most commonly used for that purpose.

If the language supports additional logical operations on booleans such as
XOR, list them as well.

(de logic (A B)
(prin "A AND B is ")
(println (and A B))
(prin "A OR B is ")
(println (or A B))
(prin "A XOR B is ")
(println (xor A B))
(prin "NOT A is ")
(println (not A)))

14 Rosetta Code Tasks starting with L 517

Long multiplication

In this task, explicitly implement long multiplication. This is one possible
approach to arbitrary-precision integer algebra.

For output, display the result of 2ˆ64 * 2ˆ64. The decimal representation of
2ˆ64 is:

18446744073709551616

The output of 2ˆ64 * 2ˆ64 is 2ˆ128, and that is:

340282366920938463463374607431768211456

: (* (** 2 64) (** 2 64))
-> 340282366920938463463374607431768211456

http://en.wikipedia.org/wiki/long_multiplication

518 14 Rosetta Code Tasks starting with L

Longest common subsequence

The longest common subsequence (or LCS) of groups A and B is the longest
group of elements from A and B that are common between the two groups
and in the same order in each group. For example, the sequences “1234” and
“1224533324” have an LCS of “1234”:

1234
1224533324

For a string example, consider the sequences “thisisatest” and “testing123testing”.
An LCS would be “tsitest”:

thisisatest
testing123testing

In this puzzle, your code only needs to deal with strings. Write a function
which returns an LCS of two strings (case-sensitive). You don’t need to show
multiple LCS’s.

For more information on this problem please see Wikipedia.

(de commonSequences (A B)
(when A

(conc
(when (member (car A) B)

(mapcar ’((L) (cons (car A) L))
(cons NIL (commonSequences (cdr A) (cdr @)))))

(commonSequences (cdr A) B))))

(maxi length
(commonSequences

(chop "thisisatest")
(chop "testing123testing")))

Output:

-> ("t" "s" "i" "t" "e" "s" "t")

http://en.wikipedia.org/wiki/Longest_common_subsequence_problem

14 Rosetta Code Tasks starting with L 519

Longest string challenge

Background

This problem and challenge is inspired by one that used to be given as a chal-
lenge to students learning Icon. It was intended to be tried in Icon and another
language the student was familiar with. The basic problem is quite simple the
challenge and fun part came through the introduction of restrictions. Expe-
rience has shown that the original restrictions required some adjustment to
bring out the intent of the challenge and make it suitable for Rosetta Code.

The original programming challenge and some solutions can be found at Uni-
con Programming TWiki / Longest Strings Puzzle. (See notes on talk page if
you have trouble with the site).

Basic problem statement:

Write a program that reads lines from standard input and, upon end of file,
writes the longest line to standard output.

If there are ties for the longest line, the program writes out all the lines that
tie.

If there is no input, the program should produce no output.

Task

Implement a solution to the basic problem that adheres to the spirit of the
restrictions (see below).

Describe how you circumvented or got around these ‘restrictions’ and met the
‘spirit’ of the challenge. Your supporting description may need to describe
any challenges to interpreting the restrictions and how you made this interpre-
tation. You should state any assumptions, warnings, or other relevant points.
The central idea here is to make the task a bit more interesting by thinking
outside of the box and perhaps show off the capabilities of your language in a
creative way. Because there is potential for more variation between solutions,
the description is key to helping others see what you’ve done.

This task is likely to encourage multiple different types of solutions. They
should be substantially different approaches.

Given the input:

a
bb
ccc
ddd
ee
f

https://tapestry.tucson.az.us/twiki/bin/view/Main/LongestStringsPuzzle
https://tapestry.tucson.az.us/twiki/bin/view/Main/LongestStringsPuzzle

520 14 Rosetta Code Tasks starting with L

ggg

The output should be (possibly rearranged):

ccc
ddd
ggg

Original list of restrictions:

1. No comparison operators may be used.

2. No arithmetic operations, such as addition and subtraction, may be used.

3. The only datatypes you may use are integer and string. In particular, you
may not use lists.

An additional restriction became apparent in the discussion.

4. Do not re-read the input file. Avoid using files as a replacement for lists.

Intent of Restrictions

Because of the variety of languages on Rosetta and the wide variety of con-
cepts used in them there needs to be a bit of clarification and guidance here to
get to the spirit of the challenge and the intent of the restrictions.

The basic problem can be solved very conventionally and that’s boring and
pedestrian. The original intent here wasn’t to unduly frustrate people with
interpreting the restrictions, it was to get people to think outside of their par-
ticular box and have a bit of fun doing it.

The guiding principle here should be that when using the language of your
choice, try to solve this creatively showing off some of your language ca-
pabilities. If you need to bend the restrictions a bit, explain why and try to
follow the intent. If you think you’ve implemented a ‘cheat’ call out the frag-
ment yourself and ask the reader if they can spot why. If you absolutely can’t
get around one of the restrictions, say why in your description.

Now having said that, the restrictions require some elaboration.

· In general, the restrictions are meant to avoid the explicit use of these fea-
tures.

· “No comparison operators may be used” - At some level there must be
some test that allows the solution to get at the length and determine if
one string is longer. Comparison operators, in particular any less/greater
comparison should be avoided. Representing the length of any string as
a number should also be avoided. Various approaches allow for detecting
the end of a string. Some of these involve implicitly using equal/not-equal;
however, explicitly using equal/not-equal should be acceptable.

14 Rosetta Code Tasks starting with L 521

· “No arithmetic operations” - Again, at some level something may have to
advance through the string. Often there are ways a language can do this
implicitly advance a cursor or pointer without explicitly using a +, - , ++,
–, add, subtract, etc.

· The datatype restrictions are amongst the most difficult to reinterpret. In
the language of the original challenge strings are atomic datatypes and
structured datatypes like lists are quite distinct and have many different
operations that apply to them. This becomes a bit fuzzier with languages
with a different programming paradigm. The intent would be to avoid us-
ing an easy structure to accumulate the longest strings and spit them out.
There will be some natural reinterpretation here.

To make this a bit more concrete, here are a couple of specific examples:

In C, a string is an array of chars, so using a couple of arrays as strings is in
the spirit while using a second array in a non-string like fashion would violate
the intent.

In APL or J, arrays are the core of the language so ruling them out is unfair.
Meeting the spirit will come down to how they are used.

Please keep in mind these are just examples and you may hit new territory
finding a solution. There will be other cases like these. Explain your reason-
ing. You may want to open a discussion on the talk page as well.

· The added “No rereading” restriction is for practical reasons, re-reading
stdin should be broken. I haven’t outright banned the use of other files but
I’ve discouraged them as it is basically another form of a list. Somewhere
there may be a language that just sings when doing file manipulation and
where that makes sense; however, for most there should be a way to ac-
complish without resorting to an externality.

At the end of the day for the implementer this should be a bit of fun. As an im-
plementer you represent the expertise in your language, the reader may have
no knowledge of your language. For the reader it should give them insight
into how people think outside the box in other languages. Comments, espe-
cially for non-obvious (to the reader) bits will be extremely helpful. While the
implementations may be a bit artificial in the context of this task, the general
techniques may be useful elsewhere.

522 14 Rosetta Code Tasks starting with L

Not sure if this meets the spirit. I would implement it the same way if there
were no "restrictions":

(mapc prinl
(maxi ’((L) (length (car L)))

(by length group
(in NIL

(make (until (eof) (link (line))))))))

Another solution avoids ’group’, and builds an associative buffer of lines
instead:

(let Buf NIL
(in NIL

(until (eof)
(let (Line (line) Len (length Line))

(if (assoc Len Buf)
(conc @ (cons Line))
(push ’Buf (cons Len (cons Line)))))))

(mapc prinl (cdr (maxi car Buf))))

14 Rosetta Code Tasks starting with L 523

Look-and-say sequence

Sequence Definition

· Take a decimal number

· Look at the number, visually grouping consecutive runs of the same digit.

· Say the number, from left to right, group by group; as how many of that
digit there are - followed by the digit grouped.

This becomes the next number of the sequence.

The sequence is from John Conway, of Conway’s Game of Life fame.

An example:

· Starting with the number 1, you have one 1 which produces 11.

· Starting with 11, you have two 1’s i.e. 21

· Starting with 21, you have one 2, then one 1 i.e. (12)(11) which becomes
1211

· Starting with 1211 you have one 1, one 2, then two 1’s i.e. (11)(12)(21)
which becomes 111221

Task description

Write a program to generate successive members of the look-and-say se-
quence.

See also

· This task is related to, and an application of, the Run-length encoding task.

http://en.wikipedia.org/wiki/Look_and_say_sequence
http://en.wikipedia.org/wiki/John_Horton_Conway

524 14 Rosetta Code Tasks starting with L

(de las (Lst)
(make

(while Lst
(let (N 1 C)

(while (= (setq C (pop ’Lst)) (car Lst))
(inc ’N))

(link N C)))))

Usage:

: (las (1))
-> (1 1)
: (las @)
-> (2 1)
: (las @)
-> (1 2 1 1)
: (las @)
-> (1 1 1 2 2 1)
: (las @)
-> (3 1 2 2 1 1)
: (las @)
-> (1 3 1 1 2 2 2 1)
: (las @)
-> (1 1 1 3 2 1 3 2 1 1)
: (las @)
-> (3 1 1 3 1 2 1 1 1 3 1 2 2 1)

14 Rosetta Code Tasks starting with L 525

Loop over multiple arrays simultaneously

Loop over multiple arrays (or lists or tuples or whatever they’re called in your
language) and print the ith element of each. Use your language’s “for each”
loop if it has one, otherwise iterate through the collection in order with some
other loop.

For this example, loop over the arrays (a,b,c), (A,B,C) and (1,2,3)
to produce the output

aA1
bB2
cC3

If possible, also describe what happens when the arrays are of different
lengths.

(mapc prinl
’(a b c)
’(A B C)
(1 2 3))

The length of the first argument list controls the operation. If subsequent
lists are longer, their remaining values are ignored. If they are shorter, NIL
is passed to the function.

526 14 Rosetta Code Tasks starting with L

Loops/Break

Show a loop which prints random numbers (each number newly generated
each loop) from 0 to 19 (inclusive). If a number is 10, stop the loop after
printing it, and do not generate any further numbers. Otherwise, generate and
print a second random number before restarting the loop. If the number 10 is
never generated as the first number in a loop, loop forever.

Literally:

(use R
(loop

(println (setq R (rand 1 19)))
(T (= 10 R))
(println (rand 1 19))))

Shorter:

(until (= 10 (println (rand 1 19)))
(println (rand 1 19)))

14 Rosetta Code Tasks starting with L 527

Loops/Continue

Show the following output using one loop.

1, 2, 3, 4, 5
6, 7, 8, 9, 10

Try to achieve the result by forcing the next iteration within the loop upon a
specific condition, if your language allows it.

PicoLisp doesn’t have an explicit ’continue’ functionality. It can always be
emulated with a conditional expression.

(for I 10
(print I)
(if (=0 (\% I 5))

(prinl)
(prin ", ")))

528 14 Rosetta Code Tasks starting with L

Loops/Do-while

Start with a value at 0. Loop while value mod 6 is not equal to 0. Each time
through the loop, add 1 to the value then print it. The loop must execute at
least once.

Literally:

(let Val 0
(loop

(println (inc ’Val))
(T (=0 (\% Val 6)))))

Shorter:

(let Val 0
(until (=0 (\% (println (inc ’Val)) 6))))

or:

(for (Val 0 (n0 (\% (println (inc ’Val)) 6))))

14 Rosetta Code Tasks starting with L 529

Loops/Downward for

Write a for loop which writes a countdown from 10 to 0.

(for (I 10 (ge0 I) (dec I))
(println I))

or:

(mapc println (range 10 0))

530 14 Rosetta Code Tasks starting with L

Loops/For

“For” loops are used to make some block of code be iterated a number of
times, setting a variable or parameter to a monotonically increasing integer
value for each execution of the block of code. Common extensions of this
allow other counting patterns or iterating over abstract structures other than
the integers.

For this task, show how two loops may be nested within each other, with the
number of iterations performed by the inner for loop being controlled by the
outer for loop. Specifically print out the following pattern by using one for
loop nested in another:

*
**

(for N 5
(do N (prin "*"))
(prinl))

14 Rosetta Code Tasks starting with L 531

Loops/For with a specified step

Demonstrate a for loop where the step value is greater than one.

(for (N 1 (> 10 N) (+ N 2))
(printsp N))

532 14 Rosetta Code Tasks starting with L

Loops/Foreach

Loop through and print each element in a collection in order. Use your lan-
guage’s “for each” loop if it has one, otherwise iterate through the collection
in order with some other loop.

(mapc println ’(Apple Banana Coconut))

14 Rosetta Code Tasks starting with L 533

Loops/Infinite

Specifically print out “SPAM” followed by a newline in an infinite loop.

(loop (prinl "SPAM"))

534 14 Rosetta Code Tasks starting with L

Loops/N plus one half

Quite often one needs loops which, in the last iteration, execute only part of
the loop body. The goal of this task is to demonstrate the best way to do this.

Write a loop which writes the comma-separated list

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

using separate output statements for the number and the comma from within
the body of the loop.

See also: Loop/Break

(for N 10
(prin N)
(T (= N 10))
(prin ", "))

14 Rosetta Code Tasks starting with L 535

Loops/Nested

Show a nested loop which searches a two-dimensional array filled with ran-

dom numbers uniformly distributed over . The loops iterate rows
and columns of the array printing the elements until the value 20 is met.
Specifically, this task also shows how to break out of nested loops.

(for Lst (make (do 10 (link (make (do 10 (link (rand 1 20)))))))
(T

(for N Lst
(printsp N)
(T (= N 20) T))))

or:

(catch NIL
(for Lst (make (do 10 (link (make (do 10 (link (rand 1 20)))))))

(for N Lst
(printsp N)
(and (= N 20) (throw)))))

536 14 Rosetta Code Tasks starting with L

Loops/While

Start an integer value at 1024. Loop while it is greater than 0. Print the value
(with a newline) and divide it by two each time through the loop.

(let N 1024
(while (gt0 N)

(println N)
(setq N (/ N 2))))

14 Rosetta Code Tasks starting with L 537

Lucas-Lehmer test

Lucas-Lehmer Test: for p an odd prime, the Mersenne number 2p 1 is prime
if and only if 2p 1 divides S(p 1) where S(n + 1) = (S(n))2 2, and S(1) = 4.

The following programs calculate all Mersenne primes up to the implementa-
tion’s maximum precision, or the 47th Mersenne prime. (Which ever comes
first).

538 14 Rosetta Code Tasks starting with L

(de prime? (N)
(or

(= N 2)
(and

(> N 1)
(bit? 1 N)
(for (D 3 T (+ D 2))

(T (> D (sqrt N)) T)
(T (=0 (\% N D)) NIL)))))

(de mersenne? (P)
(or

(= P 2)
(let (MP (dec (>> (- P) 1)) S 4)

(do (- P 2)
(setq S (\% (- (* S S) 2) MP)))

(=0 S))))

Output:

: (for N 10000
(and (prime? N) (mersenne? N) (println N)))

2
3
5
7
13
17
19
31
61
89
107
127
521
607
1279
2203
2281
3217
4253
4423
9689
9941

14 Rosetta Code Tasks starting with L 539

Luhn test of credit card numbers

The Luhn test is used by some credit card companies to distinguish valid credit
card numbers from what could be a random selection of digits.

Those companies using credit card numbers that can be validated by the Luhn
test have numbers that pass the following test:

1. Reverse the order of the digits in the number.

2. Take the first, third, . . . and every other odd digit in the reversed digits and
sum them to form the partial sum s1

3. Taking the second, fourth . . . and every other even digit in the reversed
digits:

1. Multiply each digit by two and sum the digits if the answer is greater than
nine to form partial sums for the even digits

2. Sum the partial sums of the even digits to form s2

1. If s1 + s2 ends in zero then the original number is in the form of a valid
credit card number as verified by the Luhn test.

For example, if the trial number is 49927398716:

Reverse the digits:
61789372994

Sum the odd digits:
6 + 7 + 9 + 7 + 9 + 4 = 42 = s1

The even digits:
1, 8, 3, 2, 9

Two times each even digit:
2, 16, 6, 4, 18

Sum the digits of each multiplication:
2, 7, 6, 4, 9

Sum the last:
2 + 7 + 6 + 4 + 9 = 28 = s2

s1 + s2 = 70 which ends in zero
which means that 49927398716 passes the Luhn test

http://en.wikipedia.org/wiki/Luhn_algorithm

540 14 Rosetta Code Tasks starting with L

The task is to write a function/method/procedure/subroutine that will val-
idate a number with the Luhn test, and use it to validate the following
numbers:

49927398716

49927398717

1234567812345678

1234567812345670

Cf. SEDOL

(de luhn (Num) # ’Num’ may be a number or a string
(=0

(\%
(sum

’((C F)
(setq C (- (char C) 48))
(if F

C # Odd
(+ (/ C 5) (\% (* 2 C) 10)))) # Even

(flip (chop Num))
’(T NIL .))

10)))

Output:

: (mapcar luhn (49927398716 49927398717 1234567812345678 1234567812345670))
-> (0 NIL NIL 0)

Chapter 15

Rosetta Code Tasks starting with M

MD5

Encode a string using an MD5 algorithm. The algorithm can be found on
wikipedia.

Optionally, validate your implementation by running all of the test values in
IETF RFC (1321) for MD5. Additional the RFC provides more precise infor-
mation on the algorithm than the Wikipedia article.

If the solution on this page is a library solution, see MD5/Implementation for
an implementation from scratch.

(let Str "The quick brown fox jumped over the lazy dog’s back"
(pack

(mapcar ’((B) (pad 2 (hex B)))
(native "libcrypto.so" "MD5" ’(B . 16) Str (length Str) ’(NIL (16))))))

Output:

-> "E38CA1D920C4B8B8D3946B2C72F01680"

541

http://en.wikipedia.org/wiki/Md5#Algorithm
http://tools.ietf.org/html/rfc1321

542 15 Rosetta Code Tasks starting with M

MD5/Implementation

The purpose of this task to code and validate an implementation of the MD5
Message Digest Algorithm by coding the algorithm directly (not using a call
to a built-in or external hashing library). For details of the algorithm refer to
MD5 on Wikipedia or the MD5 definition in IETF RFC (1321).

· The implementation needs to implement the key functionality namely pro-
ducing a correct message digest for an input string. It is not necessary to
mimic all of the calling modes such as adding to a digest one block at a
time over subsequent calls.

· In addition to coding and verifying your implementation, note any chal-
lenges your language presented implementing the solution, implementa-
tion choices made, or limitations of your solution.

· Solutions on this page should implement MD5 directly and NOT use built
in (MD5) functions, call outs to operating system calls or library routines
written in other languages as is common in the original MD5 task.

· The following are acceptable:

· An original implementation from the specification, reference imple-
mentation, or pseudo-code

· A translation of a correct implementation from another language

· A library routine in the same language; however, the source must be
included here.

The solutions shown here will provide practical illustrations of bit manipula-
tion, unsigned integers, working with little-endian data. Additionally, the task
requires an attention to details such as boundary conditions since being out by
even 1 bit will produce dramatically different results. Subtle implementation
bugs can result in some hashes being correct while others are wrong. Not only
is it critical to get the individual sub functions working correctly, even small
errors in padding, endianness, or data layout will result in failure.

The following verification strings and hashes come from RFC 1321:

http://en.wikipedia.org/wiki/Md5#Algorithm
http://www.ietf.org/rfc/rfc1321.txt

15 Rosetta Code Tasks starting with M 543

hash code <== string
0xd41d8cd98f00b204e9800998ecf8427e <== ""
0x0cc175b9c0f1b6a831c399e269772661 <== "a"
0x900150983cd24fb0d6963f7d28e17f72 <== "abc"
0xf96b697d7cb7938d525a2f31aaf161d0 <== "message digest"
0xc3fcd3d76192e4007dfb496cca67e13b <== "abcdefghijklmnopqrstuvwxyz"
0xd174ab98d277d9f5a5611c2c9f419d9f <==
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
0x57edf4a22be3c955ac49da2e2107b67a <==
"12345678901234567890123456789012345678901234567890123456789012345678901234567890"

In addition, intermediate outputs to aid in developing an implementation can
be found here.

The MD5 Message-Digest Algorithm was developed by RSA Data Security,
Inc. in 1991.

http://en.wikipedia.org/wiki/RSA_SecurityRSA
http://en.wikipedia.org/wiki/RSA_SecurityRSA

544 15 Rosetta Code Tasks starting with M

This is an implementation of the pseudo-code in the Wikipedia article. Special
care had to be taken with modulo 32-bit arithmetics, as PicoLisp supports only
numbers of unspecified size.

(scl 12)
(load "@lib/math.l") # For ’sin’

(de *Md5-R
7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21)

(de *Md5-K
˜(make

(for I 64
(link

(/ (* (abs (sin (* I 1.0))) ‘(** 2 32)) 1.0)))))

(de mod32 (N)
(\& N ‘(hex "FFFFFFFF")))

(de not32 (N)
(x| N ‘(hex "FFFFFFFF")))

(de add32 @
(mod32 (pass +)))

(de leftRotate (X C)
(| (mod32 (>> (- C) X)) (>> (- 32 C) X)))

(de md5 (Str)
(let Len (length Str)

(setq Str
(conc

(need
(- 8 (* 64 (/ (+ Len 1 8 63) 64))) # Pad to 64-8 bytes
(conc

(mapcar char (chop Str)) # Works only with ASCII characters
(cons ‘(hex "80"))) # ’1’ bit

0) # Pad with ’0’
(make

(setq Len (* 8 Len))
(do 8

(link (\& Len 255))
(setq Len (>> 8 Len)))))))

15 Rosetta Code Tasks starting with M 545

(let
(H0 ‘(hex "67452301")

H1 ‘(hex "EFCDAB89")
H2 ‘(hex "98BADCFE")
H3 ‘(hex "10325476"))

(while Str
(let

(A H0 B H1 C H2 D H3
W (make

(do 16
(link

(apply |
(mapcar >> (0 -8 -16 -24) (cut 4 ’Str)))))))

(use (Tmp F G)
(for I 64

(cond
((>= 16 I)

(setq
F (| (\& B C) (\& (not32 B) D))
G I))

((>= 32 I)
(setq

F (| (\& D B) (\& (not32 D) C))
G (inc (\& (inc (* 5 (dec I))) 15))))

((>= 48 I)
(setq

F (x| B C D)
G (inc (\& (+ 5 (* 3 (dec I))) 15))))

(T
(setq

F (x| C (| B (not32 D)))
G (inc (\& (* 7 (dec I)) 15)))))

(setq
Tmp D
D C
C B
B
(add32 B

(leftRotate
(add32 A F (get *Md5-K I) (get W G))
(get *Md5-R I)))

A Tmp)))
(setq

H0 (add32 H0 A)
H1 (add32 H1 B)
H2 (add32 H2 C)
H3 (add32 H3 D))))

(pack
(make

(for N (list H0 H1 H2 H3)
(do 4 # Convert to little endian hex string

(link (pad 2 (hex (\& N 255))))
(setq N (>> 8 N))))))))

546 15 Rosetta Code Tasks starting with M

Output:

: (md5 "")
-> "D41D8CD98F00B204E9800998ECF8427E"
: (md5 "a")
-> "0CC175B9C0F1B6A831C399E269772661"
: (md5 "abc")
-> "900150983CD24FB0D6963F7D28E17F72"
: (md5 "message digest")
-> "F96B697D7CB7938D525A2F31AAF161D0"
: (md5 "abcdefghijklmnopqrstuvwxyz")
-> "C3FCD3D76192E4007DFB496CCA67E13B"
: (md5 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
-> "D174AB98D277D9F5A5611C2C9F419D9F"
: (md5 "1234567890123456789012345678901234567890

1234567890123456789012345678901234567890")
-> "57EDF4A22BE3C955AC49DA2E2107B67A"

15 Rosetta Code Tasks starting with M 547

Make a backup file

Before writing to a file it is often advisable to make a backup of the original.
Creating such a backup file is however also not without pitfalls.

In this task you should create a backup file from an existing file and then write
new text to the old file. The following issues should be handled:

· avoid making a copy of the file but instead rename the original and then
write a new file with the original filename.

· if a copy needs to be made, please explain why rename is not possible.

· keep in mind symlinks, and do not rename or copy the link but the tar-
get. (If there is a link foo -> bar/baz, then bar/baz should be re-
named to bar/baz.backup and then the new text should be written to
bar/baz.)

· it is assumed that you have permission to write in the target location, thus
permission errors need not be handled.

· you may choose the backup filename per preference or given limitations.
(It should somehow include the original filename however.)

· please try to avoid executing external commands, and especially avoid call-
ing a shell script.

Some examples on this page assume that the original file already exists. They
might fail if some user is trying to create a new file.

PicoLisp makes use of external commands as much as possible (at
least for not time-critical operations), to avoid duplicated
functionality.

(let Path (in ’(realpath "foo") (line T))
(call ’mv Path (pack Path ".backup"))
(out Path

(prinl "This is the new file")))

548 15 Rosetta Code Tasks starting with M

Man or boy test

Background: The man or boy test was proposed by computer scientist Don-
ald Knuth as a means of evaluating implementations of the ALGOL 60 pro-
gramming language. The aim of the test was to distinguish compilers that
correctly implemented “recursion and non-local references” from those that
did not.

I have written the following simple routine, which may separate the ‘man-compilers’
from the ‘boy-compilers’
— Donald Knuth

Task: Imitate Knuth’s example in Algol 60 in another language, as far as
possible.

Details: Local variables of routines are often kept in activation records (also
call frames). In many languages, these records are kept on a call stack. In
Algol (and e.g. in Smalltalk), they are allocated on a heap instead. Hence it
is possible to pass references to routines that still can use and update vari-
ables from their call environment, even if the routine where those variables
are declared already returned. This difference in implementations is some-
times called the Funarg Problem.

In Knuth’s example, each call to A allocates an activation record for the vari-
able A. When B is called from A, any access to k now refers to this activation
record. Now B in turn calls A, but passes itself as an argument. This argu-
ment remains bound to the activation record. This call to A also “shifts” the
variables xi by one place, so eventually the argument B (still bound to its par-
ticular activation record) will appear as x4 or x5 in a call to A. If this happens
when the expression x4 + x5 is evaluated, then this will again call B, which
in turn will update k in the activation record it was originally bound to. As
this activation record is shared with other instances of calls to A and B, it will
influence the whole computation.

So all the example does is to set up a convoluted calling structure, where
updates to k can influence the behavior in completely different parts of the
call tree.

Knuth used this to test the correctness of the compiler, but one can of course
also use it to test that other languages can emulate the Algol behavior cor-
rectly. If the handling of activation records is correct, the computed value will
be 67.

Performance and Memory: Man or Boy is intense and can be pushed to
challenge any machine. Memory not CPU time is the constraining resource
as the recursion creates a proliferation activation records which will quickly
exhaust memory and present itself through a stack error. Each language may

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth
http://c2.com/cgi/wiki?ActivationRecord
http://en.wikipedia.org/wiki/Funarg_problem

15 Rosetta Code Tasks starting with M 549

have ways of adjusting the amount of memory or increasing the recursion
depth. Optionally, show how you would make such adjustments.

The table below shows the result, call depths, and total calls for a range of k:

k A A called A depth B called B depth
0 1 1 1 0 0
1 0 2 2 1 1
2 -2 3 3 2 2
3 0 4 4 3 3
4 1 8 8 7 7
5 0 18 16 17 15
6 1 38 32 37 31
7 -1 80 64 79 63
8 -10 167 128 166 127
9 -30 347 256 346 255

10 -67 722 512 721 511
11 -138 1,509 1,024 1,508 1,023
12 -291 3,168 2,048 3,167 2,047
13 -642 6,673 4,096 6,672 4,095
14 -1,446 14,091 8,192 14,090 8,191
15 -3,250 29,825 16,384 29,824 16,383
16 -7,244 63,287 32,768 63,286 32,767
17 -16,065 134,652 65,536 134,651 65,535
18 -35,601 287,264 131,072 287,263 131,071
19 -78,985 614,442 262,144 614,441 262,143
20 -175,416 1,317,533 524,288 1,317,532 524,287
21 -389,695 2,831,900 1,048,57 2,831,899 1,048,57
22 -865,609 6,100,852 2,097,15 6,100,851 2,097,15
23 -1,922,362 13,172,23 4,194,30 13,172,23 4,194,30
24 -4,268,854
25 -9,479,595
26 -21,051,458
27 -46,750,171
28 -103,821,058
29 -230,560,902
30 -512,016,658

550 15 Rosetta Code Tasks starting with M

As PicoLisp uses exclusively shallow dynamic binding, stack frames have to be
explicitly constructed.

(de a (K X1 X2 X3 X4 X5)
(let (@K (cons K) B (cons)) # Explicit frame

(set B
(curry (@K B X1 X2 X3 X4) ()

(a (dec @K) (car B) X1 X2 X3 X4)))
(if (gt0 (car @K)) ((car B)) (+ (X4) (X5)))))

(a 10 ’(() 1) ’(() -1) ’(() -1) ’(() 1) ’(() 0))

Output:

-> -67

15 Rosetta Code Tasks starting with M 551

Mandelbrot set

Generate and draw the Mandelbrot set. Note that there are many algorithms
to draw Mandelbrot set and there are many functions which generate it .

(scl 6)

(let Ppm (make (do 300 (link (need 400))))
(for (Y . Row) Ppm

(for (X . @) Row
(let (ZX 0 ZY 0 CX (*/ (- X 250) 1.0 150) CY (*/ (- Y 150) 1.0 150) C 570)

(while (and (> 4.0 (+ (*/ ZX ZX 1.0) (*/ ZY ZY 1.0))) (gt0 C))
(let Tmp (- (*/ ZX ZX 1.0) (*/ ZY ZY 1.0) (- CX))

(setq
ZY (+ (*/ 2 ZX ZY 1.0) CY)
ZX Tmp))

(dec ’C))
(set (nth Ppm Y X) (list 0 C C)))))

(out "img.ppm"
(prinl "P6")
(prinl 400 " " 300)
(prinl 255)
(for Y Ppm (for X Y (apply wr X)))))

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Mandelbrot_set
http://en.wikibooks.org/wiki/Pictures_of_Julia_and_Mandelbrot_sets

552 15 Rosetta Code Tasks starting with M

Map range

Given two ranges, [a1,a2] and [b1,b2]; then a value s in range [a1,a2] is linearly
mapped to a value t in range [b1,b2] when:

The task is to write a function/subroutine/. . . that takes two ranges and a real
number, and returns the mapping of the real number from the first to the sec-
ond range. Use this function to map values from the range [0, 10] to the
range [-1, 0].

Extra credit: Show additional idiomatic ways of performing the mapping,
using tools available to the language.

(scl 1)

(de mapRange (Val A1 A2 B1 B2)
(+ B1 (*/ (- Val A1) (- B2 B1) (- A2 A1))))

(for Val (range 0 10.0 1.0)
(prinl

(format (mapRange Val 0 10.0 -1.0 0) *Scl)))

Output:

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

http://en.wikipedia.org/wiki/Interval_(mathematics)

15 Rosetta Code Tasks starting with M 553

Matrix multiplication

Multiply two matrices together. They can be of any dimensions, so long as the
number of columns of the first matrix is equal to the number of rows of the
second matrix.

(de matMul (Mat1 Mat2)
(mapcar

’((Row)
(apply mapcar Mat2

’(@ (sum * Row (rest)))))
Mat1))

(matMul
’((1 2 3) (4 5 6))
’((6 -1) (3 2) (0 -3)))

Output:

-> ((12 -6) (39 -12))

554 15 Rosetta Code Tasks starting with M

Matrix transposition

Transpose an arbitrarily sized rectangular Matrix.

(de matTrans (Mat)
(apply mapcar Mat list))

(matTrans ’((1 2 3) (4 5 6)))

Output:

-> ((1 4) (2 5) (3 6))

http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Matrix_(mathematics)

15 Rosetta Code Tasks starting with M 555

Matrix-exponentiation operator

Most programming languages have a built-in implementation of exponentia-
tion for integers and reals only.

Demonstrate how to implement matrix exponentiation as an operator.

Uses the ’matMul’ function from [[Matrix multiplication#PicoLisp]]

(de matIdent (N)
(let L (need N (1) 0)

(mapcar ’(() (copy (rot L))) L)))

(de matExp (Mat N)
(let M (matIdent (length Mat))

(do N
(setq M (matMul M Mat)))

M))

(matExp ’((3 2) (2 1)) 3)

Output:

-> ((55 34) (34 21))

556 15 Rosetta Code Tasks starting with M

Maze generation

Generate and show a maze, using the simple Depth-first search algorithm.

1. Start at a random cell.

2. Mark the current cell as visited, and get a list of its neighbors. For each
neighbor, starting with a randomly selected neighbor:

If that neighbor hasn’t been visited, remove the wall between this cell and
that neighbor, and then recurse with that neighbor as the current cell.

See also Maze solving.

http://en.wikipedia.org/wiki/Maze_generation_algorithm#Depth-first_search

15 Rosetta Code Tasks starting with M 557

This solution uses ’grid’ from "lib/simul.l" to generate the two-dimensional
structure.

(load "@lib/simul.l")

(de maze (DX DY)
(let Maze (grid DX DY)

(let Fld (get Maze (rand 1 DX) (rand 1 DY))
(recur (Fld)

(for Dir (shuffle ’((west . east) (east . west)
(south . north) (north . south)))

(with ((car Dir) Fld)
(unless (or (: west) (: east) (: south) (: north))

(put Fld (car Dir) This)
(put This (cdr Dir) Fld)
(recurse This))))))

(for (X . Col) Maze
(for (Y . This) Col

(set This
(cons

(cons
(: west)
(or

(: east)
(and (= Y 1) (= X DX))))

(cons
(: south)
(or

(: north)
(and (= X 1) (= Y DY))))))))

Maze))

(de display (Maze)
(disp Maze 0 ’((This) " ")))

558 15 Rosetta Code Tasks starting with M

Output:

: (display (maze 11 8))
+ +---+---+---+---+---+---+---+---+---+---+

8 | | | |
+ + + + + + +---+ +---+---+ +

7 | | | | | | | | |
+---+ +---+---+ + + +---+ + + +

6 | | | | | | | |
+ +---+ +---+ +---+---+---+ + +---+

5 | | | | | |
+---+ +---+ +---+---+---+ +---+---+ +

4 | | | | | | |
+ +---+ +---+ +---+ + + +---+ +

3 | | | | | | | |
+ +---+---+ + + + + +---+ + +

2 | | | | | | | | |
+ + + +---+ + +---+ + +---+ +

1 | | | |
+---+---+---+---+---+---+---+---+---+---+---+

a b c d e f g h i j k

15 Rosetta Code Tasks starting with M 559

Maze solving

For a maze generated by this task, write a function that finds (and displays)
the shortest path between two cells. Note that because these mazes are gener-
ated by the Depth-first search algorithm, they contain no circular paths, and a
simple depth-first tree search can be used.

http://en.wikipedia.org/wiki/Maze_generation_algorithm#Depth-first_search

560 15 Rosetta Code Tasks starting with M

(de shortestPath (Goal This Maze)
(let (Path NIL Best NIL Dir " > ")

(recur (This Path Dir)
(when (and This (not (: mark)))

(push ’Path (cons This Dir))
(if (== Goal This)

(unless (and Best (>= (length Path) (length Best)))
(setq Best Path))

(=: mark T)
(recurse (: west) Path " > ")
(recurse (: east) Path " < ")
(recurse (: south) Path " \ˆ ")
(recurse (: north) Path " v ")
(=: mark NIL))))

(disp Maze 0
’((Fld) (if (asoq Fld Best) (cdr @) " ")))))

Using the maze produced in [[Maze generation#PicoLisp]], this finds the shortest
path from the top-left cell ’a8’ to the bottom-right exit ’k1’:

: (shortestPath ’a8 ’k1 (maze 11 8))
+ +---+---+---+---+---+---+---+---+---+---+

8 | > > v | > v | |
+ + + + + + +---+ +---+---+ +

7 | | | > ˆ | v | | | | |
+---+ +---+---+ + + +---+ + + +

6 | | | v | | | | |
+ +---+ +---+ +---+---+---+ + +---+

5 | | | > > > v | | |
+---+ +---+ +---+---+---+ +---+---+ +

4 | | | | | v | > > v |
+ +---+ +---+ +---+ + + +---+ +

3 | | | | | v | ˆ < | v |
+ +---+---+ + + + + +---+ + +

2 | | | | | | v | > ˆ | v |
+ + + +---+ + +---+ + +---+ +

1 | | | > ˆ | >
+---+---+---+---+---+---+---+---+---+---+---+

a b c d e f g h i j k

15 Rosetta Code Tasks starting with M 561

Median filter

The median filter takes in the neighbourhood the median color (see Median
filter)

(to test the function below, you can use these input and output solutions)

(de ppmMedianFilter (Radius Ppm)
(let Len (inc (* 2 Radius))

(make
(chain (head Radius Ppm))
(for (Y Ppm T (cdr Y))

(NIL (nth Y Len)
(chain (tail Radius Y)))

(link
(make

(chain (head Radius (get Y (inc Radius))))
(for (X (head Len Y) T)

(NIL (nth X 1 Len)
(chain (tail Radius (get X (inc Radius)))))

(link
(cdr

(get
(sort

(mapcan
’((Y)

(mapcar
’((C)

(cons
(+

(* (car C) 2126) # Red
(* (cadr C) 7152) # Green
(* (caddr C) 722)) # Blue

C))
(head Len Y)))

X))
(inc Radius))))

(map pop X))))))))

Test using ’ppmRead’ from [[Bitmap/Read a PPM file#PicoLisp]] and ’ppmWrite’
from [[Bitmap/Write a PPM file#PicoLisp]]:

(ppmWrite (ppmMedianFilter 2 (ppmRead "Lenna100.ppm")) "a.ppm")

http://en.wikipedia.org/wiki/Median_filter
http://en.wikipedia.org/wiki/Median_filter

562 15 Rosetta Code Tasks starting with M

Memory allocation

Show how to explicitly allocate and deallocate blocks of memory in your
language. Show access to different types of memory (i.e., heap, stack, shared,
foreign) if applicable.

Only the heap can be explicitly controlled in PicoLisp. Usually this is not
necessary, as it happens automatically.

But if desired, memory can be pre-allocated by calling gc with a single numeric
argument, specifying the desired number of megabytes that should be reserved.
When that argument is zero, the heap size is decreased (as far as possible).

15 Rosetta Code Tasks starting with M 563

Memory layout of a data structure

It is often useful to control the memory layout of fields in a data structure to
match an interface control definition, or to interface with hardware. Define a
data structure matching the RS-232 Plug Definition. Use the 9-pin definition
for brevity.

Pin Settings for Plug
(Reverse order for socket.)
__
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5
6 7 8 9
25 pin 9 pin
1 - PG Protective ground
2 - TD Transmitted data 3
3 - RD Received data 2
4 - RTS Request to send 7
5 - CTS Clear to send 8
6 - DSR Data set ready 6
7 - SG Signal ground 5
8 - CD Carrier detect 1
9 - + voltage (testing)
10 - - voltage (testing)
11 -
12 - SCD Secondary CD
13 - SCS Secondary CTS
14 - STD Secondary TD
15 - TC Transmit clock
16 - SRD Secondary RD
17 - RC Receiver clock
18 -
19 - SRS Secondary RTS
20 - DTR Data terminal ready 4
21 - SQD Signal quality detector
22 - RI Ring indicator 9
23 - DRS Data rate select
24 - XTC External clock
25 -

564 15 Rosetta Code Tasks starting with M

PicoLisp can handle bit fields or bit structures only as bignums. They can be
manipulated with ’[http://software-lab.de/doc/ref_.html#\& \&]’,
’[http://software-lab.de/doc/ref_.html#| |]’ and
’[http://software-lab.de/doc/refX.html#x| x|]’,
or tested with ’[http://software-lab.de/doc/refB.html#bit? bit?]’.

Define bit constants
(for (N . Mask) ’(CD RD TD DTR SG DSR RTS CTS RI)

(def Mask (>> (- 1 N) 1)))

Test if Clear to send
(when (bit? CTS Data)

...)

15 Rosetta Code Tasks starting with M 565

Menu

Given a list containing a number of strings of which one is to be selected and
a prompt string, create a function that:

· Print a textual menu formatted as an index value followed by its corre-
sponding string for each item in the list.

· Prompt the user to enter a number.

· Return the string corresponding to the index number.

The function should reject input that is not an integer or is an out of range
integer index by recreating the whole menu before asking again for a number.
The function should return an empty string if called with an empty list.

For test purposes use the four phrases: “fee fie”, “huff and puff”,
“mirror mirror” and “tick tock” in a list.

Note: This task is fashioned after the action of the Bash select statement.

(de choose (Prompt Items)
(use N

(loop
(for (I . Item) Items

(prinl I ": " Item))
(prin Prompt " ")
(NIL (setq N (in NIL (read))))
(T (>= (length Items) N 1) (get Items N)))))

(choose "Which is from the three pigs?"
’("fee fie" "huff and puff" "mirror mirror" "tick tock"))

Output:

1: fee fie
2: huff and puff
3: mirror mirror
4: tick tock
Which is from the three pigs? 2
-> "huff and puff"

http://www.softpanorama.org/Scripting/Shellorama/Control_structures/select_statements.shtml

566 15 Rosetta Code Tasks starting with M

Metaprogramming

Name and briefly demonstrate any support your language has for metapro-
gramming. Your demonstration may take the form of cross-references to other
tasks on Rosetta Code. When possible, provide links to relevant documenta-
tion.

For the purposes of this task, “support for metaprogramming” means any way
the user can effectively modify the language’s syntax that’s built into the lan-
guage (like Lisp macros) or that’s conventionally used with the language (like
the C preprocessor). Such facilities need not be very powerful: even user-
defined infix operators count. On the other hand, in general, neither operator
overloading nor eval count. The task author acknowledges that what quali-
fies as metaprogramming is largely a judgment call.

As in any Lisp, metaprogramming is an essential aspect of PicoLisp.
In most cases normal functions are used to extend the language
(see [[Extend your language#PicoLisp]]),
[http://software-lab.de/doc/ref.html#macro-io read-macros] operate on
the source level, and also runtime
[http://software-lab.de/doc/refM.html#macro macros] are used occasionally.

15 Rosetta Code Tasks starting with M 567

Metered concurrency

The goal of this task is to create a counting semaphore used to control the
execution of a set of concurrent units. This task intends to demonstrate co-
ordination of active concurrent units through the use of a passive concurrent
unit. The operations for a counting semaphore are acquire, release, and count.
Each active concurrent unit should attempt to acquire the counting semaphore
before executing its assigned duties. In this case the active concurrent unit
should report that it has acquired the semaphore. It should sleep for 2 seconds
and then release the semaphore.

(let Sem (tmp "sem")
(for U 4 # Create 4 concurrent units

(unless (fork)
(ctl Sem

(prinl "Unit " U " aquired the semaphore")
(wait 2000)
(prinl "Unit " U " releasing the semaphore"))

(bye))))

http://en.wikipedia.org/wiki/Counting_semaphore

568 15 Rosetta Code Tasks starting with M

Metronome

The task is to implement a metronome. The metronome should be capable of
producing high and low audio beats, accompanied by a visual beat indicator,
and the beat pattern and tempo should be configurable.

For the purpose of this task, it is acceptable to play sound files for production
of the beat notes, and an external player may be used. However, the playing
of the sounds should not interfere with the timing of the metronome.

The visual indicator can simply be a blinking red or green area of the
screen (depending on whether a high or low beat is being produced), and
the metronome can be implemented using a terminal display, or optionally, a
graphical display, depending on the language capabilities. If the language has
no facility to output sound, then it is permissible for this to implemented using
just the visual indicator.

A short beep (440 Hz, 40 msec) is produced in a child process, while a
"pendulum" is swinging left and right. Hitting any key will stop it.

(de metronome (Bpm)
(if (fork)

(let Pid @
(for Pendulum ’(" /" . ("ˆHˆH\\ " "ˆHˆH /" .))

(tell Pid ’call "/usr/bin/beep" "-f" 440 "-l" 40)
(prin Pendulum)
(T (key (*/ 30000 Bpm)) (tell Pid ’bye)))

(prinl))
(wait)))

Test:

: (metronome 60)
/
-> NIL # A key was hit

15 Rosetta Code Tasks starting with M 569

Miller-Rabin primality test

The Miller–Rabin primality test or Rabin–Miller primality test is a primality
test: an algorithm which determines whether a given number is prime or not.
The algorithm, as modified by Michael O. Rabin to avoid the generalized
Riemann hypothesis, is a probabilistic algorithm.

The pseudocode, from Wikipedia is:

Input: n > 2, an odd integer to be tested for primality;
k, a parameter that determines the accuracy of the test

Output: composite if n is composite, otherwise probably prime
write n 1 as 2sd with d odd by factoring powers of 2 from n 1
LOOP: repeat k times:

pick a randomly in the range [2, n 1]
x ad mod n
if x = 1 or x = n 1 then do next LOOP
for r = 1 .. s 1

x x2 mod n
if x = 1 then return composite
if x = n 1 then do next LOOP

return composite
return probably prime

· The nature of the test involves big numbers, so the use of “big numbers”
libraries (or similar features of the language of your choice) are suggested,
but not mandatory.

· Deterministic variants of the test exist and can be implemented as extra
(not mandatory to complete the task)

http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
http://en.wikipedia.org/wiki/Michael_O._Rabin
http://en.wikipedia.org/wiki/generalized_Riemann_hypothesis
http://en.wikipedia.org/wiki/generalized_Riemann_hypothesis
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time

570 15 Rosetta Code Tasks starting with M

(de longRand (N)
(use (R D)

(while (=0 (setq R (abs (rand)))))
(until (> R N)

(unless (=0 (setq D (abs (rand))))
(setq R (* R D))))

(\% R N)))

(de **Mod (X Y N)
(let M 1

(loop
(when (bit? 1 Y)

(setq M (\% (* M X) N)))
(T (=0 (setq Y (>> 1 Y)))

M)
(setq X (\% (* X X) N)))))

(de _prim? (N D S)
(use (A X R)

(while (> 2 (setq A (longRand N))))
(setq R 0 X (**Mod A D N))
(loop

(T
(or

(and (=0 R) (= 1 X))
(= X (dec N)))

T)
(T

(or
(and (> R 0) (= 1 X))
(>= (inc ’R) S))

NIL)
(setq X (\% (* X X) N)))))

(de prime? (N K)
(default K 50)
(and

(> N 1)
(bit? 1 N)
(let (D (dec N) S 0)

(until (bit? 1 D)
(setq

D (>> 1 D)
S (inc S)))

(do K
(NIL (_prim? N D S))
T))))

15 Rosetta Code Tasks starting with M 571

Output:

: (filter ’((I) (prime? I)) (range 937 1000))
-> (937 941 947 953 967 971 977 983 991 997)

: (prime? 4547337172376300111955330758342147474062293202868155909489)
-> T

: (prime? 4547337172376300111955330758342147474062293202868155909393)
-> NIL

572 15 Rosetta Code Tasks starting with M

Minesweeper game

There is an n by m grid that has a random number (between 10% to 20% of
the total number of tiles, though older implementations may use 20%..60%
instead) of randomly placed mines that need to be found.

Positions in the grid are modified by entering their coordinates where the first
coordinate is horizontal in the grid and the second vertical. The top left of the
grid is position 1,1; the bottom right is at n,m.

· The total number of mines to be found is shown at the beginning of the
game.

· Each mine occupies a single grid point, and its position is initially unknown
to the player

· The grid is shown as a rectangle of characters between moves.

· You are initially shown all grids as obscured, by a single dot ’.’

· You may mark what you think is the position of a mine which will show as
a ’?’

· You can mark what you think is free space by entering its coordinates.

· If the point is free space then it is cleared, as are any adjacent points that
are also free space- this is repeated recursively for subsequent adjacent free
points unless that point is marked as a mine or is a mine.

· Points marked as a mine show as a ’?’.

· Other free points show as an integer count of the number of adjacent true
mines in its immediate neighbourhood, or as a single space ’ ’ if the free
point is not adjacent to any true mines.

· Of course you lose if you try to clear space that has a hidden mine.

· You win when you have correctly identified all mines.

The Task is to create a program that allows you to play minesweeper on a
6 by 4 grid, and that assumes all user input is formatted correctly and so
checking inputs for correct form may be omitted. You may also omit all GUI
parts of the task and work using text input and output.

Note: Changes may be made to the method of clearing mines to more closely
follow a particular implementation of the game so long as such differences
and the implementation that they more accurately follow are described.

C.F: wp:Minesweeper (computer game)

http://en.wikipedia.org/wiki/Minesweeper_(computer_game)

15 Rosetta Code Tasks starting with M 573

NIL Hidden: Empty field
T Hidden: Mine
0-8 Marked: Empty field
? Marked: Mine

(de minesweeper (DX DY Density)
(default Density 20)
(setq *Field (make (do DY (link (need DX)))))
(use (X Y)

(do (prinl "Number of mines: " (*/ DX DY Density 100))
(while

(get *Field
(setq Y (rand 1 DY))
(setq X (rand 1 DX))))

(set (nth *Field Y X) T)))
(showMines))

(de showMines ()
(for L *Field

(for F L
(prin (if (flg? F) "." F)))

(prinl)))

(de *NeighborX -1 0 +1 -1 +1 -1 0 +1)
(de *NeighborY -1 -1 -1 0 0 +1 +1 +1)

(de c (X Y)
(if (=T (get *Field Y X))

"KLABOOM!! You hit a mine."
(let Visit NIL

(recur (X Y)
(when

(=0
(set (nth *Field Y X)

(cnt
’((DX DY)

(=T (get *Field (+ Y DY) (+ X DX))))

*NeighborX

*NeighborY)))
(mapc

’((DX DY)
(and

(get *Field (inc ’DY Y))
(nth @ (inc ’DX X))
(not (member (cons DX DY) Visit))
(push ’Visit (cons DX DY))
(recurse DX DY)))

*NeighborX

*NeighborY))))
(showMines)))

(de m (X Y)
(set (nth *Field Y X) ’?)
(showMines)
(unless (fish =T *Field)

"Congratulations! You won!!"))

574 15 Rosetta Code Tasks starting with M

Output:

: (minesweeper 6 4)
Number of mines: 5
......
......
......
......
-> NIL

: (c 6 4)
......
...122
...100
...100
-> NIL

... omitted ...

: (c 1 4)
.201..
.20122
121100
01.100
-> NIL

... omitted ...

: (m 1 1)
?201..
.20122
121100
01.100
-> NIL

... omitted ...

: (m 3 4)
?201??
?20122
121100
01?100
-> "Congratulations! You won!!"

15 Rosetta Code Tasks starting with M 575

Modular exponentiation

Find the last 40 decimal digits of ab, where

· a = 2988348162058574136915891421498819466320163312926952423791023078876139

· b = 2351399303373464486466122544523690094744975233415544072992656881240319

A computer is too slow to find the entire value of ab. Instead, the program
must use a fast algorithm for modular exponentiation: .

The algorithm must work for any integers a,b,m where and m > 0.

The following function is taken from "lib/rsa.l":

(de **Mod (X Y N)
(let M 1

(loop
(when (bit? 1 Y)

(setq M (\% (* M X) N)))
(T (=0 (setq Y (>> 1 Y)))

M)
(setq X (\% (* X X) N)))))

Test:

: (**Mod
2988348162058574136915891421498819466320163312926952423791023078876139
2351399303373464486466122544523690094744975233415544072992656881240319
100)

-> 1527229998585248450016808958343740453059

576 15 Rosetta Code Tasks starting with M

Monte Carlo methods

A Monte Carlo Simulation is a way of approximating the value of a function
where calculating the actual value is difficult or impossible. It uses random
sampling to define constraints on the value and then makes a sort of “best
guess.”

A simple Monte Carlo Simulation can be used to calculate the value for . If
you had a circle and a square where the length of a side of the square was
the same as the diameter of the circle, the ratio of the area of the circle to the
area of the square would be /4. So, if you put this circle inside the square and
select many random points inside the square, the number of points inside the
circle divided by the number of points inside the square and the circle would
be approximately /4.

Write a function to run a simulation like this with a variable number of random
points to select. Also, show the results of a few different sample sizes. For
software where the number is not built-in, we give to a couple of digits:
3.141592653589793238462643383280

(de carloPi (Scl)
(let (Dim (** 10 Scl) Dim2 (* Dim Dim) Pi 0)

(do (* 4 Dim)
(let (X (rand 0 Dim) Y (rand 0 Dim))

(when (>= Dim2 (+ (* X X) (* Y Y)))
(inc ’Pi))))

(format Pi Scl)))

(for N 6
(prinl (carloPi N)))

Output:

3.4
3.23
3.137
3.1299
3.14360
3.140964

15 Rosetta Code Tasks starting with M 577

Monty Hall problem

Run random simulations of the Monty Hall game. Show the effects of a strat-
egy of the contestant always keeping his first guess so it can be contrasted
with the strategy of the contestant always switching his guess.

Suppose you’re on a game show and you’re given the choice of three doors.
Behind one door is a car; behind the others, goats. The car and the goats were
placed randomly behind the doors before the show. The rules of the game
show are as follows: After you have chosen a door, the door remains closed
for the time being. The game show host, Monty Hall, who knows what is
behind the doors, now has to open one of the two remaining doors, and the
door he opens must have a goat behind it. If both remaining doors have goats
behind them, he chooses one randomly. After Monty Hall opens a door with a
goat, he will ask you to decide whether you want to stay with your first choice
or to switch to the last remaining door. Imagine that you chose Door 1 and
the host opens Door 3, which has a goat. He then asks you “Do you want to
switch to Door Number 2?” Is it to your advantage to change your choice?
(Krauss and Wang 2003:10)

Note that the player may initially choose any of the three doors (not just Door
1), that the host opens a different door revealing a goat (not necessarily Door
3), and that he gives the player a second choice between the two remaining
unopened doors.

Simulate at least a thousand games using three doors for each strategy and
show the results in such a way as to make it easy to compare the effects of
each strategy.

http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.usd.edu/~xtwang/Papers/MontyHallPaper.pdf

578 15 Rosetta Code Tasks starting with M

(de montyHall (Keep)
(let (Prize (rand 1 3) Choice (rand 1 3))

(if Keep # Keeping the first choice?
(= Prize Choice) # Yes: Monty’s choice doesn’t matter
(<> Prize Choice)))) # Else: Win if your first choice was wrong

(prinl
"Strategy KEEP -> "
(let Cnt 0

(do 10000 (and (montyHall T) (inc ’Cnt)))
(format Cnt 2))

" \%")

(prinl
"Strategy SWITCH -> "
(let Cnt 0

(do 10000 (and (montyHall NIL) (inc ’Cnt)))
(format Cnt 2))

" \%")

Output:

Strategy KEEP -> 33.01 \%
Strategy SWITCH -> 67.73 \%

15 Rosetta Code Tasks starting with M 579

Morse code

Morse code is one of the simplest and most versatile methods of telecommu-
nication in existence. It has been in use for more than 160 years — longer than
any other electronic encoding system.

The task: Send a string as audible morse code to an audio device (e.g., the PC
speaker).

As the standard Morse code does not contain all possible characters, you may
either ignore unknown characters in the file, or indicate them somehow (e.g.
with a different pitch).

http://en.wikipedia.org/wiki/Morse_code

580 15 Rosetta Code Tasks starting with M

The following simply uses the ’beep’ pc-speaker beeper utility.

*Morse *Dit *Dah

(balance ’*Morse
(mapcar

’((L)
(def (car L)

(mapcar = (chop (cadr L)) ’("." .))))
(quote

("!" "---.") ("\"" ".-..-.") ("\$" "...-..-") ("’" ".----.")
("(" "-.--.") (")" "-.--.-") ("+" ".-.-.") ("," "--..--")
("-" "-....-") ("." ".-.-.-") ("/" "-..-.")
("0" "-----") ("1" ".----") ("2" "..---") ("3" "...--")
("4" "....-") ("5" ".....") ("6" "-....") ("7" "--...")
("8" "---..") ("9" "----.")
(":" "---...") (";" "-.-.-.") ("=" "-...-") ("?" "..--..")
("@" ".--.-.")
("A" ".-") ("B" "-...") ("C" "-.-.") ("D" "-..")
("E" ".") ("F" "..-.") ("G" "--.") ("H" "....")
("I" "..") ("J" ".---") ("K" "-.-") ("L" ".-..")
("M" "--") ("N" "-.") ("O" "---") ("P" ".--.")
("Q" "--.-") ("R" ".-.") ("S" "...") ("T" "-")
("U" "..-") ("V" "...-") ("W" ".--") ("X" "-..-")
("Y" "-.--") ("Z" "--..")
("[" "-.--.") ("]" "-.--.-") ("_" "..--.-"))))

Words per minute
(de wpm (N)

(setq *Dit (*/ 1200 N) *Dah (* 3 *Dit)))

(wpm 20)

Morse a string
(de morse (Str)

(for C (chop Str)
(cond

((sp? C) (wait (+ *Dah *Dit))) # White space: Pause
((idx ’*Morse (uppc C)) # Known character

(for Flg (val (car @))
(call "/usr/bin/beep" "-D" *Dit "-l" (if Flg *Dit *Dah))))

(T (call "/usr/bin/beep" "-f" 370))) # Unkown character
(wait (- *Dah *Dit))))

(morse "Hello world!")

15 Rosetta Code Tasks starting with M 581

Mouse position

Get the current location of the mouse cursor relative to the active window.
Please specify if the window may be externally created.

The following works in an XTerm window. After calling (mousePosition), click
into the current terminal window. The returned value is (X . Y), where X is the
column and Y the line number.

(de mousePosition ()
(prog2

(prin "ˆ[[?9h") # Mouse reporting on
(and

(= "ˆ[" (key))
(key 200)
(key 200)
(key)
(cons

(- (char (key)) 32)
(- (char (key)) 32)))

(prin "ˆ[[?9l"))) # Mouse reporting off

Output:

: (mousePosition)
-> (7 . 3)

582 15 Rosetta Code Tasks starting with M

Multiline shebang

Simple shebangs can help with scripting, e.g. #!/usr/bin/env python at the top
of a Python script will allow it to be run in a terminal as “./script.py”.

Occasionally, a more complex shebang line is needed. For example, some
languages do not include the program name in ARGV; a multiline shebang
can reorder the arguments so that the program name is included in ARGV.

The syntax for a multiline shebang is complicated. The shebang lines must
be simultaneously commented away from the main language and revealed to
some shell (perhaps Bash) so that they can be executed.

We can use a multi-line comment #{ ... }# to hide the shell commands from Lisp.
The opening #{ in turn is a coment for the shell.

#!/bin/bash
#{
exec pil \$0 foo bar
}#

Lisp code
(println (cadr (file)) (opt) (opt))
(bye)

Output:

\$./myScript
"myScript" "foo" "bar"

15 Rosetta Code Tasks starting with M 583

Multiple distinct objects

Create a sequence (array, list, whatever) consisting of n distinct, initialized
items of the same type. n should be determined at runtime.

By distinct we mean that if they are mutable, changes to one do not affect all
others; if there is an appropriate equality operator they are considered unequal;
etc. The code need not specify a particular kind of distinction, but do not use
e.g. a numeric-range generator which does not generalize.

By initialized we mean that each item must be in a well-defined state appro-
priate for its type, rather than e.g. arbitrary previous memory contents in an
array allocation. Do not show only an initialization technique which initializes
only to “zero” values (e.g. calloc() or int a[n] = {}; in C), unless
user-defined types can provide definitions of “zero” for that type.

This task was inspired by the common error of intending to do this, but instead
creating a sequence of n references to the same mutable object; it might be
informative to show the way to do that as well, both as a negative example
and as how to do it when that’s all that’s actually necessary.

This task is most relevant to languages operating in the pass-references-by-
value style (most object-oriented, garbage-collected, and/or ‘dynamic’ lan-
guages).

Create 5 distinct (empty) objects:

: (make (do 5 (link (new))))
-> (\$384717187 \$384717189 \$384717191 \$384717193 \$384717195)

Create 5 anonymous symbols with the values 1 .. 5:

: (mapcar box (range 1 5))
-> (\$384721107 \$384721109 \$384721111 \$384721113 \$384721115)
: (val (car @))
-> 1
: (val (cadr @@))
-> 2

584 15 Rosetta Code Tasks starting with M

Multiple regression

Given a set of data vectors in the following format:

Compute the vector = {1,2,. . . ,k} using ordinary least squares regression using
the following equation:

You can assume y is given to you as a vector (a one-dimensional array), and
X is given to you as a two-dimensional array (i.e. matrix).

http://en.wikipedia.org/wiki/Ordinary_least_squares

15 Rosetta Code Tasks starting with M 585

(scl 20)

Matrix transposition
(de matTrans (Mat)

(apply mapcar Mat list))

Matrix multiplication
(de matMul (Mat1 Mat2)

(mapcar
’((Row)

(apply mapcar Mat2
’(@ (sum */ Row (rest) (1.0 .)))))

Mat1))

Matrix identity
(de matIdent (N)

(let L (need N (1.0) 0)
(mapcar ’(() (copy (rot L))) L)))

Reduced row echelon form
(de reducedRowEchelonForm (Mat)

(let (Lead 1 Cols (length (car Mat)))
(for (X Mat X (cdr X))

(NIL
(loop

(T (seek ’((R) (n0 (get R 1 Lead))) X)
@)

(T (> (inc ’Lead) Cols))))
(xchg @ X)
(let D (get X 1 Lead)

(map
’((R) (set R (*/ (car R) 1.0 D)))
(car X)))

(for Y Mat
(unless (== Y (car X))

(let N (- (get Y Lead))
(map

’((Dst Src)
(inc Dst (*/ N (car Src) 1.0)))

Y
(car X)))))

(T (> (inc ’Lead) Cols))))
Mat)

586 15 Rosetta Code Tasks starting with M

(de matInverse (Mat)
(let N (length Mat)

(unless (= N (length (car Mat)))
(quit "can’t invert a non-square matrix"))

(mapc conc Mat (matIdent N))
(mapcar ’((L) (tail N L)) (reducedRowEchelonForm Mat))))

(de columnVector (Ary)
(mapcar cons Ary))

(de regressionCoefficients (Mat X)
(let Xt (matTrans X)

(matMul (matMul (matInverse (matMul Xt X)) Xt) Mat)))

(setq
Y (columnVector (1.0 2.0 3.0 4.0 5.0))
X (columnVector (2.0 1.0 3.0 4.0 5.0)))

(round (caar (regressionCoefficients Y X)) 17)

Output:

-> "0.98181818181818182"

15 Rosetta Code Tasks starting with M 587

Multiplication tables

Produce a formatted 1212 multiplication table of the kind memorised by rote
when in primary school.

Only print the top half triangle of products.

(de mulTable (N)
(space 4)
(for X N

(prin (align 4 X)))
(prinl)
(prinl)
(for Y N

(prin (align 4 Y))
(space (* (dec Y) 4))
(for (X Y (>= N X) (inc X))

(prin (align 4 (* X Y))))
(prinl)))

(mulTable 12)

Output:

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 9 12 15 18 21 24 27 30 33 36
4 16 20 24 28 32 36 40 44 48
5 25 30 35 40 45 50 55 60
6 36 42 48 54 60 66 72
7 49 56 63 70 77 84
8 64 72 80 88 96
9 81 90 99 108

10 100 110 120
11 121 132
12 144

588 15 Rosetta Code Tasks starting with M

Multisplit

It is often necessary to split a string into pieces based on several different
(potentially multi-character) separator strings, while still retaining the infor-
mation about which separators were present in the input. This is particularly
useful when doing small parsing tasks. The task is to write code to demon-
strate this.

The function (or procedure or method, as appropriate) should take an input
string and an ordered collection of separators. The order of the separators is
significant: The delimiter order represents priority in matching, with the first
defined delimiter having the highest priority. In cases where there would be an
ambiguity as to which separator to use at a particular point (e.g., because one
separator is a prefix of another) the separator with the highest priority should
be used. Delimiters can be reused and the output from the function should be
an ordered sequence of substrings.

Test your code using the input string “a!===b=!=c” and the separators
“==”, “!=” and “=”.

For these inputs the string should be parsed as "a" (!=) "" (==) "b"
(=) "" (!=) "c", where matched delimiters are shown in parentheses,
and separated strings are quoted, so our resulting output is "a", empty
string, "b", empty string, "c". Note that the quotation marks
are shown for clarity and do not form part of the output.

Extra Credit: provide information that indicates which separator was matched
at each separation point and where in the input string that separator was
matched.

15 Rosetta Code Tasks starting with M 589

(de multisplit (Str Sep)
(setq Sep (mapcar chop Sep))
(make

(for (S (chop Str) S)
(let L

(make
(loop

(T (find head Sep (circ S))
(link

(list
(- (length Str) (length S))
(pack (cut (length @) ’S)))))

(link (pop ’S))
(NIL S (link NIL))))

(link (pack (cdr (rot L))))
(and (car L) (link @))))))

(println (multisplit "a!===b=!=c" ’("==" "!=" "=")))
(println (multisplit "a!===b=!=c" ’("=" "!=" "==")))

Output:

("a" (1 "!=") NIL (3 "==") "b" (6 "=") NIL (7 "!=") "c")
("a" (1 "!=") NIL (3 "=") NIL (4 "=") "b" (6 "=") NIL (7 "!=") "c")

590 15 Rosetta Code Tasks starting with M

Mutex

A mutex (abbreviated Mutually Exclusive access) is a synchronization ob-
ject, a variant of semaphore with k=1. A mutex is said to be seized by a task
decreasing k. It is released when the task restores k. Mutexes are typically
used to protect a shared resource from concurrent access. A task seizes (or
acquires) the mutex, then accesses the resource, and after that releases the
mutex.

A mutex is a low-level synchronization primitive exposed to deadlocking. A
deadlock can occur with just two tasks and two mutexes (if each task attempts
to acquire both mutexes, but in the opposite order). Entering the deadlock is
usually aggravated by a race condition state, which leads to sporadic hangups,
which are very difficult to track down.

PicoLisp uses several mechanisms of interprocess communication, mainly within
the same process family (children of the same parent process) for database
synchronization (e.g.
’[http://software-lab.de/doc/refL.html#lock lock]’,
’[http://software-lab.de/doc/refS.html#sync sync]’ or
’[http://software-lab.de/doc/refT.html#tell tell]’.

For a simple synchronization of unrelated PicoLisp processes the
’[http://software-lab.de/doc/refA.html#acquire acquire]’ /
’[http://software-lab.de/doc/refR.html#release release]’ function pair
can be used.

15 Rosetta Code Tasks starting with M 591

Mutual recursion

Two functions are said to be mutually recursive if the first calls the second,
and in turn the second calls the first.

Write two mutually recursive functions that compute members of the Hofs-
tadter Female and Male sequences defined as:

(If a language does not allow for a solution using mutually recursive functions
then state this rather than give a solution by other means).

(de f (N)
(if (=0 N)

1
(- N (m (f (dec N))))))

(de m (N)
(if (=0 N)

0
(- N (f (m (dec N))))))

http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences
http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences

Chapter 16

Rosetta Code Tasks starting with N

N-queens problem

Solve the eight queens puzzle. You can extend the problem to solve the puzzle
with a board of side NxN.

Cf.

· Knight’s tour

593

http://en.wikipedia.org/wiki/Eight_queens_puzzle

594 16 Rosetta Code Tasks starting with N

(load "@lib/simul.l")

(de queens (N)
(let (R (range 1 N) Cnt 0)

(for L (permute (range 1 N))
(when

(= N
(length (uniq (mapcar + L R)))
(length (uniq (mapcar - L R))))

(inc ’Cnt)))
Cnt))

This alternative version does not first pre-generate all permutations with
’permute’, but creates them recursively. Also, it directly checks for
duplicates, instead of calling ’uniq’ and ’length’. This is much faster.

(de queens (N)
(let (R (range 1 N) L (copy R) X L Cnt 0)

(recur (X) # Permute
(if (cdr X)

(do (length X)
(recurse (cdr X))
(rot X))

(or
(seek # Direct check for duplicates

’((L) (member (car L) (cdr L)))
(mapcar + L R))

(seek
’((L) (member (car L) (cdr L)))
(mapcar - L R))

(inc ’Cnt))))
Cnt))

Output in both cases:

: (queens 8)
-> 92

16 Rosetta Code Tasks starting with N 595

Named parameters

Create a function which takes in a number of arguments which are specified
by name rather than (necessarily) position, and show how to call the function.
If the language supports reordering the arguments or optionally omitting some
of them, note this.

Note:

Named parameters relies on being able to use the names given to function
parameters when the function is defined, when assigning arguments when the
function is called.

For example, if f a function were to be defined as

define func1 (paramname1, paramname2);

then it could be called normally as

func1(argument1, argument2)

and in the called function paramname1 would be associated with argument1
and paramname2 with argument2.

func1 must also be able to be called in a way that visually binds each
parameter to its respective argument, irrespective of argument order, for
example:

func1(paramname2=argument2, paramname1=argument1)

which explicitly makes the same parameter/argument bindings as before.

Named parameters are often a feature of languages used in safety critical areas
such as Verilog and VHDL.

See also:

· Varargs

· Optional parameters

· Wikipedia: Named parameter

http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Named_parameter

596 16 Rosetta Code Tasks starting with N

PicoLisp uses normally positional parameters, but
’[http://software-lab.de/doc/refB.html#bind bind]’ can be used
to establish bindings to passed names.

Passing symbol-value pairs

(de foo @
(bind (rest) # Bind symbols in CARs to values in CDRs

(println ’Bar ’is Bar)
(println ’Mumble ’is Mumble)))

(foo ’(Bar . 123) ’(Mumble . "def"))

Passing a name list followed by values

(de foo @
(bind (next) # Save all symbols in first argument

(mapc set (arg) (rest)) # then bind them to remaining arguments
(println ’Bar ’is Bar)
(println ’Mumble ’is Mumble)))

(foo ’(Bar Mumble) 123 "def")

Output in both cases:

Bar is 123
Mumble is "def"

16 Rosetta Code Tasks starting with N 597

Narcissist

Quoting from the Esolangs wiki page:

A narcissist (or Narcissus program) is the decision-problem version of a quine.

A quine, when run, takes no input, but produces a copy of its own source code at its
output. In contrast, a narcissist reads a string of symbols from its input, and produces
no output except a “1” or “accept” if that string matches its own source code, or a
“0” or “reject” if it does not.

For concreteness, in this task we shall assume that symbol = character. The
narcissist should be able to cope with any finite input, whatever its length. Any
form of output is allowed, as long as the program always halts, and “accept”,
“reject” and “not yet finished” are distinguishable.

(de narcissist (Str)
(= Str (str narcissist)))

Output:

: (narcissist "(Str) (= Str (str narcissist))")
-> T

http://esolangs.org/wiki/Narcissist

598 16 Rosetta Code Tasks starting with N

Natural sorting

Natural sorting is the sorting of text that does more than rely on the order of
individual characters codes to make the finding of individual strings easier for
a human reader.

There is no “one true way” to do this, but for the purpose of this task ‘natural’
orderings might include:

1. Ignore leading, trailing and multiple adjacent spaces

2. Make all whitespace characters equivalent.

3. Sorting without regard to case.

4. Sorting numeric portions of strings in numeric order. That is split the string
into fields on numeric boundaries, then sort on each field, with the right-
most fields being the most significant, and numeric fields of integers treated
as numbers.

foo9.txt before foo10.txt

As well as . . . x9y99 before x9y100, before x10y0

. . . (for any number of groups of integers in a string).

5. Title sorts: without regard to a leading, very common, word such

as ‘The’ in “The thirty-nine steps”.

6. Sort letters without regard to accents.

7. Sort ligatures as separate letters.

8. Replacements:

Sort german scharfes S () as ss

Sort , LATIN SMALL LETTER LONG S as s

Sort , LATIN SMALL LETTER EZH as s

. . .

16 Rosetta Code Tasks starting with N 599

Task Description

· Implement the first four of the eight given features in a natural sorting
routine/function/method. . .

· Test each feature implemented separately with an ordered list of test strings
from the ‘Sample inputs’ section below, and make sure your naturally
sorted output is in the same order as other language outputs such as Python.

· Print and display your output.

· For extra credit implement more than the first four.

Note: It is not necessary to have individual control of which features are active
in the natural sorting routine at any time.

Sample input

600 16 Rosetta Code Tasks starting with N

Ignoring leading spaces
Text strings:

[’ignore leading spaces: 2-2’, ’ ignore leading spaces: 2-1’, ’ ignore
leading spaces: 2+0’, ’ ignore leading spaces: 2+1’]

Ignoring multiple adjacent spaces (m.a.s)
Text strings:

[’ignore m.a.s spaces: 2-2’, ’ignore m.a.s spaces: 2-1’, ’ignore m.a.s
spaces: 2+0’, ’ignore m.a.s spaces: 2+1’]

Equivalent whitespace characters
Text strings:

[’Equiv. spaces: 3-3’, ’Equiv.\rspaces: 3-2’, ’Equiv.\x0cspaces: 3-1’,
’Equiv.\x0bspaces: 3+0’, ’Equiv.\nspaces: 3+1’, ’Equiv.\tspaces: 3+2’]

Case Indepenent sort
Text strings:

[’cASE INDEPENENT: 3-2’, ’caSE INDEPENENT: 3-1’, ’casE INDEPENENT:
3+0’, ’case INDEPENENT: 3+1’]

Numeric fields as numerics
Text strings:

[’foo100bar99baz0.txt’, ’foo100bar10baz0.txt’,
’foo1000bar99baz10.txt’, ’foo1000bar99baz9.txt’]

Title sorts
Text strings:

[’The Wind in the Willows’, ’The 40th step more’, ’The 39 steps’,
’Wanda’]

Equivalent accented characters (and case)
Text strings:

[u’Equiv. \xfd accents: 2-2’, u’Equiv. \xdd accents: 2-1’, u’Equiv. y
accents: 2+0’, u’Equiv. Y accents: 2+1’]

Separated ligatures
Text strings:

[u’\u0132 ligatured ij’, ’no ligature’]

Character replacements
Text strings:

[u’Start with an \u0292: 2-2’, u’Start with an \u017f: 2-1’, u’Start
with an \xdf: 2+0’, u’Start with an s: 2+1’]

16 Rosetta Code Tasks starting with N 601

This parser takes care of features 1,2,3,4,5 and 8:

(de parseNatural (Str)
(clip

(make
(for (L (chop Str) L)

(cond
((sp? (car L))

(link " ")
(while (and L (sp? (car L)))

(pop ’L)))
((>= "9" (car L) "0")

(link
(format

(make
(loop

(link (pop ’L))
(NIL (>= "9" (car L) "0")))))))

(T
(let Word

(pack
(replace

(make
(loop

(link (lowc (pop ’L)))
(NIL L)
(T (sp? (car L)))
(T (>= "9" (car L) "0"))))

"" "ss" "" "s" "" "s"))
(unless (member Word ’(the it to))

(link Word)))))))))

Test:

: (parseNatural " ˆMThe abc123Def ˆI Ghi ")
-> ("abc" 123 "defss" " " "ghi")

Sorting is trivial then:

(de naturalSort (Lst)
(by parseNatural sort Lst))

602 16 Rosetta Code Tasks starting with N

Test:

(de *TestData
"# Ignoring leading spaces"
("ignore leading spaces: 2-2" " ignore leading spaces: 2-1"

" ignore leading spaces: 2+0" " ignore leading spaces: 2+1")

"# Ignoring multiple adjacent spaces (m.a.s)"
("ignore m.a.s spaces: 2-2" "ignore m.a.s spaces: 2-1"

"ignore m.a.s spaces: 2+0" "ignore m.a.s spaces: 2+1")

"# Equivalent whitespace characters"
("Equiv. spaces: 3-3" "Equiv.ˆMspaces: 3-2" "Equiv.ˆAcspaces: 3-1"

"Equiv.ˆKbspaces: 3+0" "Equiv.ˆJspaces: 3+1" "Equiv.ˆIspaces: 3+2")

"# Case Indepenent sort"
("cASE INDEPENENT: 3-2" "caSE INDEPENENT: 3-1" "casE INDEPENENT: 3+0"

"case INDEPENENT: 3+1")

"# Numeric fields as numerics"
("foo100bar99baz0.txt" "foo100bar10baz0.txt" "foo1000bar99baz10.txt"

"foo1000bar99baz9.txt")

"# Title sorts"
("The Wind in the Willows" "The 40th step more" "The 39 steps" "Wanda")

"# Equivalent accented characters (and case)"
("Equiv. accents: 2-2" "Equiv. accents: 2-1" "Equiv. y accents: 2+0"

"Equiv. Y accents: 2+1")

"Separated ligatures"
(" ligatured ij" "no ligature")

"# Character replacements"
("Start with an : 2-2" "Start with an : 2-1" "Start with an : 2+0"

"Start with an s: 2+1"))

16 Rosetta Code Tasks starting with N 603

(de pythonOut (Ttl Lst)
(prinl Ttl)
(prin "[’" (car Lst))
(for S (cdr Lst)

(prin "’,ˆJ ’" S))
(prinl "’]"))

(for X *TestData
(if (atom X)

(prinl X)
(pythonOut "Text strings:" X)
(pythonOut "Normally sorted :" (sort (copy X)))
(pythonOut "Naturally sorted:" (naturalSort X))
(prinl)))

Output:

Ignoring leading spaces
Text strings:
[’ignore leading spaces: 2-2’,
’ ignore leading spaces: 2-1’,
’ ignore leading spaces: 2+0’,
’ ignore leading spaces: 2+1’]

Normally sorted :
[’ ignore leading spaces: 2+1’,
’ ignore leading spaces: 2+0’,
’ ignore leading spaces: 2-1’,
’ignore leading spaces: 2-2’]

Naturally sorted:
[’ ignore leading spaces: 2+0’,
’ ignore leading spaces: 2+1’,
’ ignore leading spaces: 2-1’,
’ignore leading spaces: 2-2’]

Ignoring multiple adjacent spaces (m.a.s)
Text strings:
[’ignore m.a.s spaces: 2-2’,
’ignore m.a.s spaces: 2-1’,
’ignore m.a.s spaces: 2+0’,
’ignore m.a.s spaces: 2+1’]

Normally sorted :
[’ignore m.a.s spaces: 2+1’,
’ignore m.a.s spaces: 2+0’,
’ignore m.a.s spaces: 2-1’,
’ignore m.a.s spaces: 2-2’]

Naturally sorted:
[’ignore m.a.s spaces: 2+0’,
’ignore m.a.s spaces: 2+1’,
’ignore m.a.s spaces: 2-1’,
’ignore m.a.s spaces: 2-2’]

604 16 Rosetta Code Tasks starting with N

spaces: 3-2’, spaces: 3-2’, spaces: 3-2’,

Numeric fields as numerics
Text strings:
[’foo100bar99baz0.txt’,
’foo100bar10baz0.txt’,
’foo1000bar99baz10.txt’,
’foo1000bar99baz9.txt’]

Normally sorted :
[’foo1000bar99baz10.txt’,
’foo1000bar99baz9.txt’,
’foo100bar10baz0.txt’,
’foo100bar99baz0.txt’]

Naturally sorted:
[’foo100bar10baz0.txt’,
’foo100bar99baz0.txt’,
’foo1000bar99baz9.txt’,
’foo1000bar99baz10.txt’]

Title sorts
Text strings:
[’The Wind in the Willows’,
’The 40th step more’,
’The 39 steps’,
’Wanda’]

Normally sorted :
[’The 39 steps’,
’The 40th step more’,
’The Wind in the Willows’,
’Wanda’]

Naturally sorted:
[’The 39 steps’,
’The 40th step more’,
’Wanda’,
’The Wind in the Willows’]

16 Rosetta Code Tasks starting with N 605

Equivalent accented characters (and case)
Text strings:
[’Equiv. accents: 2-2’,
’Equiv. accents: 2-1’,
’Equiv. y accents: 2+0’,
’Equiv. Y accents: 2+1’]

Normally sorted :
[’Equiv. Y accents: 2+1’,
’Equiv. y accents: 2+0’,
’Equiv. accents: 2-1’,
’Equiv. accents: 2-2’]

Naturally sorted:
[’Equiv. y accents: 2+0’,
’Equiv. Y accents: 2+1’,
’Equiv. accents: 2-1’,
’Equiv. accents: 2-2’]

Character replacements
Text strings:
[’Start with an : 2-2’,
’Start with an : 2-1’,
’Start with an : 2+0’,
’Start with an s: 2+1’]

Normally sorted :
[’Start with an s: 2+1’,
’Start with an : 2+0’,
’Start with an : 2-1’,
’Start with an : 2-2’]

Naturally sorted:
[’Start with an s: 2+1’,
’Start with an : 2-1’,
’Start with an : 2-2’,
’Start with an : 2+0’]

606 16 Rosetta Code Tasks starting with N

Non-continuous subsequences

Consider some sequence of elements. (It differs from a mere set of elements
by having an ordering among members.)

A subsequence contains some subset of the elements of this sequence, in the
same order.

A continuous subsequence is one in which no elements are missing between
the first and last elements of the subsequence.

Note: Subsequences are defined structurally, not by their contents. So a se-
quence a,b,c,d will always have the same subsequences and continuous sub-
sequences, no matter which values are substituted; it may even be the same
value.

Task: Find all non-continuous subsequences for a given sequence. Example:
For the sequence 1,2,3,4, there are five non-continuous subsequences, namely
1,3; 1,4; 2,4; 1,3,4 and 1,2,4.

Goal: There are different ways to calculate those subsequences. Demonstrate
algorithm(s) that are natural for the language.

(de ncsubseq (Lst)
(let S 0

(recur (S Lst)
(ifn Lst

(and (>= S 3) ’(NIL))
(let (X (car Lst) XS (cdr Lst))

(ifn (bit? 1 S) # even
(conc

(mapcar ’((YS) (cons X YS))
(recurse (inc S) XS))

(recurse S XS))
(conc

(mapcar ’((YS) (cons X YS))
(recurse S XS))

(recurse (inc S) XS))))))))

16 Rosetta Code Tasks starting with N 607

Non-decimal radices/Convert

Number base conversion is when you express a stored integer in an integer
base, such as in octal (base 8) or binary (base 2). It also is involved when
you take a string representing a number in a given base and convert it to the
stored integer form. Normally, a stored integer is in binary, but that’s typically
invisible to the user, who normally enters or sees stored integers as decimal.

Write a function (or identify the built-in function) which is passed a non-
negative integer to convert, and another integer representing the base. It should
return a string containing the digits of the resulting number, without leading
zeros except for the number 0 itself. For the digits beyond 9, one should use
the lowercase English alphabet, where the digit a = 9+1, b = a+1, etc. The
decimal number 26 expressed in base 16 would be 1a, for example.

Write a second function which is passed a string and an integer base, and it
returns an integer representing that string interpreted in that base.

The programs may be limited by the word size or other such constraint of a
given language. There is no need to do error checking for negatives, bases less
than 2, or inappropriate digits.

608 16 Rosetta Code Tasks starting with N

(de numToString (N Base)
(default Base 10)
(let L NIL

(loop
(let C (\% N Base)

(and (> C 9) (inc ’C 39))
(push ’L (char (+ C ‘(char "0")))))

(T (=0 (setq N (/ N Base)))))
(pack L)))

(de stringToNum (S Base)
(default Base 10)
(let N 0

(for C (chop S)
(when (> (setq C (- (char C) ‘(char "0"))) 9)

(dec ’C 39))
(setq N (+ C (* N Base))))

N))

(prinl (numToString 26 16))
(prinl (stringToNum "1a" 16))
(prinl (numToString 123456789012345678901234567890 36))

Output:

"1a"
26
"byw97um9s91dlz68tsi"

16 Rosetta Code Tasks starting with N 609

Non-decimal radices/Input

It is common to have a string containing a number written in some format,
with the most common ones being decimal, hexadecimal, octal and binary.
Such strings are found in many places (user interfaces, configuration files,
XML data, network protocols, etc.)

This task requires parsing of such a string (which may be assumed to con-
tain nothing else) using the language’s built-in facilities if possible. Parsing
of decimal strings is required, parsing of other formats is optional but should
be shown (i.e., if the language can parse in base-19 then that should be illus-
trated).

The solutions may assume that the base of the number in the string is known.
In particular, if your language has a facility to guess the base of a number by
looking at a prefix (e.g. “0x” for hexadecimal) or other distinguishing syntax
as it parses it, please show that.

The reverse operation is in task Common number base formatting

For general number base conversion, see Number base conversion.

(de parseNumber (S Base)
(let N 0

(for C (chop S)
(when (> (setq C (- (char C) ‘(char "0"))) 9)

(dec ’C 39))
(setq N (+ C (* N Base))))

N))

(println (parseNumber "91g5dcg2h6da7260a9f3c4a" 19))

Output:

123456789012345678901234567890

610 16 Rosetta Code Tasks starting with N

Non-decimal radices/Output

Programming languages often have built-in routines to convert a non-negative
integer for printing in different number bases. Such common number bases
might include binary, Octal and Hexadecimal.

Show how to print a small range of integers in some different bases, as sup-
ported by standard routines of your programming language. (Note: this is dis-
tinct from Number base conversion as a user-defined conversion function is
not asked for.)

The reverse operation is Common number base parsing.

(de printNumber (N Base)
(when (>= N Base)

(printNumber (/ N Base) Base))
(let C (\% N Base)

(and (> C 9) (inc ’C 39))
(prin (char (+ C ‘(char "0"))))))

(printNumber 26 16))
(prinl)
(printNumber 123456789012345678901234567890 36))
(prinl)

Output:

1a
byw97um9s91dlz68tsi

16 Rosetta Code Tasks starting with N 611

Nth root

Implement the algorithm to compute the principal nth root of a positive
real number A, as explained at the Wikipedia page.

(load "@lib/math.l")

(de nthroot (N A)
(let (X1 A X2 (*/ A N))

(until (= X1 X2)
(setq

X1 X2
X2 (*/

(+
(* X1 (dec N))
(*/ A 1.0 (pow X1 (* (dec N) 1.0))))

N)))
X2))

(prinl (format (nthroot 2 2.0) *Scl))
(prinl (format (nthroot 3 12.3) *Scl))
(prinl (format (nthroot 4 45.6) *Scl))

Output:

1.414214
2.308350
2.598611

http://en.wikipedia.org/wiki/Nth_root
http://en.wikipedia.org/wiki/Nth_root_algorithm

612 16 Rosetta Code Tasks starting with N

Number names

Show how to spell out a number in English. You can use a preexisting imple-
mentation or roll your own, but you should support inputs up to at least one
million (or the maximum value of your language’s default bounded integer
type, if that’s less). Support for inputs other than positive integers (like zero,
negative integers, and floating-point numbers) is optional.

(de numName (N)
(cond

((=0 N) "zero")
((lt0 N) (pack "minus " (numName (- N))))
(T (numNm N))))

(de numNm (N)
(cond

((=0 N))
((> 14 N)

(get ’("one" "two" "three" "four" "five" "six" "seven" "eight"
"nine" "ten" "eleven" "twelve" "thirteen") N))

((= 15 N) "fifteen")
((= 18 N) "eighteen")
((> 20 N) (pack (numNm (\% N 10)) "teen"))
((> 100 N)

(pack
(get ’("twen" "thir" "for" "fif" "six" "seven" "eigh" "nine") (dec (/ N 10)))
"ty"
(unless (=0 (\% N 10))

(pack "-" (numNm (\% N 10))))))
((rank N ’((100 . "hundred") (1000 . "thousand") (1000000 . "million")))

(pack (numNm (/ N (car @))) " " (cdr @) " " (numNm (\% N (car @)))))))

16 Rosetta Code Tasks starting with N 613

Number reversal game

Given a jumbled list of the numbers 1 to 9 that are definitely not in ascend-
ing order, show the list then ask the player how many digits from the left
to reverse. Reverse those digits, then ask again, until all the digits end up in
ascending order.

The score is the count of the reversals needed to attain the ascending order.

Note: Assume the players input does not need extra validation.

C.f: Sorting algorithms/Pancake sort, Pancake sorting.

(load "@lib/simul.l")

(de reversalGame ()
(let (Lst (shuffle (range 1 9)) Cnt 0)

(while (apply < Lst)
(setq Lst (shuffle Lst)))

(loop
(printsp Lst)
(T (apply < Lst) Cnt)
(NIL (num? (read)))
(setq Lst (flip Lst @))
(inc ’Cnt))))

Output:

: (reversalGame)
(1 7 6 8 4 2 3 5 9) 4
(8 6 7 1 4 2 3 5 9) 8
(5 3 2 4 1 7 6 8 9) 6
(7 1 4 2 3 5 6 8 9) 7
(6 5 3 2 4 1 7 8 9) 6
(1 4 2 3 5 6 7 8 9) 2
(4 1 2 3 5 6 7 8 9) 4
(3 2 1 4 5 6 7 8 9) 3
(1 2 3 4 5 6 7 8 9) -> 8

http://en.wikipedia.org/wiki/Pancake_sorting

614 16 Rosetta Code Tasks starting with N

Numeric error propagation

If f, a, and b are values with uncertainties σ f, σ a, and σb. and c is a constant;
then if f is derived from a, b, and c in the following ways, then σ f can be
calculated as follows:

Addition/Subtraction

· If f = a c, or f = c a then σ f = σa

· If f = a b then σ f
2 = σa

2 + σb
2

Multiplication/Division

· If f = ca or f = ac then σ f = |cσa|

· If f = ab or f = a / b then σ f
2 = f2((σa / a)2 + (σb / b)2)

Exponentiation

· If f = ac then σ f = |fc(σa / a)|

Caution:

This implementation of error propagation does not address issues of depen-
dent and independent values. It is assumed that a and b are independent and
so the formula for multiplication should not be applied to a*a for exam[ple.
See the talk page for some of the implications of this issue.

16 Rosetta Code Tasks starting with N 615

Task details

1. Add an uncertain number type to your language that can support addition,
subtraction, multiplication, division, and exponentiation between numbers
with an associated error term together with ‘normal’ floating point numbers
without an associated error term.
Implement enough functionality to perform the following calculations.

2. Given coordinates and their errors:
x1 = 100 1.1
y1 = 50 1.2
x2 = 200 2.2
y2 = 100 2.3
if point p1 is located at (x1, y1) and p2 is at (x2, y2); calculate the distance
between the two points using the classic pythagorean formula:
d = ((x1 - x2)2 + (y1 - y2)2)

3. Print and display both d and its error.

References

· A Guide to Error Propagation B. Keeney, 2005.

· Propagation of uncertainty Wikipedia.

Cf.

· Quaternion type

http://casa.colorado.edu/~benderan/teaching/astr3510/stats.pdf
http://en.wikipedia.org/wiki/Propagation_of_uncertainty

616 16 Rosetta Code Tasks starting with N

For this task, we overload the built-in arithmetic functions. If the arguments
are cons pairs, they are assumed to hold the fixpoint number in the CAR, and the
uncertainty’s square in the CDR. Otherwise normal numbers are handled as usual.

The overloaded +, -, * and / operators look a bit complicated, because they must
handle an arbitrary number of arguments to be compatible with the standard
operators.

(scl 12)
(load "@lib/math.l")

Overload arithmetic operators +, -, *, / and **
(redef + @

(let R (next)
(while (args)

(let N (next)
(setq R

(if2 (atom R) (atom N)
(+ R N) # c + c
(cons (+ R (car N)) (cdr N)) # c + a
(cons (+ (car R) N) (cdr R)) # a + c
(cons # a + b

(+ (car R) (car N))
(+ (cdr R) (cdr N)))))))

R))

(redef - @
(let R (next)

(ifn (args)
(- R)
(while (args)

(let N (next)
(setq R

(if2 (atom R) (atom N)
(- R N) # c - c
(cons (- R (car N)) (cdr N)) # c - a
(cons (- (car R) N) (cdr R)) # a - c
(cons # a - b

(- (car R) (car N))
(+ (cdr R) (cdr N)))))))

R)))

16 Rosetta Code Tasks starting with N 617

(redef * @
(let R (next)

(while (args)
(let N (next)

(setq R
(if2 (atom R) (atom N)

(* R N) # c * c
(cons # c * a

(*/ R (car N) 1.0)
(mul2div2 (cdr N) R 1.0))

(cons # a * c
(*/ (car R) N 1.0)
(mul2div2 (cdr R) N 1.0))

(uncMul (*/ (car R) (car N) 1.0) R N))))) # a * b
R))

(redef / @
(let R (next)

(while (args)
(let N (next)

(setq R
(if2 (atom R) (atom N)

(/ R N) # c / c
(cons # c / a

(*/ R 1.0 (car N))
(mul2div2 (cdr N) R 1.0))

(cons # a / c
(*/ (car R) 1.0 N)
(mul2div2 (cdr R) N 1.0))

(uncMul (*/ (car R) 1.0 (car N)) R N))))) # a / b
R))

(redef ** (A C)
(if (atom A)

(** A C)
(let F (pow (car A) C)

(cons F
(mul2div2 (cdr A) (*/ F C (car A)) 1.0)))))

618 16 Rosetta Code Tasks starting with N

Utilities
(de mul2div2 (A B C)

(*/ A B B (* C C)))

(de uncMul (F R N)
(cons F

(mul2div2
(+

(mul2div2 (cdr R) 1.0 (car R))
(mul2div2 (cdr N) 1.0 (car N)))

F
1.0)))

I/O conversion
(de unc (N U)

(if U
(cons N (*/ U U 1.0))
(pack

(round (car N) 10)
" "
(round (sqrt (* 1.0 (cdr N))) 8))))

Test:

(de distance (X1 Y1 X2 Y2)
(**

(+ (** (- X1 X2) 2.0) (** (- Y1 Y2) 2.0))
0.5))

(prinl "Distance: "
(unc

(distance
(unc 100. 1.1)
(unc 50. 1.2)
(unc 200. 2.2)
(unc 100. 2.3))))

Output:

Distance: 111.8033988750 2.48716706

16 Rosetta Code Tasks starting with N 619

Numerical integration

Write functions to calculate the definite integral of a function (f(x)) using rect-
angular (left, right, and midpoint), trapezium, and Simpson’s methods. Your
functions should take in the upper and lower bounds (a and b) and the num-
ber of approximations to make in that range (n). Assume that your example
already has a function that gives values for f(x).

Simpson’s method is defined by the following pseudocode:

h:= (b - a) / n
sum1:= f(a + h/2)
sum2:= 0

loop on i from 1 to (n - 1)
sum1:= sum1 + f(a + h * i + h/2)
sum2:= sum2 + f(a + h * i)

answer:= (h / 6) * (f(a) + f(b) + 4*sum1 + 2*sum2)

Demonstrate your function by showing the results for:

· f(x) = xˆ3, where x is [0,1], with 100 approximations. The exact result is
1/4, or 0.25.

· f(x) = 1/x, where x is [1,100], with 1,000 approximations. The exact result
is the natural log of 100, or about 4.605170

· f(x) = x, where x is [0,5000], with 5,000,000 approximations. The exact
result is 12,500,000.

· f(x) = x, where x is [0,6000], with 6,000,000 approximations. The exact
result is 18,000,000.

See also

· Active object for integrating a function of real time.

· Numerical integration/Gauss-Legendre Quadrature for another integration
method.

http://en.wikipedia.org/wiki/Rectangle_method
http://en.wikipedia.org/wiki/Rectangle_method
http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/Simpson%27s_rule

620 16 Rosetta Code Tasks starting with N

(scl 6)

(de leftRect (Fun X)
(Fun X))

(de rightRect (Fun X H)
(Fun (+ X H)))

(de midRect (Fun X H)
(Fun (+ X (/ H 2))))

(de trapezium (Fun X H)
(/ (+ (Fun X) (Fun (+ X H))) 2))

(de simpson (Fun X H)
(*/

(+
(Fun X)
(* 4 (Fun (+ X (/ H 2))))
(Fun (+ X H)))

6))

(de square (X)
(*/ X X 1.0))

(de integrate (Fun From To Steps Meth)
(let (H (/ (- To From) Steps) Sum 0)

(for (X From (>= (- To H) X) (+ X H))
(inc ’Sum (Meth Fun X H)))

(*/ H Sum 1.0)))

(prinl (round (integrate square 3.0 7.0 30 simpson)))

Output:

105.333

Chapter 17

Rosetta Code Tasks starting with O

Object serialization

Create a set of data types based upon inheritance. Each data type or class
should have a print command that displays the contents of an instance of that
class to standard output. Create instances of each class in your inheritance
hierarchy and display them to standard output. Write each of the objects to a
file named objects.dat in binary form using serialization or marshalling. Read
the file objects.dat and print the contents of each serialized object.

621

622 17 Rosetta Code Tasks starting with O

The built-in function [http://software-lab.de/doc/refP.html#pr pr] serializes
any kind of data, and [http://software-lab.de/doc/refR.html#rd rd] reads it
back. This functionality is also used internally for database access and
interprocess-communication.

(class +Point)
x y

(dm T (X Y)
(=: x (or X 0))
(=: y (or Y 0)))

(dm print> ()
(prinl "Point " (: x) "," (: y)))

(class +Circle +Point)
r

(dm T (X Y R)
(super X Y)
(=: r (or R 0)))

(dm print> ()
(prinl "Circle " (: x) "," (: y) "," (: r)))

(setq
P (new ’(+Point) 3 4)
C (new ’(+Circle) 10 10 5))

(print> P)
(print> C)

(out "objects.dat"
(pr (val P) (getl P))
(pr (val C) (getl C)))

(in "objects.dat"
(putl (setq A (box (rd))) (rd))
(putl (setq B (box (rd))) (rd)))

(print> A)
(print> B)

Output:

Point 3,4
Circle 10,10,5
Point 3,4
Circle 10,10,5

17 Rosetta Code Tasks starting with O 623

Odd word problem

Write a program that solves the odd word problem with the restrictions given
below.

Description: You are promised an input stream consisting of English letters
and punctuations. It is guaranteed that

· the words (sequence of consecutive letters) are delimited by one and only
one punctuation; that

· the stream will begin with a word; that

· the words will be at least one letter long; and that

· a full stop (.) appears after, and only after, the last word.

For example, what,is,the;meaning,of:life. is such a stream with
six words. Your task is to reverse the letters in every other word while leav-
ing punctuations intact, producing e.g. “what,si,the;gninaem,of:efil.”, while
observing the following restrictions:

1. Only I/O allowed is reading or writing one character at a time, which
means: no reading in a string, no peeking ahead, no pushing characters
back into the stream, and no storing characters in a global variable for later
use;

2. You are not to explicitly save characters in a collection data structure, such
as arrays, strings, hash tables, etc, for later reversal;

3. You are allowed to use recursions, closures, continuations, threads, corou-
tines, etc., even if their use implies the storage of multiple characters.

Test case: work on both the “life” example given above, and the text
we,are;not,in,kansas;any,more.

http://c2.com/cgi/wiki?OddWordProblem

624 17 Rosetta Code Tasks starting with O

(de oddWords ()
(use C

(loop
(until (sub? (prin (setq C (char))) "!,.:;?"))
(T (= "." C))
(setq C (char))
(T

(= "."
(prin

(recur (C)
(if (sub? C "!,.:;?")

C
(prog1 (recurse (char)) (prin C))))))))

(prinl)))

Test:

(in "txt1" (oddWords))
(in "txt2" (oddWords))

Output:

what,si,the;gninaem,of:efil.
we,era;not,ni,kansas;yna,more.

17 Rosetta Code Tasks starting with O 625

Old lady swalllowed a fly

Present a program which emits the lyrics to the song I Knew an Old Lady Who
Swallowed a Fly, taking advantage of the repetitive structure of the song’s
lyrics. This song has multiple versions with slightly different lyrics, so all
these programs might not emit identical output.

See also: 99 Bottles of Beer

http://en.wikipedia.org/wiki/There_Was_an_Old_Lady_Who_Swallowed_a_Fly
http://en.wikipedia.org/wiki/There_Was_an_Old_Lady_Who_Swallowed_a_Fly

626 17 Rosetta Code Tasks starting with O

(de *Dict
‘(chop

"_ha _c _e _p,/Quite absurd_f_p;_‘cat,/Fancy that_fcat;_j‘dog,\
/What a hog_fdog;_l‘pig,/Her mouth_qso big_fpig;_d_r,/She just \
opened her throat_f_r;_icow,/_mhow she_ga cow;_k_o,/It_qrather \
wonky_f_o;_a_o_bcow,_khorse.../She’s dead, of course!/")

‘(chop "_a_p_b_e ")
‘(chop "/S_t ")
‘(chop " to catch the ")
‘(chop "fly,/But _mwhy s_t fly,/Perhaps she’ll die!//_ha")
‘(chop "_apig_bdog,_l‘")
‘(chop "spider,/That wr_nj_ntickled inside her;_aspider_b_c")
‘(chop ", to_s a ")
‘(chop "_sed ")
‘(chop "There_qan old lady who_g")
‘(chop "_a_r_bpig,_d")
‘(chop "_acat_b_p,_")
‘(chop "_acow_b_r,_i")
‘(chop "_adog_bcat,_j")
‘(chop "I don’t know ")
‘(chop "iggled and ")
‘(chop "donkey")
‘(chop "bird")
‘(chop " was ")
‘(chop "goat")
‘(chop " swallow")
‘(chop "he_gthe"))

(de oldLady (Lst Flg)
(loop

(let C (pop ’Lst)
(cond

(Flg
(setq Flg

(oldLady (get *Dict (- (char C) 94)))))
((= "_" C) (on Flg))
((= "/" C) (prinl))
(T (prin C))))

(NIL Lst))
Flg)

(oldLady (car *Dict))

17 Rosetta Code Tasks starting with O 627

One of n lines in a file

A method of choosing a line randomly from a file:

· Without reading the file more than once

· When substantial parts of the file cannot be held in memory

· Without knowing how many lines are in the file

Is to:

· keep the first line of the file as a possible choice, then

· Read the second line of the file if possible and make it the possible choice
if a uniform random value between zero and one is less than 1/2.

· Read the third line of the file if possible and make it the possible choice if
a uniform random value between zero and one is less than 1/3.

. . .

· Read the Nth line of the file if possible and make it the possible choice if a
uniform random value between zero and one is less than 1/N

· Return the computed possible choice when no further lines exist in the file.

Task

1. Create a function/method/routine called one of n that given n, the num-
ber of actual lines in a file, follows the algorithm above to return an integer
- the line number of the line chosen from the file.
The number returned can vary, randomly, in each run.

2. Use one of n in a simulation to find what woud be the chosen line of a
10 line file simulated 1,000,000 times.

3. Print and show how many times each of the 10 lines is chosen as a rough
measure of how well the algorithm works.

Note: You may choose a smaller number of repetitions if necessary, but men-
tion this up-front.

628 17 Rosetta Code Tasks starting with O

(de one-of-n (N)
(let R 1

(for I N
(when (= 1 (rand 1 I))

(setq R I)))
R))

(let L (need 10 0)
(do 1000000

(inc (nth L (one-of-n 10))))
L)

Output:

-> (99893 100145 99532 100400 100263 100229 99732 100116 99709 99981)

17 Rosetta Code Tasks starting with O 629

One-dimensional cellular automata

Assume an array of cells with an initial distribution of live and dead cells, and
imaginary cells off the end of the array having fixed values.

Cells in the next generation of the array are calculated based on the value of
the cell and its left and right nearest neighbours in the current generation. If,
in the following table, a live cell is represented by 1 and a dead cell by 0 then
to generate the value of the cell at a particular index in the array of cellular
values you use the following table:

000 -> 0 #
001 -> 0 #
010 -> 0 # Dies without enough neighbours
011 -> 1 # Needs one neighbour to survive
100 -> 0 #
101 -> 1 # Two neighbours giving birth
110 -> 1 # Needs one neighbour to survive
111 -> 0 # Starved to death.

630 17 Rosetta Code Tasks starting with O

(let Cells (chop "_###_##_#_#_#_#__#__")
(do 10

(prinl Cells)
(setq Cells

(make
(link "_")
(map

’((L)
(case (head 3 L)

(‘(mapcar chop ’("___" "__#" "_#_" "#__" "###"))
(link "_"))

(‘(mapcar chop ’("_##" "#_#" "##_"))
(link "#"))))

Cells)
(link "_")))))

Output:

#####_#_#_#_#__#__
######_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

17 Rosetta Code Tasks starting with O 631

OpenGL

In this task, the goal is to display a smooth shaded triangle with OpenGL.

Triangle created using C example compiled with GCC 4.1.2 and freeglut3.

632 17 Rosetta Code Tasks starting with O

This is for the 64-bit version.

(load "@lib/openGl.l")

(glutInit)
(glutInitWindowSize 400 300)
(glutCreateWindow "Triangle")

(displayPrg
(glClearColor 0.3 0.3 0.3 0.0)
(glClear (| GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT))
(glShadeModel GL_SMOOTH)
(glLoadIdentity)
(glTranslatef -15.0 -15.0 0.0)
(glBegin GL_TRIANGLES)
(glColor3f 1.0 0.0 0.0)
(glVertex2f 0.0 0.0)
(glColor3f 0.0 1.0 0.0)
(glVertex2f 30.0 0.0)
(glColor3f 0.0 0.0 1.0)
(glVertex2f 0.0 30.0)
(glEnd)
(glFlush))

(reshapeFunc
’((Width Height)

(glViewport 0 0 Width Height)
(glMatrixMode GL_PROJECTION)
(glLoadIdentity)
(glOrtho -30.0 30.0 -30.0 30.0 -30.0 30.0)
(glMatrixMode GL_MODELVIEW)))

Exit upon mouse click
(mouseFunc ’((Btn State X Y) (bye)))

(glutMainLoop)

17 Rosetta Code Tasks starting with O 633

Optional parameters

Define a function/method/subroutine which sorts a sequence (“table”) of se-
quences (“rows”) of strings (“cells”), by one of the strings. Besides the input
to be sorted, it shall have the following optional parameters:

· ordering A function specifying the ordering of strings; lexicographic by
default.

· column An integer specifying which string of each row to compare; the
first by default.

· reverse Reverses the ordering.

This task should be considered to include both positional and named optional
parameters, as well as overloading on argument count as in Java or selector
name as in Smalltalk, or, in the extreme, using different function names. Pro-
vide these variations of sorting in whatever way is most natural to your
language. If the language supports both methods naturally, you are encour-
aged to describe both.

Do not implement a sorting algorithm; this task is about the interface. If you
can’t use a built-in sort routine, just omit the implementation (with a com-
ment).

See also:

· Named Arguments

634 17 Rosetta Code Tasks starting with O

(de sortTable (Tbl . @)
(let (Ordering prog Column 1 Reverse NIL) # Set defaults

(bind (rest) # Bind optional params
(setq Tbl

(by ’((L) (Ordering (get L Column)))
sort
Tbl))

(if Reverse (flip Tbl) Tbl))))

Output:

(de *Data ("a" "bcdef" "X") (" " "qrst" "z") ("zap" "zip" "Zot"))

: (sortTable *Data)
-> ((" " "qrst" "z") ("a" "bcdef" "X") ("zap" "zip" "Zot"))

: (sortTable *Data ’(Reverse . T))
-> (("zap" "zip" "Zot") ("a" "bcdef" "X") (" " "qrst" "z"))

: (sortTable *Data ’(Column . 2) ’(Ordering . length))
-> (("zap" "zip" "Zot") (" " "qrst" "z") ("a" "bcdef" "X"))

: (sortTable *Data ’(Ordering . uppc) ’(Column . 3))
-> (("a" "bcdef" "X") (" " "qrst" "z") ("zap" "zip" "Zot"))

17 Rosetta Code Tasks starting with O 635

Order two numerical lists

Write a function that orders two lists or arrays filled with numbers. The func-
tion should accept two lists as arguments and return true if the first list
should be ordered before the second, and false otherwise.

The order is determined by lexicographic order: Comparing the first element
of each list. If the first elements are equal, then the second elements should be
compared, and so on, until one of the list has no more elements. If the first list
runs out of elements the result is true. if the second list or both run out of
elements the result is false.

The built-in comparison functions already do this (not only for lists of
numbers, but for any arbitrary data type).

: (> (1 2 0 4 4 0 0 0) (1 2 1 3 2))
-> NIL

http://en.wikipedia.org/wiki/Lexicographical_order#Ordering_of_sequences_of_various_lengths

636 17 Rosetta Code Tasks starting with O

Ordered Partitions

In this task we want to find the ordered partitions into fixed-size blocks. This
task is related to Combinations in that it has to do with discrete mathematics
and moreover a helper function to compute combinations is (probably) needed
to solve this task.

partitions(arg1,arg2,. . . ,argn) should generate all distributions of the ele-

ments in into n blocks of respective size arg1,arg2,. . . ,argn.

Example 1: partitions(2,0,2) would create:

{({1, 2}, {}, {3, 4}),
({1, 3}, {}, {2, 4}),
({1, 4}, {}, {2, 3}),
({2, 3}, {}, {1, 4}),
({2, 4}, {}, {1, 3}),
({3, 4}, {}, {1, 2})}

Example 2: partitions(1,1,1) would create:

{({1}, {2}, {3}),
({1}, {3}, {2}),
({2}, {1}, {3}),
({2}, {3}, {1}),
({3}, {1}, {2}),
({3}, {2}, {1})}

Note that the number of elements in the list is

(see the definition of the binomial coefficient if you are not familiar with this
notation) and the number of elements remains the same regardless of how the
argument is permuted (i.e. the multinomial coefficient). Also, partitions(1,1,1)
creates the permutations of {1,2,3} and thus there would be 3! = 6 elements
in the list.

Note: Do not use functions that are not in the standard library of the program-
ming language you use. Your file should be written so that it can be executed
on the command line and by default outputs the result of partitions(2,0,2). If
the programming language does not support polyvariadic functions pass a list
as an argument.

http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Multinomial_coefficient

17 Rosetta Code Tasks starting with O 637

Notation

Remarks on the used notation for the task in order to understand it easierly.

denotes the set of consecutive numbers from 1 to n, e.g. {1,2,3}

if n = 3. is the mathematical notation for summation, e.g. (see
also [1]). arg1,arg2,. . . ,argn are the arguments — natural numbers — that the
sought function receives.

Uses the ’comb’ function from [[Combinations#PicoLisp]]

(de partitions (Args)
(let Lst (range 1 (apply + Args))

(recur (Args Lst)
(ifn Args

’(NIL)
(mapcan

’((L)
(mapcar

’((R) (cons L R))
(recurse (cdr Args) (diff Lst L))))

(comb (car Args) Lst))))))

Output:

: (more (partitions (2 0 2)))
((1 2) NIL (3 4))
((1 3) NIL (2 4))
((1 4) NIL (2 3))
((2 3) NIL (1 4))
((2 4) NIL (1 3))
((3 4) NIL (1 2))
-> NIL

: (more (partitions (1 1 1)))
((1) (2) (3))
((1) (3) (2))
((2) (1) (3))
((2) (3) (1))
((3) (1) (2))
((3) (2) (1))
-> NIL

http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation

638 17 Rosetta Code Tasks starting with O

Ordered words

Define an ordered word as a word in which the letters of the word appear in
alphabetic order. Examples include ‘abbey’ and ‘dirt’.

The task is to find and display all the ordered words in this dictionary that
have the longest word length. (Examples that access the dictionary file locally
assume that you have downloaded this file yourself.) The display needs to be
shown on this page.

(in "unixdict.txt"
(mapc prinl

(maxi ’((L) (length (car L)))
(by length group

(filter ’((S) (apply <= S))
(make (while (line) (link @))))))))

Output:

abbott
accent
accept
access
accost
almost
bellow
billow
biopsy
chilly
choosy
choppy
effort
floppy
glossy
knotty

http://www.puzzlers.org/pub/wordlists/unixdict.txt

Chapter 18

Rosetta Code Tasks starting with P

Palindrome detection

Write at least one function/method (or whatever it is called in your preferred
language) to check if a sequence of characters (or bytes) is a palindrome or
not. The function must return a boolean value (or something that can be used
as boolean value, like an integer).

It is not mandatory to write also an example code that uses the function, un-
less its usage could be not clear (e.g. the provided recursive C solution needs
explanation on how to call the function).

It is not mandatory to handle properly encodings (see String length), i.e. it is
admissible that the function does not recognize ‘sallas’ as palindrome.

The function must not ignore spaces and punctuations. The compliance to the
aforementioned, strict or not, requirements completes the task.

Example
An example of a Latin palindrome is the sentence ”In girum imus nocte et
consumimur igni”, roughly translated as: we walk around in the night and we
are burnt by the fire (of love). To do your test with it, you must make it all the
same case and strip spaces.

Notes

· It might be useful for this task to know how to reverse a string.

· This task’s entries might also form the subjects of the task Test a function.

639

http://en.wikipedia.org/wiki/Palindrome

640 18 Rosetta Code Tasks starting with P

(de palindrome? (S)
(= (setq S (chop S)) (reverse S)))

Output:

: (palindrome? "ingirumimusnocteetconsumimurigni")
-> T

18 Rosetta Code Tasks starting with P 641

Pangram checker

Write a function or method to check a sentence to see if it is a pangram or not
and show its use.

A pangram is a sentence that contains all the letters of the English alphabet at
least once, for example: The quick brown fox jumps over the lazy dog.

(de isPangram (Str)
(not

(diff
’‘(chop "abcdefghijklmnopqrstuvwxyz")
(chop (lowc Str)))))

http://en.wikipedia.org/wiki/Pangram

642 18 Rosetta Code Tasks starting with P

Parallel calculations

Many programming languages allow you to specify computations to be run in
parallel. While Concurrent computing is focused on concurrency, the purpose
of this task is to distribute time-consuming calculations on as many CPUs as
possible.

Assume we have a collection of numbers, and want to find the one with the
largest minimal prime factor (that is, the one that contains relatively large
factors). To speed up the search, the factorization should be done in parallel
using separate threads or processes, to take advantage of multi-core CPUs.

Show how this can be formulated in your language. Parallelize the factoriza-
tion of those numbers, then search the returned list of numbers and factors for
the largest minimal factor, and return that number and its prime factors.

For the prime number decomposition you may use the solution of the Prime
decomposition task.

The prime decomposition of a number is defined as a list of prime numbers
which when all multiplied together, are equal to that number. Example: 12 =
2 2 3, so its prime decomposition is {2, 2, 3}

Write a function which returns an array or collection which contains the prime
decomposition of a given number, n, greater than 1. If your language does
not have an isPrime-like function available, you may assume that you have a
function which determines whether a number is prime (note its name before
your code).

If you would like to test code from this task, you may use code from trial
division or the Sieve of Eratosthenes.

Note: The program must not be limited by the word size of your computer or
some other artificial limit; it should work for any number regardless of size
(ignoring the physical limits of RAM etc).

18 Rosetta Code Tasks starting with P 643

The ’[http://software-lab.de/doc/refL.html#later later]’ function is used in
PicoLisp to start parallel computations. The following solution calls ’later’ on

Create a program to continually calculate and output the next digit of
(pi). The program should continue forever (until it is aborted by the
user) calculating and outputting each digit in succession. The output
should be a decimal sequence beginning 3.14159265 \ldots{}

the ’factor’ function from [[Prime decomposition#PicoLisp]], and then
’[http://software-lab.de/doc/refW.html#wait wait]’s until all results are
available:

(let Lst
(mapcan

’((N)
(later (cons) # When done,

(cons N (factor N)))) # return the number and its factors
(quote

188573867500151328137405845301 # Process a collection of 12 numbers
3326500147448018653351160281
979950537738920439376739947
2297143294659738998811251
136725986940237175592672413
3922278474227311428906119
839038954347805828784081
42834604813424961061749793
2651919914968647665159621
967022047408233232418982157
2532817738450130259664889
122811709478644363796375689))

(wait NIL (full Lst)) # Wait until all computations are done
(maxi ’((L) (apply min L)) Lst)) # Result: Number in CAR, factors in CDR

Output:

-> (2532817738450130259664889 6531761 146889539 2639871491)

644 18 Rosetta Code Tasks starting with P

Parametric polymorphism

Create two classes Point(x,y) and Circle(x,y,r) with a polymorphic function
print, accessors for (x,y,r), copy constructor, assignment and destructor and
every possible default constructors

Parametric Polymorphism is a way to define types or functions that are generic
over other types. The genericity can be expressed by using type variables for
the parameter type, and by a mechanism to explicitly or implicitly replace the
type variables with concrete types when necessary.

Write a small example for a type declaration that is parametric over another
type, together with a short bit of code (and its type signature) that uses it. A
good example is a container type, let’s say a binary tree, together with some
function that traverses the tree, say, a map-function that operates on every
element of the tree.

This language feature only applies to statically-typed languages.

http://en.wikipedia.org/wiki/Parametric_Polymorphism

18 Rosetta Code Tasks starting with P 645

PicoLisp is dynamically-typed, so in principle every function is polymetric over
its arguments. It is up to the function to decide what to do with them. A
function traversing a tree, modifying the nodes in-place (no matter what the
type of the node is):

(de mapTree (Tree Fun)
(set Tree (Fun (car Tree)))
(and (cadr Tree) (mapTree @ Fun))
(and (cddr Tree) (mapTree @ Fun)))

Test:

(balance ’MyTree (range 1 7)) # Create a tree of numbers
-> NIL

: (view MyTree T) # Display it
7

6
5

4
3

2
1

-> NIL

: (mapTree MyTree inc) # Increment all nodes
-> NIL

: (view MyTree T) # Display the tree
8

7
6

5
4

3
2

-> NIL

646 18 Rosetta Code Tasks starting with P

: (balance ’MyTree ’("a" "b" "c" "d" "e" "f" "g")) # Create a tree of strings
-> NIL

: (view MyTree T) # Display it
"g"

"f"
"e"

"d"
"c"

"b"
"a"

-> NIL

: (mapTree MyTree uppc) # Convert all nodes to upper case
-> NIL

: (view MyTree T) # Display the tree
"G"

"F"
"E"

"D"
"C"

"B"
"A"

-> NIL

18 Rosetta Code Tasks starting with P 647

Parametrized SQL statement

Parameterized SQL statements are an easy way to avoid SQL injection attacks.
SQL drivers and libraries will automatically “sanitize” input to parameterized
SQL statements to avoid these catastrophic database attacks.

Using a SQL update statement like this one (spacing is optional):

UPDATE players
SET name = ’Smith, Steve’, score = 42, active = TRUE
WHERE jerseyNum = 99

show how to make a parameterized SQL statement, set the parameters to the
values given above, and execute the statement.

As PicoLisp uses normal function calls for DB manipulations, parameters are
always treated as plain data and are not executed.

(for P (collect ’jerseyNum ’+Players 99)
(put!> P ’name "Smith, Steve")
(put!> P ’score 42)
(put!> P ’active T))

http://en.wikipedia.org/wiki/SQL_injection

648 18 Rosetta Code Tasks starting with P

Parse an IP Address

The purpose of this task is to demonstrate parsing of text-format IP addresses,
using IPv4 and IPv6.

Taking the following as inputs:

127.0.0.1 The “localhost” IPv4 address

127.0.0.1:80 The “localhost” IPv4 address, with a specified port (80)

::1 The “localhost” IPv6 address

[::1]:80 The “localhost” IPv6 address, with a specified port (80)

2605:2700:0:3::4713:93e3 Rosetta Code’s primary server’s public IPv6 address

[2605:2700:0:3::4713:93e3]:80 Rosetta Code’s primary server’s public IPv6 address, with a specified port (80)

Emit each described IP address as a hexadecimal integer representing the ad-
dress, the address space, and the port number specified, if any. In languages
where variant result types are clumsy, the result should be ipv4 or ipv6 ad-
dress number, something which says which address space was represented,
port number and something that says if the port was specified.

For example 127.0.0.1 has the address number 7F000001 (2130706433 dec-
imal) in the ipv4 address space. ::ffff:127.0.0.1 represents the same address
in the ipv6 address space where it has the address number FFFF7F000001
(281472812449793 decimal). Meanwhile ::1 has address number 1 and serves
the same purpose in the ipv6 address space that 127.0.0.1 serves in the ipv4
address space.

18 Rosetta Code Tasks starting with P 649

Return a cons pair of address and port: (address . port)
(de ipAddress (Adr)

(use (@A @B @C @D @Port)
(cond

((match ’("[" @A "]" ":" @Port) Adr)
(adrIPv6 (split @A ":") @Port))

((match ’("[" @A "]") Adr)
(adrIPv6 (split @A ":")))

((match ’(@A ":" @B ":" @C) Adr)
(adrIPv6 (cons @A @B (split @C ":"))))

((match ’(@A "." @B "." @C "." @D ":" @Port) Adr)
(adrIPv4 (list @A @B @C @D) @Port))

((match ’(@A "." @B "." @C "." @D) Adr)
(adrIPv4 (list @A @B @C @D)))

(T (quit "Bad IP address" (pack Adr))))))

(de adrIPv4 (Lst Port)
(cons

(sum >> (-24 -16 -8 0) (mapcar format Lst))
(format Port)))

(de adrIPv6 (Lst Port)
(cons

(sum >>
(-112 -96 -80 -64 -48 -32 -16 0)
(mapcan

’((X)
(if X

(cons (hex X))
(need (- 9 (length Lst)) 0))) # Handle ’::’

(cons (or (car Lst) "0") (cdr Lst))))
(format Port)))

650 18 Rosetta Code Tasks starting with P

Test:

(for A
(quote

"127.0.0.1"
"127.0.0.1:80"
"::1"
"[::1]:80"
"2605:2700:0:3::4713:93e3"
"[2605:2700:0:3::4713:93e3]:80")

(let I (ipAddress (chop A))
(tab (-29 34 40 7)

A
(hex (car I))
(format (car I))
(cdr I))))

Output:

127.0.0.1 7F000001 2130706433
127.0.0.1:80 7F000001 2130706433 80
::1 1 1
[::1]:80 1 1 80
2605:2700:0:3::4713:93e3 260527000000000300000000471393E3
50537416338094019778974086937420469219
[2605:2700:0:3::4713:93e3]:80 260527000000000300000000471393E3
50537416338094019778974086937420469219 80

18 Rosetta Code Tasks starting with P 651

Parsing command-line arguments

Command-line arguments can be quite complicated, as in “nc -v -n -z -w 1
192.168.1.2 1-1000”. Many languages provide a library (getopt or GetOpt) to
parse the raw command line options in an intelligent way.

PicoLisp doesn’t have a library to get options. Instead, the command line is
parsed at startup and handled in the following way: Each command line argument
is executed (interpreted) as a Lisp source file, except that if the first
character is a hypen ’-’, then that arguments is taken as a Lisp function call
(without the surrounding parentheses). For example, the command line

\$./pil abc.l -foo def.l -"bar 3 4" -’mumble "hello"’ -bye

has the effect that

The file "abc.l" is executed
(foo) is called
The file "def.l" is executed
(bar 3 4) is called
(mumble "hello") is called
(bye) is called, resulting in program termination

Command line arguments like "-v", "-n" and "-z" can be implemented simply by
defining three functions ’v’, ’n’ and ’z’.

In addition to the above mechanism, the command line can also be handled
"manually", by either processing the list of arguments returned by
’[http://software-lab.de/doc/refA.html#argv argv]’, or by fetching arguments
individually with ’[http://software-lab.de/doc/refO.html#opt opt]’.

652 18 Rosetta Code Tasks starting with P

Parsing/RPN calculator algorithm

Create a stack-based evaluator for an expression in reverse Polish notation that
also shows the changes in the stack as each individual token is processed as a
table.

· Assume an input of a correct, space separated, string of tokens of an RPN
expression

· Test with the RPN expression generated from the Parsing/Shunting-yard
algorithm task ’3 4 2 * 1 5 - 2 3 ˆ ˆ / +’ then print and dis-
play the output here.

Note

· ‘ˆ’ means exponentiation in the expression above.

See also

· Parsing/Shunting-yard algorithm for a method of generating an RPN from
an infix expression.

· Several solutions to 24 game/Solve make use of RPN evaluators (although
tracing how they work is not a part of that task).

· Parsing/RPN to infix conversion.

· Arithmetic evaluation.

http://en.wikipedia.org/wiki/Reverse_Polish_notation

18 Rosetta Code Tasks starting with P 653

This is an integer-only calculator:

(de rpnCalculator (Str)
(let (ˆ ** Stack) # Define ’ˆ’ from the built-in ’**’

(prinl "Token Stack")
(for Token (str Str "*+-/\ˆ")

(if (num? Token)
(push ’Stack @)
(set (cdr Stack)

(Token (cadr Stack) (pop ’Stack))))
(prin Token)
(space 6)
(println Stack))

(println (car Stack))))

Test (note that the top-of-stack is in the left-most position):

: (rpnCalculator "3 4 2 * 1 5 - 2 3 \ˆ \ˆ / +")
Token Stack
3 (3)
4 (4 3)
2 (2 4 3)

* (8 3)
1 (1 8 3)
5 (5 1 8 3)
- (-4 8 3)
2 (2 -4 8 3)
3 (3 2 -4 8 3)
ˆ (8 -4 8 3)
ˆ (65536 8 3)
/ (0 3)
+ (3)
3
-> 3

654 18 Rosetta Code Tasks starting with P

Parsing/RPN to infix conversion

Create a program that takes an RPN representation of an expression formatted
as a space separated sequence of tokens and generates the equivalent expres-
sion in infix notation.

· Assume an input of a correct, space separated, string of tokens

· Generate a space separated output string representing the same expression
in infix notation

· Show how the major datastructure of your algorithm changes with each
new token parsed.

· Test with the following input RPN strings then print and display the output
here.

RPN input sample output

3 4 2 * 1 5 - 2 3 ˆ ˆ / + 3 + 4 * 2 / (1 - 5) ˆ 2 ˆ 3

1 2 + 3 4 + ˆ 5 6 + ˆ ((1 + 2) ˆ (3 + 4)) ˆ (5 + 6)

· Operator precedence is given in this table:

operator precedence associativity

ˆ 4 Right

* 3 Left

/ 3 Left

+ 2 Left

- 2 Left

Note ‘ˆ’ means exponentiation.

See also

· Parsing/Shunting-yard algorithm for a method of generating an RPN from
an infix expression.

· Parsing/RPN calculator algorithm for a method of calculating a final value
from this output RPN expression.

· Postfix to infix from the RubyQuiz site.

http://en.wikipedia.org/wiki/Reverse_Polish_notation
http://en.wikipedia.org/wiki/Infix_notation
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Operator_associativity
http://www.rubyquiz.com/quiz148.html

18 Rosetta Code Tasks starting with P 655

We maintain a stack of cons pairs, consisting of precedences and partial
expressions. Numbers get a "highest" precedence of ’9’.

(de leftAssoc (Op)
(member Op ’("*" "/" "+" "-")))

(de precedence (Op)
(case Op

("\ˆ" 4)
(("*" "/") 3)
(("+" "-") 2)))

(de rpnToInfix (Str)
(let Stack NIL

(prinl "Token Stack")
(for Token (str Str "_")

(cond
((num? Token) (push ’Stack (cons 9 @))) # Highest precedence
((not (cdr Stack)) (quit "Stack empty"))
(T

(let (X (pop ’Stack) P (precedence Token))
(set Stack

(cons P
(pack

(if ((if (leftAssoc Token) < <=) (caar Stack) P)
(pack "(" (cdar Stack) ")")
(cdar Stack))

" " Token " "
(if ((if (leftAssoc Token) <= <) (car X) P)

(pack "(" (cdr X) ")")
(cdr X))))))))

(prin Token)
(space 6)
(println Stack))

(prog1 (cdr (pop ’Stack))
(and Stack (quit "Garbage remained on stack")))))

656 18 Rosetta Code Tasks starting with P

Test (note that the top-of-stack is in the left-most position):

: (rpnToInfix "3 4 2 * 1 5 - 2 3 \ˆ \ˆ / +")
Token Stack
3 ((9 . 3))
4 ((9 . 4) (9 . 3))
2 ((9 . 2) (9 . 4) (9 . 3))

* ((3 . "4 * 2") (9 . 3))
1 ((9 . 1) (3 . "4 * 2") (9 . 3))
5 ((9 . 5) (9 . 1) (3 . "4 * 2") (9 . 3))
- ((2 . "1 - 5") (3 . "4 * 2") (9 . 3))
2 ((9 . 2) (2 . "1 - 5") (3 . "4 * 2") (9 . 3))
3 ((9 . 3) (9 . 2) (2 . "1 - 5") (3 . "4 * 2") (9 . 3))
ˆ ((4 . "2 \ˆ 3") (2 . "1 - 5") (3 . "4 * 2") (9 . 3))
ˆ ((4 . "(1 - 5) \ˆ 2 \ˆ 3") (3 . "4 * 2") (9 . 3))
/ ((3 . "4 * 2 / (1 - 5) \ˆ 2 \ˆ 3") (9 . 3))
+ ((2 . "3 + 4 * 2 / (1 - 5) \ˆ 2 \ˆ 3"))
-> "3 + 4 * 2 / (1 - 5) \ˆ 2 \ˆ 3"

: (rpnToInfix "1 2 + 3 4 + \ˆ 5 6 + \ˆ")
Token Stack
1 ((9 . 1))
2 ((9 . 2) (9 . 1))
+ ((2 . "1 + 2"))
3 ((9 . 3) (2 . "1 + 2"))
4 ((9 . 4) (9 . 3) (2 . "1 + 2"))
+ ((2 . "3 + 4") (2 . "1 + 2"))
ˆ ((4 . "(1 + 2) \ˆ (3 + 4)"))
5 ((9 . 5) (4 . "(1 + 2) \ˆ (3 + 4)"))
6 ((9 . 6) (9 . 5) (4 . "(1 + 2) \ˆ (3 + 4)"))
+ ((2 . "5 + 6") (4 . "(1 + 2) \ˆ (3 + 4)"))
ˆ ((4 . "((1 + 2) \ˆ (3 + 4)) \ˆ (5 + 6)"))
-> "((1 + 2) \ˆ (3 + 4)) \ˆ (5 + 6)"

18 Rosetta Code Tasks starting with P 657

Parsing/Shunting-yard algorithm

Given the operator characteristics and input from the Shunting-yard algorithm
page and tables Use the algorithm to show the changes in the operator stack
and RPN output as each individual token is processed.

· Assume an input of a correct, space separated, string of tokens representing
an infix expression

· Generate a space separated output string representing the RPN

· Test with the input string ’3 + 4 * 2 / (1 - 5) ˆ 2 ˆ 3’
then print and display the output here.

· Operator precedence is given in this table:

operator precedence associativity

ˆ 4 Right

* 3 Left

/ 3 Left

+ 2 Left

- 2 Left

Extra credit

· Add extra text explaining the actions and an optional comment for the ac-
tion on receipt of each token.

Note

· the handling of functions and arguments is not required.

See also

· Parsing/RPN calculator algorithm for a method of calculating a final value
from this output RPN expression.

· Parsing/RPN to infix conversion.

http://en.wikipedia.org/wiki/Shunting-yard_algorithm

658 18 Rosetta Code Tasks starting with P

Note: "ˆ" is a meta-character and must be escaped in strings

(de operator (Op)
(member Op ’("\ˆ" "*" "/" "+" "-")))

(de leftAssoc (Op)
(member Op ’("*" "/" "+" "-")))

(de precedence (Op)
(case Op

("\ˆ" 4)
(("*" "/") 3)
(("+" "-") 2)))

(de shuntingYard (Str)
(make

(let (Fmt (-7 -30 -4) Stack)
(tab Fmt "Token" "Output" "Stack")
(for Token (str Str "_")

(cond
((num? Token) (link @))
((= "(" Token) (push ’Stack Token))
((= ")" Token)

(until (= "(" (car Stack))
(unless Stack

(quit "Unbalanced Stack"))
(link (pop ’Stack)))

(pop ’Stack))
(T

(while
(and

(operator (car Stack))
((if (leftAssoc (car Stack)) <= <)

(precedence Token)
(precedence (car Stack))))

(link (pop ’Stack)))
(push ’Stack Token)))

(tab Fmt Token (glue " " (made)) Stack))
(while Stack

(when (= "(" (car Stack))
(quit "Unbalanced Stack"))

(link (pop ’Stack))
(tab Fmt NIL (glue " " (made)) Stack)))))

18 Rosetta Code Tasks starting with P 659

Output:

: (shuntingYard "3 + 4 * 2 / (1 - 5) \ˆ 2 \ˆ 3")
Token Output Stack
3 3
+ 3 +
4 3 4 +

* 3 4 *+
2 3 4 2 *+
/ 3 4 2 * /+
(3 4 2 * (/+
1 3 4 2 * 1 (/+
- 3 4 2 * 1 -(/+
5 3 4 2 * 1 5 -(/+
) 3 4 2 * 1 5 - /+
ˆ 3 4 2 * 1 5 - ˆ/+
2 3 4 2 * 1 5 - 2 ˆ/+
ˆ 3 4 2 * 1 5 - 2 ˆˆ/+
3 3 4 2 * 1 5 - 2 3 ˆˆ/+

3 4 2 * 1 5 - 2 3 ˆ ˆ/+
3 4 2 * 1 5 - 2 3 ˆ ˆ /+
3 4 2 * 1 5 - 2 3 ˆ ˆ / +
3 4 2 * 1 5 - 2 3 ˆ ˆ / +

-> (3 4 2 "*" 1 5 "-" 2 3 "\ˆ" "\ˆ" "/" "+")

660 18 Rosetta Code Tasks starting with P

Partial function application

Partial function application is the ability to take a function of many parame-
ters and apply arguments to some of the parameters to create a new function
that needs only the application of the remaining arguments to produce the
equivalent of applying all arguments to the original function.

E.g:

Given values v1, v2

Given f(param1, param2)

Then partial(f, param1=v1) returns f’(param2)

And f(param1=v1, param2=v2) == f’(param2=v2) (for any value
v2)

Note that in the partial application of a parameter, (in the above case param1),
other parameters are not explicitly mentioned. This is a recurring feature of
partial function application.

Task

· Create a function fs(f, s) that takes a function, f(n), of one value and a
sequence of values s.
Function fs should return an ordered sequence of the result of applying
function f to every value of s in turn.

· Create function f1 that takes a value and returns it multiplied by 2.

· Create function f2 that takes a value and returns it squared.

· Partially apply f1 to fs to form function fsf1(s)

· Partially apply f2 to fs to form function fsf2(s)

· Test fsf1 and fsf2 by evaluating them with s being the sequence of integers
from 0 to 3 inclusive and then the sequence of even integers from 2 to 8
inclusive.

Notes

· In partially applying the functions f1 or f2 to fs, there should be no explicit
mention of any other parameters to fs, although introspection of fs within
the partial applicator to find its parameters is allowed.

· This task is more about how results are generated rather than just getting
results.

http://en.wikipedia.org/wiki/Partial_application

18 Rosetta Code Tasks starting with P 661

(def ’fs mapcar)
(de f1 (N) (* 2 N))
(de f2 (N) (* N N))

(de partial (F1 F2)
(curry (F1 F2) @

(pass F1 F2)))

(def ’fsf1 (partial fs f1))
(def ’fsf2 (partial fs f2))

(for S ’((0 1 2 3) (2 4 6 8))
(println (fsf1 S))
(println (fsf2 S)))

Output:

(0 2 4 6)
(0 1 4 9)
(4 8 12 16)
(4 16 36 64)

662 18 Rosetta Code Tasks starting with P

Pascal’s triangle

Pascal’s triangle is an interesting math concept. Its first few rows look like
this:

1
1 1

1 2 1
1 3 3 1

where each element of each row is either 1 or the sum of the two elements
right above it. For example, the next row would be 1 (since the first element
of each row doesn’t have two elements above it), 4 (1 + 3), 6 (3 + 3), 4 (3 +
1), and 1 (since the last element of each row doesn’t have two elements above
it). Each row n (starting with row 0 at the top) shows the coefficients of the
binomial expansion of (x + y)n.

Write a function that prints out the first n rows of the triangle (with f(1)
yielding the row consisting of only the element 1). This can be done either
by summing elements from the previous rows or using a binary coefficient or
combination function. Behavior for n <= 0 does not need to be uniform,
but should be noted.

(de pascalTriangle (N)
(for I N

(space (* 2 (- N I)))
(let C 1

(for K I
(prin (align 3 C) " ")
(setq C (*/ C (- I K) K))))

(prinl)))

18 Rosetta Code Tasks starting with P 663

Pascal’s triangle/Puzzle

This puzzle involves a Pascals Triangle, also known as a Pyramid of Numbers.

[151]
[][]

[40][][]
[][][][]

[X][11][Y][4][Z]

Each brick of the pyramid is the sum of the two bricks situated below it.
Of the three missing numbers at the base of the pyramid, the middle one is the
sum of the other two (that is, Y = X + Z).

Write a program to find a solution to this puzzle.

http://xunor.free.fr/en/riddles/auto/pyramidnb.php
http://xunor.free.fr/en/riddles/auto/pyramidnb.php

664 18 Rosetta Code Tasks starting with P

(be number (@N @Max)
(@C box 0)
(repeat)
(or

((@ >= (val (-> @C)) (-> @Max)) T (fail))
((@N inc (-> @C)))))

(be + (@A @B @Sum)
(@ -> @A)
(@ -> @B)
(@Sum + (-> @A) (-> @B)))

(be + (@A @B @Sum)
(@ -> @A)
(@ -> @Sum)
(@B - (-> @Sum) (-> @A))
T
(@ ge0 (-> @B)))

(be + (@A @B @Sum)
(number @A @Sum)
(@B - (-> @Sum) (-> @A)))

#{
151
A B

40 C D
E F G H

X 11 Y 4 Z
}#

(be puzzle (@X @Y @Z)
(+ @A @B 151)
(+ 40 @C @A)
(+ @C @D @B)
(+ @E @F 40)
(+ @F @G @C)
(+ @G @H @D)
(+ @X 11 @E)
(+ 11 @Y @F)
(+ @Y 4 @G)
(+ 4 @Z @H)
(+ @X @Z @Y))

Output:

: (? (puzzle @X @Y @Z))
@X=5 @Y=13 @Z=8

18 Rosetta Code Tasks starting with P 665

Pattern matching

Some languages offer direct support for algebraic data types and pattern
matching on them. While this of course can always be simulated with manual
tagging and conditionals, it allows for terse code which is easy to read, and
can represent the algorithm directly.

As an example, implement insertion in a red-black-tree. A red-black-tree is a
binary tree where each internal node has a color attribute red or black. More-
over, no red node can have a red child, and every path from the root to an
empty node must contain the same number of black nodes. As a consequence,
the tree is balanced, and must be re-balanced after an insertion.

http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Red_Black_Tree

666 18 Rosetta Code Tasks starting with P

(be color (R))
(be color (B))

(be tree (@ E))
(be tree (@P (T @C @L @X @R))

(color @C)
(tree @P @L)
(call @P @X)
(tree @P @R))

(be bal (B (T R (T R @A @X @B) @Y @C) @Z @D (T R (T B @A @X @B) @Y (T B @C @Z @D))))
(be bal (B (T R @A @X (T R @B @Y @C)) @Z @D (T R (T B @A @X @B) @Y (T B @C @Z @D))))
(be bal (B @A @X (T R (T R @B @Y @C) @Z @D) (T R (T B @A @X @B) @Y (T B @C @Z @D))))
(be bal (B @A @X (T R @B @Y (T R @C @Z @D)) (T R (T B @A @X @B) @Y (T B @C @Z @D))))

(be balance (@C @A @X @B @S)
(bal @C @A @X @B @S)
T)

(be balance (@C @A @X @B (T @C @A @X @B)))

(be ins (@X E (T R E @X E)))
(be ins (@X (T @C @A @Y @B) @R)

(@ < (-> @X) (-> @Y))
(ins @X @A @Ao)
(balance @C @Ao @Y @B @R)
T)

(be ins (@X (T @C @A @Y @B) @R)
(@ > (-> @X) (-> @Y))
(ins @X @B @Bo)
(balance @C @A @Y @Bo @R)
T)

(be ins (@X (T @C @A @Y @B) (T @C @A @Y @B)))

(be insert (@X @S (T B @A @Y @B))
(ins @X @S (T @ @A @Y @B)))

Test:

: (? (insert 2 E @A) (insert 1 @A @B) (insert 3 @B @C))
@A=(T B E 2 E) @B=(T B (T R E 1 E) 2 E) @C=(T B (T R E 1 E) 2 (T R E 3 E))
-> NIL

18 Rosetta Code Tasks starting with P 667

Percentage difference between images

Compute the percentage of difference between 2 JPEG images of the same
size. Alternatively, compare two bitmaps as defined in basic bitmap storage.

Useful for comparing two JPEG images saved with a different compression
ratios.

You can use these pictures for testing (use the full-size version of each):

50% quality JPEG 100% quality JPEG

link to full size 50% image link to full size 100% image

The expected difference for these two images is 1.62125%

http://rosettacode.org/mw/images/3/3c/Lenna50.jpg
http://rosettacode.org/mw/images/b/b6/Lenna100.jpg

668 18 Rosetta Code Tasks starting with P

(call "convert" "Lenna50.jpg" (tmp "Lenna50.ppm"))
(call "convert" "Lenna100.jpg" (tmp "Lenna100.ppm"))

(let (Total 0 Diff 0)
(in (tmp "Lenna50.ppm")

(in (tmp "Lenna100.ppm")
(while (rd 1)

(inc ’Diff
(*/

(abs (- @ (in -1 (rd 1))))
1000000
255))

(inc ’Total))))
(prinl "Difference is " (format (*/ Diff Total) 4) " percent"))

Output:

Difference is 1.6256 percent

18 Rosetta Code Tasks starting with P 669

Perfect numbers

Write a function which says whether a number is perfect.

A perfect number is a positive integer that is the sum of its proper positive di-
visors excluding the number itself. Equivalently, a perfect number is a number
that is half the sum of all of its positive divisors (including itself).

Note: The faster Lucas-Lehmer test is used to find primes of the form 2n-1, all
known perfect numbers can be derived from these primes using the formula
(2n - 1) 2n - 1. It is not known if there are any odd perfect numbers.

See also

· Rational Arithmetic

· Perfect numbers on OEIS

(de perfect (N)
(let C 0

(for I (/ N 2)
(and (=0 (\% N I)) (inc ’C I)))

(= C N)))

http://en.wikipedia.org/wiki/Perfect_numbers
http://oeis.org/A000396

670 18 Rosetta Code Tasks starting with P

Permutation test

A new medical treatment was tested on a population of n + m volunteers, with
each volunteer randomly assigned either to a group of n treatment subjects,
or to a group of m control subjects. Members of the treatment group were
given the treatment, and members of the control group were given a placebo.
The effect of the treatment or placebo on each volunteer was measured and
reported in this table.

Treatment group Control group

85 68

88 41

75 10

66 49

25 16

29 65

83 32

39 92

97 28

98

Table 18.1: Table of experimen-
tal results

Write a program that performs a permutation test to judge whether the treat-
ment had a significantly stronger effect than the placebo.

· Do this by considering every possible alternative assignment from the same
pool of volunteers to a treatment group of size n and a control group of
size m (i.e., the same group sizes used in the actual experiment but with the
group members chosen differently), while assuming that each volunteer’s
effect remains constant regardless.

· Note that the number of alternatives will be the binomial coefficient .

· Compute the mean effect for each group and the difference in means be-
tween the groups in every case by subtracting the mean of the control group
from the mean of the treatment group.

http://en.wikipedia.org/wiki/Permutation_test#Permutation_tests
http://en.wikipedia.org/wiki/Binomial_coefficient

18 Rosetta Code Tasks starting with P 671

· Report the percentage of alternative groupings for which the difference in
means is less or equal to the actual experimentally observed difference in
means, and the percentage for which it is greater.

· Note that they should sum to 100%.

Extremely dissimilar values are evidence of an effect not entirely due to
chance, but your program need not draw any conclusions.

You may assume the experimental data are known at compile time if that’s
easier than loading them at run time. Test your solution on the data given
above.

672 18 Rosetta Code Tasks starting with P

(load "@lib/simul.l") # For ’subsets’

(scl 2)

(de _stat (A)
(let (LenA (length A) SumA (apply + A))

(-
(*/ SumA LenA)
(*/ (- SumAB SumA) (- LenAB LenA)))))

(de permutationTest (A B)
(let

(AB (append A B)
SumAB (apply + AB)
LenAB (length AB)
Tobs (_stat A)
Count 0)

(*/
(sum

’((Perm)
(inc ’Count)
(and (>= Tobs (_stat Perm)) 1))

(subsets (length A) AB))
100.0
Count)))

(setq

*TreatmentGroup (0.85 0.88 0.75 0.66 0.25 0.29 0.83 0.39 0.97)

*ControlGroup (0.68 0.41 0.10 0.49 0.16 0.65 0.32 0.92 0.28 0.98))

(let N (permutationTest *TreatmentGroup *ControlGroup)
(prinl "under = " (round N) "\%, over = " (round (- 100.0 N)) "\%"))

Output:

under = 87.85\%, over = 12.15\%

18 Rosetta Code Tasks starting with P 673

Permutations

Write a program which generates the all permutations of n different objects.
(Practically numerals!)

C.f.

· Find the missing permutation

· Permutations/Derangements

(load "@lib/simul.l")

(permute (1 2 3))

Output:

-> ((1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1))

http://en.wikipedia.org/wiki/Permutation

674 18 Rosetta Code Tasks starting with P

Permutations/Derangements

A derangement is a permutation of the order of distinct items in which no
item appears in its original place.

For example, the only two derangements of the three items (0, 1, 2) are (1,
2, 0), and (2, 0, 1).

The number of derangements of n distinct items is known as the subfacto-
rial of n, sometimes written as !n. There are various ways to calculate !n.

Task

The task is to:

1. Create a named function/method/subroutine/. . . to generate derange-
ments of the integers 0..n-1, (or 1..n if you prefer).

2. Generate and show all the derangements of 4 integers using the above
routine.

3. Create a function that calculates the subfactorial of n, !n.

4. Print and show a table of the counted number of derangements of n vs.
the calculated !n for n from 0..9 inclusive.

As an optional stretch goal:

· Calculate !20.

Cf.

· Anagrams/Deranged anagrams

· Best shuffle

http://mathworld.wolfram.com/Derangement.html
http://en.wikipedia.org/wiki/Derangement#Counting_derangements

18 Rosetta Code Tasks starting with P 675

(load "@lib/simul.l") # For ’permute’

(de derangements (Lst)
(filter

’((L) (not (find = L Lst)))
(permute Lst)))

(de subfact (N)
(if (>= 2 N)

(if (= 1 N) 0 1)
(*

(dec N)
(+ (subfact (dec N)) (subfact (- N 2))))))

Output:

: (derangements (range 1 4))
-> ((2 1 4 3) (2 3 4 1) (2 4 1 3) (3 1 4 2) (3 4 1 2) (3 4 2 1)
(4 1 2 3)(4 3 1 2) (4 3 2 1))

: (for I (range 0 9)
(tab (2 8 8)

I
(length (derangements (range 1 I)))
(subfact I)))

0 1 1
1 0 0
2 1 1
3 2 2
4 9 9
5 44 44
6 265 265
7 1854 1854
8 14833 14833
9 133496 133496

-> NIL

: (subfact 20)
-> 895014631192902121

676 18 Rosetta Code Tasks starting with P

Pi

Create a program to continually calculate and output the next digit of (pi).
The program should continue forever (until it is aborted by the user) calculat-
ing and outputting each digit in succession. The output should be a decimal
sequence beginning 3.14159265 . . .

The following script uses the spigot algorithm published by Jeremy Gibbons.
Hit Ctrl-C to stop it.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de piDigit ()
(job ’((Q . 1) (R . 0) (S . 1) (K . 1) (N . 3) (L . 3))

(while (>= (- (+ R (* 4 Q)) S) (* N S))
(mapc set ’(Q R S K N L)

(list
(* Q K)
(* L (+ R (* 2 Q)))
(* S L)
(inc K)
(/ (+ (* Q (+ 2 (* 7 K))) (* R L)) (* S L))
(+ 2 L))))

(prog1 N
(let M (- (/ (* 10 (+ R (* 3 Q))) S) (* 10 N))

(setq Q (* 10 Q) R (* 10 (- R (* N S))) N M)))))

(prin (piDigit) ".")
(loop

(prin (piDigit))
(flush))

Output:

3.14159265358979323846264338327950288419716939937510582097494459 ...

18 Rosetta Code Tasks starting with P 677

Pick random element

Demonstrate how to pick a random element from a list.

(get Lst (rand 1 (length Lst)))

678 18 Rosetta Code Tasks starting with P

Pinstripe/Display

The task is to demonstrate the creation of a series of 1 pixel wide vertical pin-
stripes across the entire width of the display. The pinstripes should alternate
one pixel white, one pixel black.

Quarter of the way down the display, we can switch to a wider 2 pixel wide
vertical pinstripe pattern, alternating two pixels white, two pixels black. Half
way down the display, we switch to 3 pixels wide, and for the lower quarter
of the display we use 4 pixels.

c.f. Colour pinstripe/Display

(let Pbm # Create PBM of 384 x 288 pixels
(make

(for N 4
(let

(C 0
L (make

(do (/ 384 N)
(do N (link C))
(setq C (x| 1 C)))))

(do 72 (link L)))))
(out ’(display) # Pipe to ImageMagick

(prinl "P1")
(prinl (length (car Pbm)) " " (length Pbm))
(mapc prinl Pbm)))

18 Rosetta Code Tasks starting with P 679

Pinstripe/Printer

The task is to demonstrate the creation of a series of 1 point wide vertical
pinstripes with a sufficient number of pinstripes to span the entire width of the
printed page (except for the last pinstripe). The pinstripes should alternate one
point white, one point black. (Where the printer does not support producing
graphics in terms of points, pixels may be substituted in this task.)

After the first inch of printing, we switch to a wider 2 point wide vertical pin-
stripe pattern. alternating two points white, two points black. We then switch
to 3 points wide for the next inch, and then 4 points wide, etc. This trend
continues for the entire length of the page (or for 12 inches of run length in
the case of a printer using continuous roll stationery). After printing the test
pattern the page is ejected (or the test pattern is rolled clear of the printer
enclosure, in the case of continuous roll printers).

Note that it is an acceptable solution to use the smallest marks that the lan-
guage provides, rather than working at native printer resolution, where this is
not achievable from within the language.

Optionally, on systems where the printer resolution cannot be determined, it
is permissible to prompt the user for printer resolution, and to calculate point
size based on user input, enabling fractional point sizes to be used.

(load "@lib/ps.l")

(call ’lpr
(pdf "pinstripes"

(a4) # 595 x 842 dots
(for X 595

(gray (if (bit? 1 X) 0 100)
(vline X 0 842)))

(page)))

680 18 Rosetta Code Tasks starting with P

Play recorded sounds

Load at least two prerecorded sounds, and demonstrate as many of these fea-
tures as you can:

· playing them individually and simultaneously

· stopping before the end of the sound

· looping (preferably glitch-free)

· setting the volume of each sound

· stereo or 3D positional mixing

· performing other actions when marked times in the sound arrive

Describe:

· The supported audio formats, briefly.

· Whether it is suitable for game sound effects (low-latency start, resource
efficiency, supports many simultaneous sounds, etc.)

· Whether it is suitable for playing music (long duration).

[Note: If it seems to be a good idea, this task may be revised to specify a
particular timeline rather than just ‘demonstrate these features’.]

Where applicable, please categorize examples primarily by the audio facility
used (library/API/program/platform) rather than the language if the language
is incidental (e.g. “Mac OS X CoreAudio” or “mplayer” rather than “C” or
“bash”).

The obvious way is to call ’sox’, the "Swiss Army knife of audio manipulation"
(man sox).

The following plays two files "a.wav" and "b.wav" simultaneously (to play them
individually, omit the "-m" flag). The first one is played with a volume of 75
percent, the second with 25 percent, starting at the 4th second, with a duration
of 6 seconds, looping 5 times.

(call ’sox
"-m" "-v" "0.75" "a.wav" "-v" "0.25" "b.wav"
"-d"
"trim" 4 6
"repeat" 5)

18 Rosetta Code Tasks starting with P 681

Playing cards

Create a data structure and the associated methods to define and manipulate a
deck of playing cards. The deck should contain 52 unique cards. The methods
must include the ability to make a new deck, shuffle (randomize) the deck,
deal from the deck, and print the current contents of a deck. Each card must
have a pip value and a suit value which constitute the unique value of the card.

(de *Suits
Club Diamond Heart Spade)

(de *Pips
Ace 2 3 4 5 6 7 8 9 10 Jack Queen King)

(de mkDeck ()
(mapcan

’((Pip) (mapcar cons *Suits (circ Pip)))

*Pips))

(de shuffle (Lst)
(by ’(NIL (rand)) sort Lst))

http://en.wikipedia.org/wiki/Playing-cards#Anglo-American-French

682 18 Rosetta Code Tasks starting with P

Plot coordinate pairs

Plot a function represented as ‘x’, ‘y’ numerical arrays.

Post link to your resulting image for input arrays (see Example section for
Python language on Query Performance page):

x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
y = {2.7, 2.8, 31.4, 38.1, 58.0, 76.2, 100.5, 130.0, 149.3, 180.0};

This task is intended as a subtask for Measure relative performance of sorting
algorithms implementations.

Example PicoLisp Output:

18 Rosetta Code Tasks starting with P 683

(load "@lib/ps.l")

(scl 1)

(de plot (PsFile DX DY Lst)
(let (SX (length Lst) SY (apply max Lst) N 0 Val)

(out PsFile
(psHead (+ DX 20) (+ DY 40))
(font (9 . "Helvetica"))
(if (or (=0 SX) (=0 SY))

(window 60 12 DX DY
(font 24 ,"Not enough Data"))

(setq Lst # Build coordinates
(let X -1

(mapcar
’((Y)

(cons
(*/ (inc ’X) DX SX)
(- DY (*/ Y DY SY))))

Lst)))
(color 55 95 55 # Background color

(let (X (+ DX 40) Y (+ DY 40))
(poly T 0 0 X 0 X Y 0 Y 0 0)))

(window 20 20 DX DY # Plot coordinates
(poly NIL 0 0 0 DY (- DX 20) DY)
(color 76 24 24

(poly NIL (caar Lst) (cdar Lst) (cdr Lst))))
(window 4 4 60 12 (ps (format SY *Scl)))
(for X SX

(window (+ 6 (*/ (dec X) DX SX)) (+ 24 DY) 30 12
(ps (format (dec X)) 0))))

(page))))

(plot "plot.ps" 300 200 (2.7 2.8 31.4 38.1 58.0 76.2 100.5 130.0 149.3 180.0))
(call ’display "plot.ps")

684 18 Rosetta Code Tasks starting with P

Pointers and references

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic
data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

In this task, the goal is to demonstrate common operations on pointers and
references.

18 Rosetta Code Tasks starting with P 685

The internal PicoLisp machinery consists completely of pointers. Any data item
(except numbers) is a pointer that points to a cell, which in turn consists of
two pointers ("cons pair").

The pointers are not evident to the programmer. The development environment
presents them as high level structures (symbols or lists). However, the pointer
value (the address) can be obtained with the
’[http://software-lab.de/doc/refA.html#adr adr]’ function.

"Dereferencing" a pointer is done with the
’[http://software-lab.de/doc/refC.html#car car]’ or
’[http://software-lab.de/doc/refV.html#val val]’ functions. They return the data
item at the memory location (CAR or VAL part of a cell). With
’[http://software-lab.de/doc/refS.html#set set]’, a value can be stored in the
referred location.

There is no meaningful pointer arithmetics, except functions like
’[http://software-lab.de/doc/refC.html#cdr cdr]’ or
’[http://software-lab.de/doc/refN.html#nth nth]’, which advance the pointer to
the next (linked to) location(s).

: (setq L (1 a 2 b 3 c)) # Create a list of 6 items in ’L’
-> (1 a 2 b 3 c)

: (nth L 4) # Get a pointer to the 4th item
-> (b 3 c)

: (set (nth L 4) "Hello") # Store "Hello" in that location
-> "Hello"

: L # Look at the modified list in ’L’
-> (1 a 2 "Hello" 3 c)

686 18 Rosetta Code Tasks starting with P

Polynomial long division

In algebra, polynomial long division is an algorithm for dividing a polynomial
by another polynomial of the same or lower degree.

Let us suppose a polynomial is represented by a vector, x (i.e., an ordered
collection of coefficients) so that the ith element keeps the coefficient of xi, and
the multiplication by a monomial is a shift of the vector’s elements “towards
right” (injecting zeros from left) followed by a multiplication of each element
by the coefficient of the monomial.

Then a pseudocode for the polynomial long division using the conventions
described above could be:

degree(P):
return the index of the last non-zero element of P;

if all elements are 0, return -

polynomial_long_division(N, D) returns (q, r):
// N, D, q, r are vectors
if degree(D) < 0 then error
if degree(N) degree(D) then

q 0
while degree(N) degree(D)

d D shifted right by (degree(N) - degree(D))
q(degree(N) - degree(D)) N(degree(N)) / d(degree(d))
// by construction, degree(d) = degree(N) of course
d d * q(degree(N) - degree(D))
N N - d

endwhile
r N

else
q 0
r N

endif
return (q, r)

http://en.wikipedia.org/wiki/Polynomial_long_division
http://en.wikipedia.org/wiki/Coefficient

18 Rosetta Code Tasks starting with P 687

Note: vector * scalar multiplies each element of the vector by the
scalar; vectorA - vectorB subtracts each element of the vectorB from
the element of the vectorA with “the same index”. The vectors in the pseu-
docode are zero-based.

· Error handling (for allocations or for wrong inputs) is not mandatory.

· Conventions can be different; in particular, note that if the first coefficient
in the vector is the highest power of x for the polynomial represented by
the vector, then the algorithm becomes simpler.

Example for clarification
This example is from Wikipedia, but changed to show how the given pseu-
docode works.

688 18 Rosetta Code Tasks starting with P

0 1 2 3

N: -42 0 -12 1 degree = 3
D: -3 1 0 0 degree = 1

d(N) - d(D) = 2, so let’s shift D towards right by 2:

N: -42 0 -12 1
d: 0 0 -3 1

N(3)/d(3) = 1, so d is unchanged. Now remember that "shifting by 2"
is like multiplying by x2, and the final multiplication
(here by 1) is the coefficient of this monomial. Let’s store this
into q:

0 1 2

q: 0 0 1

now compute N - d, and let it be the "new" N, and let’s loop

N: -42 0 -9 0 degree = 2
D: -3 1 0 0 degree = 1

d(N) - d(D) = 1, right shift D by 1 and let it be d

N: -42 0 -9 0
d: 0 -3 1 0 * -9/1 = -9

q: 0 -9 1

d: 0 27 -9 0

N N - d

N: -42 -27 0 0 degree = 1
D: -3 1 0 0 degree = 1

looping again... d(N)-d(D)=0, so no shift is needed; we
multiply D by -27 (= -27/1) storing the result in d, then

q: -27 -9 1

and

N: -42 -27 0 0 -
d: 81 -27 0 0 =
N: -123 0 0 0 (last N)

d(N) < d(D), so now r N, and the result is:

0 1 2

q: -27 -9 1 x2 - 9x - 27
r: -123 0 0 -123

18 Rosetta Code Tasks starting with P 689

(de degree (P)
(let I NIL

(for (N . C) P
(or (=0 C) (setq I N)))

(dec I)))

(de divPoly (N D)
(if (lt0 (degree D))

(quit "Div/0" D)
(let (Q NIL Diff)

(while (ge0 (setq Diff (- (degree N) (degree D))))
(setq Q (need (- -1 Diff) Q 0))
(let E D

(do Diff (push ’E 0))
(let F (/ (get N (inc (degree N))) (get E (inc (degree E))))

(set (nth Q (inc Diff)) F)
(setq N (mapcar ’((N E) (- N (* E F))) N E)))))

(list Q N))))

Output:

: (divPoly (-42 0 -12 1) (-3 1 0 0))
-> ((-27 -9 1) (-123 0 0 0))

690 18 Rosetta Code Tasks starting with P

Polymorphic copy

An object is polymorphic when its specific type may vary. The types a specific
value may take, is called class.

It is trivial to copy an object if its type is known:

int x;
int y = x;

Here x is not polymorphic, so y is declared of same type (int) as x. But if the
specific type of x were unknown, then y could not be declared of any specific
type.

The task: let a polymorphic object contain an instance of some specific type S
derived from a type T. The type T is known. The type S is possibly unknown
until run time. The objective is to create an exact copy of such polymorphic
object (not to create a reference, nor a pointer to). Let further the type T have
a method overridden by S. This method is to be called on the copy to demon-
strate that the specific type of the copy is indeed S.

18 Rosetta Code Tasks starting with P 691

Any object can be copied by transferring the value and the property list. If we
create an object ’A’:

: (setq A (new ’(+Cls1 +Cls2) ’attr1 123 ’attr2 "def" ’attr3 (4 2 0) ’attr4 T
-> \$385603635

: (show A)
\$385603635 (+Cls1 +Cls2)

attr4
attr3 (4 2 0)
attr2 "def"
attr1 123

-> \$385603635

Then we can easily copy it to a new object ’B’:

(putl (setq B (new (val A))) (getl A))

Inspecting ’B’:

: (show B)
\$385346595 (+Cls1 +Cls2)

attr1 123
attr2 "def"
attr3 (4 2 0)
attr4

-> \$385346595

692 18 Rosetta Code Tasks starting with P

Polymorphism

Create two classes Point(x,y) and Circle(x,y,r) with a polymorphic function
print, accessors for (x,y,r), copy constructor, assignment and destructor and
every possible default constructors

(class +Point)
x y

(dm T (X Y)
(=: x (or X 0))
(=: y (or Y 0)))

(dm print> ()
(prinl "Point " (: x) "," (: y)))

(class +Circle +Point)
r

(dm T (X Y R)
(super X Y)
(=: r (or R 0)))

(dm print> ()
(prinl "Circle " (: x) "," (: y) "," (: r)))

(setq
P (new ’(+Point) 3 4)
C (new ’(+Circle) 10 10 5))

(print> P)
(print> C)

Output:

Point 3,4
Circle 10,10,5

18 Rosetta Code Tasks starting with P 693

Power set

A set is a collection (container) of certain values, without any particular order,
and no repeated values. It corresponds with a finite set in mathematics. A set
can be implemented as an associative array (partial mapping) in which the
value of each key-value pair is ignored.

Given a set S, the power set (or powerset) of S, written P(S), or 2S, is the set
of all subsets of S.

Task : By using a library or build-in set type, or defining a set type with
necessary operations, write a function with a set S as input that yields a power
set 2S of S.

For example, the power set of {1,2,3,4} is {{}, {1}, {2}, {1,2}, {3}, {1,3},
{2,3}, {1,2,3}, {4}, {1,4}, {2,4}, {1,2,4}, {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}.

(de powerset (Lst)
(ifn Lst

(cons)
(let L (powerset (cdr Lst))

(conc
(mapcar ’((X) (cons (car Lst) X)) L)
L))))

http://en.wikipedia.org/wiki/Power_set

694 18 Rosetta Code Tasks starting with P

Pragmatic directives

Pragmatic directives cause the language to operate in a specific manner, al-
lowing support for operational variances within the program code (possibly
by the loading of specific or alternative modules).

The task is to list any pragmatic directives supported by the language, de-
mostrate how to activate and deactivate the pragmatic directives and to de-
scribe or demonstate the scope of effect that the pragmatic directives have
within a program.

PicoLisp makes no formal difference between any normal and "specific" operation
of the language. Any possible desired effect can be achieved by calling a
function or setting a variable. For example, function calls can be traced with
the ’[http://software-lab.de/doc/refT.html#trace trace]’ function.

18 Rosetta Code Tasks starting with P 695

Price Fraction

A friend of mine runs a pharmacy. He has a specialised function in his Dis-
pensary application which receives a decimal value of currency and replaces
it to a standard value. This value is regulated by a government department.

Task: Given a floating point value between 0.00 and 1.00, rescale according
to the following table:

>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00

696 18 Rosetta Code Tasks starting with P

(scl 2)

(de price (Pr)
(format

(cdr
(rank Pr

(quote
(0.00 . 0.10)
(0.06 . 0.18)
(0.11 . 0.26)
(0.16 . 0.32)
(0.21 . 0.38)
(0.26 . 0.44)
(0.31 . 0.50)
(0.36 . 0.54)
(0.41 . 0.58)
(0.46 . 0.62)
(0.51 . 0.66)
(0.56 . 0.70)
(0.61 . 0.74)
(0.66 . 0.78)
(0.71 . 0.82)
(0.76 . 0.86)
(0.81 . 0.90)
(0.86 . 0.94)
(0.91 . 0.98)
(0.96 . 1.00))))

*Scl))

(for N (0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292)
(prinl (price N)))

Output:

0.54
0.58
0.18
0.78
0.44
0.66
0.86
0.98
0.38

18 Rosetta Code Tasks starting with P 697

Primality by trial division

Write a boolean function that tells whether a given integer is prime. Remem-
ber that 1 and all non-positive numbers are not prime.

Use trial division. Even numbers over two may be eliminated right away. A
loop from 3 to n will suffice, but other loops are allowed.

· Related task: Sieve of Eratosthenes, Prime decomposition.

(de prime? (N)
(or

(= N 2)
(and

(> N 1)
(bit? 1 N)
(for (D 3 T (+ D 2))

(T (> D (sqrt N)) T)
(T (=0 (\% N D)) NIL)))))

698 18 Rosetta Code Tasks starting with P

Prime decomposition

The prime decomposition of a number is defined as a list of prime numbers
which when all multiplied together, are equal to that number. Example: 12 =
2 2 3, so its prime decomposition is {2, 2, 3}

Write a function which returns an array or collection which contains the prime
decomposition of a given number, n, greater than 1. If your language does
not have an isPrime-like function available, you may assume that you have a
function which determines whether a number is prime (note its name before
your code).

If you would like to test code from this task, you may use code from trial
division or the Sieve of Eratosthenes.

Note: The program must not be limited by the word size of your computer or
some other artificial limit; it should work for any number regardless of size
(ignoring the physical limits of RAM etc).

The following solution generates a sequence of "trial divisors" (2 3 5 7 11 13
17 19 23 29 31 37 ..), as described by Donald E. Knuth, "The Art of Computer
Programming", Vol.2, p.365.

(de factor (N)
(make

(let (D 2 L (1 2 2 . (4 2 4 2 4 6 2 6 .)) M (sqrt N))
(while (>= M D)

(if (=0 (\% N D))
(setq M (sqrt (setq N (/ N (link D)))))
(inc ’D (pop ’L))))

(link N))))

(factor 1361129467683753853853498429727072845823)

Output:

-> (3 11 31 131 2731 8191 409891 7623851 145295143558111)

18 Rosetta Code Tasks starting with P 699

Priority queue

A priority queue is somewhat similar to a queue, with an important distinction:
each item is added to a priority queue with a priority level, and will be later
removed from the queue with the highest priority element first. That is, the
items are (conceptually) stored in the queue in priority order instead of in
insertion order.

Task: Create a priority queue. The queue must support at least two operations:

1. Insertion. An element is added to the queue with a priority (a numeric
value).

2. Top item removal. Deletes the element or one of the elements with the
current top priority and return it.

Optionally, other operations may be defined, such as peeking (find what cur-
rent top priority/top element is), merging (combining two priority queues into
one), etc.

To test your implementation, insert a number of elements into the queue, each
with some random priority. Then dequeue them sequentially; now the ele-
ments should be sorted by priority. You can use the following task/priority
items as input data:

Priority Task
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return

The implementation should try to be efficient. A typical implementation has
O(log n) insertion and extraction time, where n is the number of items in
the queue. You may choose to impose certain limits such as small range of
allowed priority levels, limited capacity, etc. If so, discuss the reasons behind
it.

http://en.wikipedia.org/wiki/Priority_queue

700 18 Rosetta Code Tasks starting with P

The following implementation imposes no limits. It uses a
[http://software-lab.de/doc/refI.html#idx binary tree] for storage. The priority
levels may be numeric, or of any other type.

Insert item into priority queue
(de insertPQ (Queue Prio Item)

(idx Queue (cons Prio Item) T))

Remove and return top item from priority queue
(de removePQ (Queue)

(cdar (idx Queue (peekPQ Queue) NIL)))

Find top element in priority queue
(de peekPQ (Queue)

(let V (val Queue)
(while (cadr V)

(setq V @))
(car V)))

Merge second queue into first
(de mergePQ (Queue1 Queue2)

(balance Queue1 (sort (conc (idx Queue1) (idx Queue2)))))

Test:

Two priority queues
(off Pq1 Pq2)

Insert into first queue
(insertPQ ’Pq1 3 ’(Clear drains))
(insertPQ ’Pq1 4 ’(Feed cat))

Insert into second queue
(insertPQ ’Pq2 5 ’(Make tea))
(insertPQ ’Pq2 1 ’(Solve RC tasks))
(insertPQ ’Pq2 2 ’(Tax return))

Merge second into first queue
(mergePQ ’Pq1 ’Pq2)

Remove and print all items from first queue
(while Pq1

(println (removePQ ’Pq1)))

Output:

(Solve RC tasks)
(Tax return)
(Clear drains)
(Feed cat)
(Make tea)

18 Rosetta Code Tasks starting with P 701

Probabilistic choice

Given a mapping between items and their required probability of occurrence,
generate a million items randomly subject to the given probabilities and com-
pare the target probability of occurrence versus the generated values.

The total of all the probabilities should equal one. (Because floating point
arithmetic is involved this is subject to rounding errors).

Use the following mapping to test your programs:

aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1

702 18 Rosetta Code Tasks starting with P

(let (Count 1000000 Denom 27720 N Denom)
(let Probs

(mapcar
’((I S)

(prog1 (cons N (*/ Count I) 0 S)
(dec ’N (/ Denom I))))

(range 5 12)
’(aleph beth gimel daleth he waw zayin heth))

(do Count
(inc (cddr (rank (rand 1 Denom) Probs T))))

(let Fmt (-6 12 12)
(tab Fmt NIL "Probability" "Result")
(for X Probs

(tab Fmt
(cdddr X)
(format (cadr X) 6)
(format (caddr X) 6))))))

Output:

Probability Result
aleph 0.200000 0.199760
beth 0.166667 0.166878
gimel 0.142857 0.142977
daleth 0.125000 0.124983
he 0.111111 0.111200
waw 0.100000 0.100173
zayin 0.090909 0.090591
heth 0.083333 0.063438

18 Rosetta Code Tasks starting with P 703

Program termination

Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.

Explain the cleanup (or lack thereof) caused by the termination (allocated
memory, database connections, open files, object finalizers/destructors, run-
on-exit hooks, etc.). Unless otherwise described, no special cleanup outside
that provided by the operating system is provided.

Calling ’bye’, optionally with a numeric code, terminates the program.

This will execute all pending ’finally’ expressions, close all open files and/
or pipes, flush standard output, and execute all expressions in the global
variable ’*Bye’ before exiting.

(push ’*Bye ’(prinl "Goodbye world!"))
(bye)

Output:

Goodbye world!
\$

704 18 Rosetta Code Tasks starting with P

Pythagorean triples

A Pythagorean triple is defined as three positive integers (a,b,c) where a < b
< c, and a2 + b2 = c2. They are called primitive triples if a,b,c are coprime, that
is, if their pairwise greatest common divisors gcd(a,b) = gcd(a,c) = gcd(b,c) =
1. Because of their relationship through the Pythagorean theorem, a, b, and c
are coprime if a and b are coprime (gcd(a,b) = 1). Each triple forms the length
of the sides of a right triangle, whose perimeter is P = a + b + c.

Task

The task is to determine how many Pythagorean triples there are with a
perimeter no larger than 100 and the number of these that are primitive.

Extra credit: Deal with large values. Can your program handle a max perime-
ter of 1,000,000? What about 10,000,000? 100,000,000?

Note: the extra credit is not for you to demonstrate how fast your language
is compared to others; you need a proper algorithm to solve them in a timely
manner.

Cf

· List comprehensions

http://en.wikipedia.org/wiki/Pythagorean_triple

18 Rosetta Code Tasks starting with P 705

(for (Max 10 (>= 100000000 Max) (* Max 10))
(let (Total 0 Prim 0 In (3 4 5))

(recur (In)
(let P (apply + In)

(when (>= Max P)
(inc ’Prim)
(inc ’Total (/ Max P))
(for Row

(quote
((1 -2 2) (2 -1 2) (2 -2 3))
((1 2 2) (2 1 2) (2 2 3))
((-1 2 2) (-2 1 2) (-2 2 3)))

(recurse
(mapcar ’((U) (sum * U In)) Row))))))

(prinl "Up to " Max ": " Total " triples, " Prim " primitives.")))

Output:

Up to 10: 0 triples, 0 primitives.
Up to 100: 17 triples, 7 primitives.
Up to 1000: 325 triples, 70 primitives.
Up to 10000: 4858 triples, 703 primitives.
Up to 100000: 64741 triples, 7026 primitives.
Up to 1000000: 808950 triples, 70229 primitives.
Up to 10000000: 9706567 triples, 702309 primitives.
Up to 100000000: 113236940 triples, 7023027 primitives.

Chapter 19

Rosetta Code Tasks starting with Q

Queue/Definition

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.

Task

Implement a FIFO queue. Elements are added at one side and popped from
the other in the order of insertion.

Operations:

· push (aka enqueue) - add element

· pop (aka dequeue) - pop first element

· empty - return truth value when empty

Errors:

· handle the error of trying to pop from an empty queue (behavior depends
on the language and platform)

See FIFO (usage) for the built-in FIFO or queue of your language or standard
library.

707

708 19 Rosetta Code Tasks starting with Q

The built-in function ’fifo’ maintains a queue in a circular list, with direct
access to the first and the last cell

(off Queue) # Clear Queue
(fifo ’Queue 1) # Store number ’1’
(fifo ’Queue ’abc) # an internal symbol ’abc’
(fifo ’Queue "abc") # a transient symbol "abc"
(fifo ’Queue ’(a b c)) # and a list (a b c)
Queue # Show the queue

Output:

->((a b c) 1 abc "abc" .)

19 Rosetta Code Tasks starting with Q 709

Queue/Usage

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.

Task

Create a queue data structure and demonstrate its operations. (For implemen-
tations of queues, see the FIFO task.)

Operations:

· push (aka enqueue) - add element

· pop (aka dequeue) - pop first element

· empty - return truth value when empty

Using the implementation from [[FIFO]]:
(println (fifo ’Queue)) # Retrieve the number ’1’
(println (fifo ’Queue)) # Retrieve an internal symbol ’abc’
(println (fifo ’Queue)) # Retrieve a transient symbol "abc"
(println (fifo ’Queue)) # and a list (abc)
(println (fifo ’Queue)) # Queue is empty -> NIL

Output:

1
abc
"abc"
(a b c)
NIL

710 19 Rosetta Code Tasks starting with Q

Quine

A Quine is a self-referential program that can, without any external access,
output its own source. It is named after the philosopher and logician who
studied self-reference and quoting in natural language, as for example in the
paradox “ ‘Yields falsehood when preceded by its quotation’ yields falsehood
when preceded by its quotation.”

“Source” has one of two meanings. It can refer to the text-based program
source. For languages in which program source is represented as a data struc-
ture, “source” may refer to the data structure: quines in these languages fall
into two categories: programs which print a textual representation of them-
selves, or expressions which evaluate to a data structure which is equivalent
to that expression.

The usual way to code a Quine works similarly to this paradox: The program
consists of two identical parts, once as plain code and once quoted in some
way (for example, as a character string, or a literal data structure). The plain
code then accesses the quoted code and prints it out twice, once unquoted and
once with the proper quotation marks added. Often, the plain code and the
quoted code have to be nested.

Write a program that outputs its own source code in this way. If the language
allows it, you may add a variant that accesses the code directly. You are not al-
lowed to read any external files with the source code. The program should also
contain some sort of self-reference, so constant expressions which return their
own value which some top-level interpreter will print out. Empty programs
producing no output are not allowed.

There are several difficulties that one runs into when writing a quine, mostly
dealing with quoting:

· Part of the code usually needs to be stored as a string or structural literal
in the language, which needs to be quoted somehow. However, including
quotation marks in the string literal itself would be troublesome because it
requires them to be escaped, which then necessitates the escaping character
(e.g. a backslash) in the string, which itself usually needs to be escaped, and
so on.

· Some languages have a function for getting the “source code represen-
tation” of a string (i.e. adds quotation marks, etc.); in these languages,
this can be used to circumvent the quoting problem.

· Another solution is to construct the quote character from its character
code, without having to write the quote character itself. Then the char-
acter is inserted into the string at the appropriate places. The ASCII
code for double-quote is 34, and for single-quote is 39.

http://en.wikipedia.org/wiki/Quine_(computing)
http://en.wikipedia.org/wiki/Willard_Van_Orman_Quine

19 Rosetta Code Tasks starting with Q 711

· Newlines in the program may have to be reproduced as newlines in the
string, which usually requires some kind of escape sequence (e.g. “\n”).
This causes the same problem as above, where the escaping character needs
to itself be escaped, etc.

· If the language has a way of getting the “source code representation”,
it usually handles the escaping of characters, so this is not a problem.

· Some languages allow you to have a string literal that spans multiple
lines, which embeds the newlines into the string without escaping.

· Write the entire program on one line, for free-form languages (as you
can see for some of the solutions here, they run off the edge of the
screen), thus removing the need for newlines. However, this may be
unacceptable as some languages require a newline at the end of the
file; and otherwise it is still generally good style to have a newline
at the end of a file. (The task is not clear on whether a newline is
required at the end of the file.) Some languages have a print statement
that appends a newline; which solves the newline-at-the-end issue; but
others do not.

See the nostalgia note under Fortran.

Using ’quote’ (= ’lambda’ in PicoLisp)

(’((X) (list (lit X) (lit X))) ’((X) (list (lit X) (lit X))))

Output:

-> (’((X) (list (lit X) (lit X))) ’((X) (list (lit X) (lit X))))

Using ’let’

(let X ’(list ’let ’X (lit X) X) (list ’let ’X (lit X) X))

Output:

-> (let X ’(list ’let ’X (lit X) X) (list ’let ’X (lit X) X))

Chapter 20

Rosetta Code Tasks starting with R

RSA code

Given an RSA key (n,e,d), construct a program to encrypt and decrypt plain-
text messages strings.

Background

RSA code is used to encode secret messages. It is named after Ron Rivest,
Adi Shamir, and Leonard Adleman who published it at MIT in 1977. The
advantage of this type of encryption is that you can distribute the number “n”
and “e” (which makes up the Public Key used for encryption) to everyone. The
Private Key used for decryption “d” is kept secret, so that only the recipient
can read the encrypted plaintext.

The process by which this is done is that a message, for example “Hello
World” is encoded as numbers (This could be encoding as ASCII or as a subset
of characters a = 01,b = 02,. . . ,z = 26). This yields a string of numbers, gener-
ally referred to as “numerical plaintext”, “P”. For example, “Hello World” en-
coded with a=1,. . . ,z=26 by hundreds would yield 08051212152315181204.

The plaintext must also be split into blocks so that the numerical plaintext is
smaller than n otherwise the decryption will fail.

The ciphertext, C, is then computed by taking each block of P, and computing

Similarly, to decode, one computes

713

http://en.wikipedia.org/wiki/RSA

714 20 Rosetta Code Tasks starting with R

To generate a key, one finds 2 (ideally large) primes p and q. the value “n” is
simply: . One must then choose an “e” such that

.
That is to say, e and are relatively prime to each other.

The decryption value d is then found by solving

The security of the code is based on the secrecy of the Private Key (decryp-
tion exponent) “d” and the difficulty in factoring “n”. Research into RSA fa-
cilitated advances in factoring and a number of factoring challenges. Keys of
768 bits have been successfully factored. While factoring of keys of 1024 bits
has not been demonstrated, NIST expected them to be factorable by 2010 and
now recommends 2048 bit keys going forward (see Asymmetric algorithm
key lengths or NIST 800-57 Pt 1 Revised Table 4: Recommended algorithms
and minimum key sizes).

Summary of the task requirements:

· Encrypt and Decrypt a short message or two using RSA with a demonstra-
tion key.

· Implement RSA do not call a library.

· Encode and decode the message using any reversible method of your
choice (ASCII or a=1,..,z=26 are equally fine).

· Either support blocking or give an error if the message would require
blocking)

· Demonstrate that your solution could support real keys by using a non-
trivial key that requires large integer support (built-in or libraries). There
is no need to include library code but it must be referenced unless it is
built into the language. The following keys will be meet this require-
ment;however, they are NOT long enough to be considered secure:

n = 9516311845790656153499716760847001433441357

e = 65537

d = 5617843187844953170308463622230283376298685

· Messages can be hard-coded into the program, there is no need for elabo-
rate input coding.

http://www.rsa.com/rsalabs/node.asp?id=2092
http://en.wikipedia.org/wiki/Key_size#Asymmetric_algorithm_key_lengths
http://en.wikipedia.org/wiki/Key_size#Asymmetric_algorithm_key_lengths
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

20 Rosetta Code Tasks starting with R 715

· Demonstrate that your implementation works by showing plaintext, inter-
mediate results, encrypted text, and decrypted text.

PicoLisp comes with an RSA library. Usage:

(load "@lib/rsa.l")

Generate 100-digit keys (private . public)
: (setq Keys (rsaKey 100))
-> (14394597526321726957429995133376978449624406217727317004742182671030....

Encrypt
: (setq CryptText

(encrypt (car Keys)
(chop "The quick brown fox jumped over the lazy dog’s back")))

-> (72521958974980041245760752728037044798830723189142175108602418861716...

Decrypt
: (pack (decrypt Keys CryptText))
-> "The quick brown fox jumped over the lazy dog’s back"

716 20 Rosetta Code Tasks starting with R

Random number generator (device)

If your system has a means to generate random numbers involving not only
a software algorithm (like the /dev/urandom devices in Unix), show how to
obtain a random 32-bit number from that mechanism.

: (in "/dev/urandom" (rd 4))
-> 2917110327

http://en.wikipedia.org/wiki//dev/random

20 Rosetta Code Tasks starting with R 717

Random number generator (included)

The task is to:

State the type of random number generator algorithm used in a languages
built-in random number generator, or omit the language if no random number
generator is given as part of the language or its immediate libraries.

If possible, a link to a wider explanation of the algorithm used should be given.

Note: the task is not to create an RNG, but to report on the languages in-built
RNG that would be the most likely RNG used.

The main types of pseudo-random number generator, (PRNG), that are in use
are the Linear Congruential Generator, (LCG), and the Generalized Feed-
back Shift Register, (GFSR), (of which the Mersenne twister generator is a
subclass). The last main type is where the output of one of the previous ones
(typically a Mersenne twister) is fed through a cryptographic hash function to
maximize unpredictability of individual bits.

Note that LCGs nor GFSRs should be used for the most demanding applica-
tions (cryptography) without additional steps.

PicoLisp uses a linear congruential generator in the built-in (rand) function,
with a multiplier suggested in Knuth’s "Seminumerical Algorithms". See the
[http://software-lab.de/doc/refR.html#rand documentation].

http://en.wikipedia.org/wiki/List_of_random_number_generators
http://en.wikipedia.org/wiki/PRNG
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Generalised_feedback_shift_register#Non-binary_Galois_LFSR
http://en.wikipedia.org/wiki/Mersenne_twister

718 20 Rosetta Code Tasks starting with R

Random numbers

The goal of this task is to generate a collection filled with 1000 normally
distributed random (or pseudorandom) numbers with a mean of 1.0 and a
standard deviation of 0.5

Many libraries only generate uniformly distributed random numbers. If so,
use this formula to convert them to a normal distribution.

(load "@lib/math.l")

(de randomNormal () # Normal distribution, centered on 0, std dev 1
(*/

(sqrt (* -2.0 (log (rand 0 1.0))))
(cos (*/ 2.0 pi (rand 0 1.0) ‘(* 1.0 1.0)))
1.0))

(seed (time)) # Randomize

(let Result
(make # Build list

(do 1000 # of 1000 elements
(link (+ 1.0 (/ (randomNormal) 2)))))

(for N (head 7 Result) # Print first 7 results
(prin (format N *Scl) " ")))

Output:

1.500334 1.212931 1.095283 0.433122 0.459116 1.302446 0.402477

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution

20 Rosetta Code Tasks starting with R 719

Range expansion

A format for expressing an ordered list of integers is to use a comma separated
list of either

· individual integers

· Or a range of integers denoted by the starting integer separated from the
end integer in the range by a dash, ’-’. (The range includes all integers in
the interval including both endpoints)

· The range syntax is to be used only for, and for every range that ex-
pands to more than two values.

Example
The list of integers:

-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20

Is accurately expressed by the range expression:

-6,-3-1,3-5,7-11,14,15,17-20

(And vice-versa).

The task

Expand the range description:

-6,-3–1,3-5,7-11,14,15,17-20

Note that the second element above, is the range from minus 3 to minus 1.

C.f. Range extraction

(de rangeexpand (Str)
(make

(for S (split (chop Str) ",")
(if (index "-" (cdr S))

(chain
(range

(format (head @ S))
(format (tail (- -1 @) S))))

(link (format S))))))

Output:

: (rangeexpand "-6,-3--1,3-5,7-11,14,15,17-20")
-> (-6 -3 -2 -1 3 4 5 7 8 9 10 11 14 15 17 18 19 20)

720 20 Rosetta Code Tasks starting with R

Range extraction

A format for expressing an ordered list of integers is to use a comma separated
list of either

· individual integers

· Or a range of integers denoted by the starting integer separated from the
end integer in the range by a dash, ’-’. (The range includes all integers in
the interval including both endpoints)

· The range syntax is to be used only for, and for every range that ex-
pands to more than two values.

Example
The list of integers:

-6, -3, -2, -1, 0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20

Is accurately expressed by the range expression:

-6,-3-1,3-5,7-11,14,15,17-20

(And vice-versa).

The task

· Create a function that takes a list of integers in increasing order and returns
a correctly formatted string in the range format.

· Use the function to compute and print the range formatted version of the
following ordered list of integers:

0, 1, 2, 4, 6, 7, 8, 11, 12, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 30, 31, 32, 33, 35, 36,
37, 38, 39

· Show the output of your program.

C.f. Range expansion

20 Rosetta Code Tasks starting with R 721

(de rangeextract (Lst)
(glue ","

(make
(while Lst

(let (N (pop ’Lst) M N)
(while (= (inc M) (car Lst))

(setq M (pop ’Lst)))
(cond

((= N M) (link N))
((= (inc N) M) (link N M))
(T (link (list N ’- M)))))))))

Output:

: (rangeextract
(0 1 2 4 6 7 8 11 12 14 15 16 17 18 19 20 21 22

23 24 25 27 28 29 30 31 32 33 35 36 37 38 39))

-> "0-2,4,6-8,11,12,14-25,27-33,35-39"

722 20 Rosetta Code Tasks starting with R

Rate counter

Counting the frequency at which something occurs is a common activity in
measuring performance and managing resources. In this task, we assume that
there is some job which we want to perform repeatedly, and we want to know
how quickly these jobs are being performed.

Of interest is the code that performs the actual measurements. Any other code
(such as job implementation or dispatching) that is required to demonstrate
the rate tracking is helpful, but not the focus.

Multiple approaches are allowed (even preferable), so long as they can ac-
complish these goals:

· Run N seconds worth of jobs and/or Y jobs.

· Report at least three distinct times.

Be aware of the precision and accuracy limitations of your timing mecha-
nisms, and document them if you can.

See also: System time, Time a function

20 Rosetta Code Tasks starting with R 723

[http://software-lab.de/doc/refU.html#usec usec] returns a relative time in
microseconds. This can be used, for example, to measure the time between two key
strokes

(prin "Hit a key ... ")
(key)
(prinl)
(let Usec (usec)

(prin "Hit another key ... ")
(key)
(prinl)
(prinl "This took " (format (- (usec) Usec) 6) " seconds"))

Output:

Hit a key ...
Hit another key ...
This took 3.132058 seconds

The [http://software-lab.de/doc/refB.html#bench bench] benchmark function could
also be used. Here we measure the time until a key is pressed

(bench (key))
1.761 sec
-> "a"

724 20 Rosetta Code Tasks starting with R

Ray-casting algorithm

Given a point and a polygon, check if the point is inside or outside the polygon
using the ray-casting algorithm.

A pseudocode can be simply:

count 0
foreach side in polygon:

if ray_intersects_segment(P,side) then
count count + 1

if is_odd(count) then
return inside

else
return outside

Where the function ray intersects segment return true if the horizon-
tal ray starting from the point P intersects the side (segment), false otherwise.

An intuitive explanation of why it works is that every time we cross a border,
we change “country” (inside-outside, or outside-inside), but the last “country”
we land on is surely outside (since the inside of the polygon is finite, while the
ray continues towards infinity). So, if we crossed an odd number of borders we
was surely inside, otherwise we was outside; we can follow the ray backward
to see it better: starting from outside, only an odd number of crossing can
give an inside: outside-inside, outside-inside-outside-inside, and so on (the -
represents the crossing of a border).

So the main part of the algorithm is how we determine if a ray intersects a
segment. The following text explain one of the possible ways.

Looking at the image on the right, we can easily be convinced of the fact
that rays starting from points in the hatched area (like P1 and P2) surely do

20 Rosetta Code Tasks starting with R 725

not intersect the segment AB. We also can easily see that rays starting from
points in the greenish area surely intersect the segment AB (like point P3).

So the problematic points are those inside the white area (the box delimited
by the points A and B), like P4.

Let us take into account a segment AB (the point A having y coordinate always
smaller than B’s y coordinate, i.e. point A is always below point B) and a
point P. Let us use the cumbersome notation PAX to denote the angle between
segment AP and AX, where X is always a point on the horizontal line passing
by A with x coordinate bigger than the maximum between the x coordinate
of A and the x coordinate of B. As explained graphically by the figures on
the right, if PAX is greater than the angle BAX, then the ray starting from P
intersects the segment AB. (In the images, the ray starting from PA does not
intersect the segment, while the ray starting from PB in the second picture,
intersects the segment).

Points on the boundary or “on” a vertex are someway special and through this
approach we do not obtain coherent results. They could be treated apart, but
it is not necessary to do so.

726 20 Rosetta Code Tasks starting with R

An algorithm for the previous speech could be (if P is a point, Px is its x
coordinate):

ray_intersects_segment:
P : the point from which the ray starts
A : the end-point of the segment with the smallest y coordinate

(A must be "below" B)
B : the end-point of the segment with the greatest y coordinate

(B must be "above" A)
if Py = Ay or Py = By then

Py Py +
end if
if Py < Ay or Py > By then

return false
else if Px > max(Ax, Bx) then

return false
else

if Px < min(Ax, Bx) then
return true

else
if Ax Bx then

m_red (By - Ay)/(Bx - Ax)
else

m_red
end if
if Ax Px then

m_blue (Py - Ay)/(Px - Ax)
else

m_blue
end if
if m_blue m_red then

return true
else

return false
end if

end if
end if

(To avoid the “ray on vertex” problem, the point is moved upward of a small
quantity ε)

20 Rosetta Code Tasks starting with R 727

(scl 4)

(de intersects (Px Py Ax Ay Bx By)
(when (> Ay By)

(xchg ’Ax ’Bx)
(xchg ’Ay ’By))

(when (or (= Py Ay) (= Py By))
(inc ’Py))

(and
(>= Py Ay)
(>= By Py)
(>= (max Ax Bx) Px)
(or

(> (min Ax Bx) Px)
(= Ax Px)
(and

(<> Ax Bx)
(>=

(*/ (- Py Ay) 1.0 (- Px Ax)) # Blue
(*/ (- By Ay) 1.0 (- Bx Ax))))))) # Red

(de inside (Pt Poly)
(let Res NIL

(for Edge Poly
(when (apply intersects Edge (car Pt) (cdr Pt))

(onOff Res)))
Res))

728 20 Rosetta Code Tasks starting with R

Test data:

(de Square
(0.0 0.0 10.0 0.0)
(10.0 0.0 10.0 10.0)
(10.0 10.0 0.0 10.0)
(0.0 10.0 0.0 0.0))

(de SquareHole
(0.0 0.0 10.0 0.0)
(10.0 0.0 10.0 10.0)
(10.0 10.0 0.0 10.0)
(0.0 10.0 0.0 0.0)
(2.5 2.5 7.5 2.5)
(7.5 2.5 7.5 7.5)
(7.5 7.5 2.5 7.5)
(2.5 7.5 2.5 2.5))

(de Strange
(0.0 0.0 2.5 2.5)
(2.5 2.5 0.0 10.0)
(0.0 10.0 2.5 7.5)
(2.5 7.5 7.5 7.5)
(7.5 7.5 10.0 10.0)
(10.0 10.0 10.0 0.0)
(10.0 0.0 2.5 2.5))

(de Exagon
(3.0 0.0 7.0 0.0)
(7.0 0.0 10.0 5.0)
(10.0 5.0 7.0 10.0)
(7.0 10.0 3.0 10.0)
(3.0 10.0 0.0 5.0)
(0.0 5.0 3.0 0.0))

Output:

: (inside (5.0 . 5.0) Square)
-> T
: (inside (5.0 . 8.0) Square)
-> T
: (inside (-10.0 . 5.0) Square)
-> NIL
: (inside (0.0 . 5.0) Square)
-> NIL
: (inside (10.0 . 5.0) Square)
-> T
: (inside (8.0 . 5.0) Square)
-> T
: (inside (10.0 . 10.0) Square)
-> NIL

20 Rosetta Code Tasks starting with R 729

: (inside (5.0 . 5.0) SquareHole)
-> NIL
: (inside (5.0 . 8.0) SquareHole)
-> T
: (inside (-10.0 . 5.0) SquareHole)
-> NIL
: (inside (0 . 5.0) SquareHole)
-> NIL
: (inside (10.0 . 5.0) SquareHole)
-> T
: (inside (8.0 . 5.0) SquareHole)
-> T
: (inside (10.0 . 10.0) SquareHole)
-> NIL

: (inside (5.0 . 5.0) Strange)
-> T
: (inside (5.0 . 8.0) Strange)
-> NIL
: (inside (-10.0 . 5.0) Strange)
-> NIL
: (inside (0 . 5.0) Strange)
-> NIL
: (inside (10.0 . 5.0) Strange)
-> T
: (inside (8.0 . 5.0) Strange)
-> T
: (inside (10.0 . 10.0) Strange)
-> NIL

: (inside (5.0 . 5.0) Exagon)
-> T
: (inside (5.0 . 8.0) Exagon)
-> T
: (inside (-10.0 . 5.0) Exagon)
-> NIL
: (inside (0.0 . 5.0) Exagon)
-> NIL
: (inside (10.0 . 5.0) Exagon)
-> T
: (inside (8.0 . 5.0) Exagon)
-> T
: (inside (10.0 . 10.0) Exagon)
-> NIL

730 20 Rosetta Code Tasks starting with R

Read a configuration file

The task is to read a configuration file in standard configuration file, and set
variables accordingly. For this task, we have a configuration file as follows:

This is a configuration file in standard configuration file format
#
Lines begininning with a hash or a semicolon are ignored by the application
program. Blank lines are also ignored by the application program.

This is the fullname parameter
FULLNAME Foo Barber

This is a favourite fruit
FAVOURITEFRUIT banana

This is a boolean that should be set
NEEDSPEELING

This boolean is commented out
; SEEDSREMOVED

Configuration option names are not case sensitive, but configuration parameter
data is case sensitive and may be preserved by the application program.

An optional equals sign can be used to separate configuration parameter data
from the option name. This is dropped by the parser.

A configuration option may take multiple parameters separated by commas.
Leading and trailing whitespace around parameter names and parameter data fields
are ignored by the application program.

OTHERFAMILY Rhu Barber, Harry Barber

For the task we need to set four variables according to the configuration entries
as follows:

· fullname = Foo Barber

· favouritefruit = banana

· needspeeling = true

· seedsremoved = false

20 Rosetta Code Tasks starting with R 731

We also have an option that contains multiple parameters. These may be stored
in an array.

· otherfamily(1) = Rhu Barber

· otherfamily(2) = Harry Barber

’read’ supports only a single comment character. Therefore, we use a pipe to
filter the comments.

(de rdConf (File)
(pipe (in File (while (echo "#" ";") (till "ˆJ")))

(while (read)
(set @ (or (line T) T)))))

Test:

(off FULLNAME FAVOURITEFRUIT NEEDSPEELING SEEDSREMOVED OTHERFAMILY)
(rdConf "conf.txt")

Output:

: (list FULLNAME FAVOURITEFRUIT NEEDSPEELING SEEDSREMOVED OTHERFAMILY)
-> ("Foo Barber" "banana" T NIL "Rhu Barber, Harry Barber")

732 20 Rosetta Code Tasks starting with R

Read a specific line from a file

Some languages have special semantics for obtaining a known line number
from a file. The task is to demonstrate how to obtain the contents of a specific
line within a file. For the purpose of this task demonstrate how to the contents
of the seventh line of a file can be obtained, and store this in a variable or
in memory (for potential future use within the program if the code were to
become embedded). If the file does not contain seven lines, or the seventh
line is empty, or too big to be retrieved, output an appropriate message. If no
special semantics are available for obtaining the required line, it is permissible
to read line by line. Note that empty lines are considered and should still be
counted. Note that for functional languages or languages without variables or
storage, it is permissible to output the extracted data to standard output.

(in "file.txt"
(do 6 (line))
(or (line) (quit "No 7 lines")))

20 Rosetta Code Tasks starting with R 733

Read entire file

Load the entire contents of some text file as a single string variable.

If applicable, discuss: encoding selection, the possibility of memory-mapping.

Of course, one should avoid reading an entire file at once if the file is large
and the task can be accomplished incrementally instead (in which case check
File IO); this is for those cases where having the entire file is actually what is
wanted.

Using ’[http://software-lab.de/doc/refT.html#till till]’ is the shortest way:

(in "file" (till NIL T))

To read the file into a list of characters:

(in "file" (till NIL))

or, more explicit:

(in "file" (make (while (char) (link @))))

Encoding is always assumed to be UTF-8.

734 20 Rosetta Code Tasks starting with R

Read a file line by line

Read a file one line at a time, as opposed to reading the entire file at once.

See also: Input loop.

(in "foobar.txt"
(while (line)

(process @)))

20 Rosetta Code Tasks starting with R 735

Real constants and functions

Show how to use the following math constants and functions in your language
(if not available, note it):

· e (Euler’s number)

· π

· square root

· logarithm (any base allowed)

· exponential (ex)

· absolute value (a.k.a. “magnitude”)

· floor (largest integer less than or equal to this number–not the same as
truncate or int)

· ceiling (smallest integer not less than this number–not the same as round
up)

· power (xy)

See also Trigonometric Functions

736 20 Rosetta Code Tasks starting with R

PicoLisp has only limited floating point support (scaled bignum arithmetics). It
can handle real numbers with as many positions after the decimal point as
desired, but is practically limited by the precision of the C-library functions
(about 16 digits). The default precision is six, and can be changed with
’[http://software-lab.de/doc/refS.html#scl scl]’:

(scl 12) # 12 places after decimal point
(load "@lib/math.l")

(prinl (format (exp 1.0) *Scl)) # e, exp
(prinl (format pi *Scl)) # pi

(prinl (format (pow 2.0 0.5) *Scl)) # sqare root
(prinl (format (sqrt (* 2.0 1.0)) *Scl))

(prinl (format (log 2.0) *Scl)) # logarithm
(prinl (format (exp 4.0) *Scl)) # exponential

(prinl (format (abs -7.2) *Scl)) # absolute value
(prinl (abs -123))

(prinl (format (pow 3.0 4.0) *Scl)) # power

Output:

2.718281828459
3.141592653590
1.414213562373
1.414213562373
0.693147180560
54.598150033144
7.200000000000
123
81.000000000000

"floor" and "ceiling" are currently not available.

20 Rosetta Code Tasks starting with R 737

Record sound

Record a monophonic 16-bit PCM sound into either memory space, a file or
array.

(This task neglects to specify the sample rate, and whether to use signed sam-
ples. The programs in this page might use signed 16-bit or unsigned 16-bit
samples, at 8000 Hz, 44100 Hz, or any other sample rate. Therefore, these
programs might not record sound in the same format.)

(in ’(rec -q -c1 -tu16 - trim 0 2) # Record 2 seconds
(make

(while (rd 2)
(link @))))

Output:

-> (16767 19071 17279 ... 5503 9343 14719) # 96000 numbers

738 20 Rosetta Code Tasks starting with R

Reduced row echelon form

Show how to compute the reduced row echelon form (a.k.a. row canonical
form) of a matrix. The matrix can be stored in any datatype that is convenient
(for most languages, this will probably be a two-dimensional array). Built-in
functions or this pseudocode (from Wikipedia) may be used:

function ToReducedRowEchelonForm(Matrix M) is
lead:= 0
rowCount:= the number of rows in M
columnCount:= the number of columns in M
for 0 r < rowCount do

if columnCount lead then
stop

end if
i = r
while M[i, lead] = 0 do

i = i + 1
if rowCount = i then

i = r
lead = lead + 1
if columnCount = lead then

stop
end if

end if
end while
Swap rows i and r
If M[r, lead] is not 0 divide row r by M[r, lead]
for 0 i < rowCount do

if i r do
Subtract M[i, lead] multiplied by row r from row i

end if
end for
lead = lead + 1

end for
end function

20 Rosetta Code Tasks starting with R 739

For testing purposes, the RREF of this matrix:

1 2 -1 -4
2 3 -1 -11

-2 0 -3 22

is:

1 0 0 -8
0 1 0 1
0 0 1 -2

(de reducedRowEchelonForm (Mat)
(let (Lead 1 Cols (length (car Mat)))

(for (X Mat X (cdr X))
(NIL

(loop
(T (seek ’((R) (n0 (get R 1 Lead))) X)

@)
(T (> (inc ’Lead) Cols))))

(xchg @ X)
(let D (get X 1 Lead)

(map
’((R) (set R (/ (car R) D)))
(car X)))

(for Y Mat
(unless (== Y (car X))

(let N (- (get Y Lead))
(map

’((Dst Src)
(inc Dst (* N (car Src))))

Y
(car X)))))

(T (> (inc ’Lead) Cols))))
Mat)

Output:

(reducedRowEchelonForm
’((1 2 -1 -4) (2 3 -1 -11) (-2 0 -3 22)))

-> ((1 0 0 -8) (0 1 0 1) (0 0 1 -2))

740 20 Rosetta Code Tasks starting with R

Regular expressions

The goal of this task is

· to match a string against a regular expression

· to substitute part of a string using a regular expression

1. Calling the C library

PicoLisp doesn’t have built-in regex functionality.
It is easy to call the native C library.

(let (Pat "a[0-9]z" String "a7z")
(use Preg

(native "@" "regcomp" ’I ’(Preg (64 B . 64)) Pat 1) # Compile regex
(when (=0 (native "@" "regexec" ’I (cons NIL (64) Preg) String 0 0 0))

(prinl "String \"" String "\" matches regex \"" Pat "\""))))

Output:

String "a7z" matches pattern "a[0-9]z"

2. Using Pattern Matching

Regular expressions are static and inflexible. Another possibility is
dynamic pattern matching, where arbitrary conditions can be programmed.

(let String "The number <7> is incremented"
(use (@A @N @Z)

(and
(match ’(@A "<" @N ">" @Z) (chop String))
(format @N)
(prinl @A "<" (inc @) ">" @Z))))

Output:

The number <8> is incremented

20 Rosetta Code Tasks starting with R 741

Remote agent/Agent interface

In Remote agent, a component is described that marshals commands and
events between a stream and a program that issues commands and processes
the resulting events. Using the protocol definition described there, build this
component in a fashion idiomatic and natural to your language.

The interface logic for the PicoLisp solution is directly integrated into
the client [[Remote agent/Agent logic#PicoLisp]].

742 20 Rosetta Code Tasks starting with R

Remote agent/Agent logic

In Remote agent, a game is described where an agent interacts with a simple
world of walls, balls and squares, and a component is described that marshals
commands between the simulation environment and the logic code behind the
agent.

The goal conditions for the game are to get all balls in squares of matching
colors, in as few turns as possible.

Using an interface for your language write a program that attempts to reach
these goals. The exact agent behavior within the simulated environment is
unspecified.

This is the client. For the server, see [[Remote agent/Simulation#PicoLisp]].

Global variables:
’*Sock’ is the TCP socket to the server
’*Dir’ is a circular list of direction structures
’*World’ holds the explored world
’*Ball’ is the ball found in current field
’*Todo’ is the list of mismatching fields and balls

(load "@lib/simul.l")

(de *Dir .
((north south . extendNorth) (east west . extendEast)

(south north . extendSouth) (west east . extendWest) .))

20 Rosetta Code Tasks starting with R 743

(de gameClient (Host Port)
(unless (setq *Sock (connect Host Port))

(quit "Can’t connect to " (cons Host Port)))
(in *Sock

(when (= "A" (char (rd 1))) # Greeting
(out *Sock (prin "A"))
(with (def (box) (cons (cons) (cons)))

Explore the world
(setq *World (cons (cons This)))
(off *Ball *Todo)
(let (Turns 4 Color T) # Initially 4 turns, unknown color

(recur (This Turns Color)
(setThis Color)
(turnLeft)
(do Turns

(ifn (and (not (get This (caar *Dir))) (goForward))
(turnRight)
(let Next @

(unless ((caar *Dir) This)
((cddar *Dir))) # Extend world

(put This (caar *Dir) ((caar *Dir) This))
(put ((caar *Dir) This) (cadar *Dir) This)
(if (get ((caar *Dir) This) ’field)

(do 2 (turnRight))
(recurse ((caar *Dir) This) 3 Next))

(setThis (goForward))) # Final color on return
(turnLeft)))))

Establish the walls
(for Col *World

(for This Col
(set This

(cons
(cons (: west) (: east))
(cons (: south) (: north))))))

(prinl "Initial state:")
(showWorld)
(prin "Moving balls ... ")
Move balls to proper fields
(for X *Todo

(findField # Move to next field
(== This (car X)))

(getBall) # Pick the ball
(findField # Find a suitable field

(unless (: ball)
(= (: field) (cdr X))))

(prin (cdr X))
(flush)
(dropBall (cdr X))) # Drop the ball

(prinl "Final state:")
(showWorld)))))

744 20 Rosetta Code Tasks starting with R

Set color and ball in field
(de setThis (Color)

(=: field Color)
(=: ball *Ball)
(and

*Ball
(<> @ Color)
(push1 ’*Todo (cons This *Ball))))

Commands to server
(de goForward ()

(out *Sock (prin "\ˆ"))
(in *Sock

(let F (char (rd 1))
(cond

((= "|" F) (off *Ball F) (rd 1))
((= "." (setq *Ball (uppc (char (rd 1)))))

(off *Ball))
(T (rd 1)))

F)))

(de turnRight ()
(out *Sock (prin ">"))
(pop ’*Dir)
(rd 1))

(de turnLeft ()
(out *Sock (prin "<"))
(do 3 (pop ’*Dir))
(rd 1))

(de getBall ()
(out *Sock (prin "@"))
(case (char (rd 1))

("s" (quit "No ball in sector"))
("A" (quit "Agent full"))
("." (=: ball NIL))
(T (quit "Unexpected event" @))))

(de dropBall (Ball)
(out *Sock (prin "!"))
(case (char (rd 1))

("a" (quit "No ball in agent"))
("S" (quit "Sector full"))
("." (=: ball Ball))
("+" (rd 1) (prinl " ... Game over!"))
(T (quit "Unexpected event" @))))

20 Rosetta Code Tasks starting with R 745

Extend world to the north
(de extendNorth ()

(let Last NIL
(for Col *World

(let (Old (last Col) New (def (box) (cons (cons Last) (cons Old))))
(conc Col (cons New))
(and Last (con (car (val @)) New))
(setq Last (con (cdr (val Old)) New))))))

Extend world to the east
(de extendEast ()

(conc *World
(cons

(let Last NIL
(mapcar

’((Old)
(let New (def (box) (cons (cons Old) (cons Last)))

(and Last (con (cdr (val @)) New))
(setq Last (con (car (val Old)) New))))

(last *World))))))

Extend world to the south
(de extendSouth ()

(let Last NIL
(map

’((Lst)
(push Lst

(let
(Old (caar Lst)

New (def (box) (cons (cons Last) (cons NIL Old))))
(and Last (con (car (val @)) New))
(setq Last (set (cdr (val Old)) New)))))

*World)))

Extend world to the west
(de extendWest ()

(push ’*World
(let Last NIL

(mapcar
’((Old)

(let New (def (box) (cons (cons NIL Old) (cons Last)))
(and Last (con (cdr (val @)) New))
(setq Last (set (car (val Old)) New))))

(car *World)))))

746 20 Rosetta Code Tasks starting with R

Find matching field
(de findField Prg

(setq This
(catch NIL

(recur (This)
(unless (: mark)

(and (run Prg) (throw NIL This))
(finally (=: mark NIL)

(=: mark T)
(do 4

(when ((caar *Dir) This)
(goForward)
(recurse ((caar *Dir) This))
(do 2 (turnRight))
(goForward)
(do 2 (turnRight)))

(turnRight)))))
(quit "Can’t find field"))))

Visualize (debug)
(de showWorld ()

(disp *World 0
’((This)

(pack " "
(: field)
(if (: ball) (lowc @) " ")))))

20 Rosetta Code Tasks starting with R 747

Output:

: (gameClient "picolisp.com" 54545)

Initial state:

+---+---+---+---+---+---+---+---+
8 | G G Y Yr| Y Yb G R |

n + +---+---+ + +---+---+ +
7 | Y | Y | B Gy Bg Y B | Gg|

+---+ + +---+ + + + +
6 | Gb| Gy G R B Y | B Bg|

+ +---+ + +---+---+---+ +
5 | R | B G | B | R | B R Yg|

+ +---+ + + + + + +
4 | B B | G | Y B Bg| Bg R |

+---+ + +---+ + + + +
3 | G | Y Gr R | B B Br B |

+ + +---+---+---+ + +---+
2 | G Rr B | Gy Y | Bg| Bb B |

+---+ +---+ + + + + +
1 | R R Gb| Bg| G G R | Yg|

+---+---+---+---+---+---+---+---+
a b c d e f g h

Moving balls ... GBGRYYBBRGGGYGRGG ... Game over!

Final state:

+---+---+---+---+---+---+---+---+
8 | G Gg Y Y | Y Y Gg R |

+ +---+---+ + +---+---+ +
7 | Y | Yy| B Gg B Yy B | Gg|

+---+ + +---+ + + + +
6 | G | Gg Gg R Bb Y | B B |

+ +---+ + +---+---+---+ +
5 | Rr| B G | B | Rr| B R Y |

+ +---+ + + + + + +
4 | Bb Bb| G | Y B B | B R |

+---+ + +---+ + + + +
3 | G | Y G Rr| B B B B |

+ + +---+---+---+ + +---+
2 | G Rr B | G Yy| B | Bb B |

+---+ +---+ + + + + +
1 | R R G | B | Gg Gg R | Y |

+---+---+---+---+---+---+---+---+
a b c d e f g h

748 20 Rosetta Code Tasks starting with R

Remote agent/Simulation

As described in Remote agent, generate a map, accept and respond to com-
mands from an agent using an unbuffered stream.

This is the server. For the client, see [[Remote agent/Agent logic#PicoLisp]].

Global variables:
’*Port’ is the port where the server is listening
’*Sock’ is the TCP socket after a client connected
’*World’ holds the current world
’*Agent’ is the field where the agent is in
’*Ball’ is the ball the agent is holding
’*Dir’ is a circular list of directions (north east south west .)

(load "@lib/simul.l")

The server port
(setq *Port (port 54545))

Return a random Field
(de randomField ()

(get *World (rand 1 DX) (rand 1 DY)))

20 Rosetta Code Tasks starting with R 749

Create a world of size ’DX’ * ’DY’ with ’Balls’ and ’Walls’
(de makeWorld (DX DY Balls Walls)

(when (>= Balls (* DX DY))
(quit "Too many balls"))

(when (>= Walls (* (dec DX) (dec DY)))
(quit "Too many walls"))

(for Column (setq *World (grid DX DY)) # Initialize fields
(for This Column

(let Color (get ’(R G Y B) (rand 1 4))
(=: field Color) # Set field color
(when (ge0 (dec ’Balls))

(until
(with (randomField DX DY) # Find a field without ball

(unless (: ball) # and set a ball
(=: ball Color))))))))

(do Walls # Create walls
(until

(let
(Field (randomField DX DY) # Try random field

F (if (rand T) car cdr) # and random side
G (if (rand T) ’(car set . con) ’(cdr con . set))
Old ((car G) (F (val Field))))

(when Old
((cadr G) (F (val Field)) NIL) # Remove connections to neighbor
((cddr G) (F (val Old)) NIL)
(or

(reachable? Field (* DX DY)) # Field still reachable?
(nil # No: Restore connections

((cadr G) (F (val Field)) Old)
((cddr G) (F (val Old)) Field))))))))

Test whether a field is reachable
(de reachable? (Field Fields)

(let Visited NIL
(recur (Field)

(when (and Field (not (memq Field Visited)))
(push ’Visited Field)
(recurse (west Field))
(recurse (east Field))
(recurse (south Field))
(recurse (north Field))))

(= Fields (length Visited))))

Test for ending condition
(de ending? ()

(nor

*Ball
(find

’((Column)
(find

’((This)
(and (: ball) (n== (: field) (: ball))))

Column))

*World)))

750 20 Rosetta Code Tasks starting with R

Initialize for a new game
(de newGame (DX DY Balls Walls)

(makeWorld DX DY Balls Walls)
(setq

*Agent (randomField DX DY)

*Dir (do (rand 1 4) (rot ’(north east south west .)))))

Start the game server
(de gameServer (DX DY Balls Walls)

(loop
(setq *Sock (listen *Port))
(NIL (fork) (close *Port))
(close *Sock))

(seed *Pid) # Ensure private random sequence
(in *Sock

(out *Sock (prin "A")) # Greeting
(when (= "A" (char (rd 1)))

(newGame DX DY Balls Walls)
(and *Dbg (showWorld))
(while (rd 1)

(out *Sock
(case (char @) # Command character

("\ˆ" # Forward
(ifn ((car *Dir) *Agent) # Hit wall?

(prin "|") # Yes: Bump event
(with (setq *Agent @) # Else go to new position

(prin (: field))
(and (: ball) (prin (lowc @))))))

(">" # Turn right
(pop ’*Dir))

("<" # Turn left
(do 3 (pop ’*Dir)))

("@" # Get ball
(with *Agent

(cond
((not (: ball)) (prin "s")) # No ball in sector
(*Ball (prin "A")) # Agent full
(T

(setq *Ball (: ball))
(=: ball)))))

("!" # Drop ball
(with *Agent

(cond
((not *Ball) (prin "a")) # No ball in agent
((: ball) (prin "S")) # Sector full
(T (=: ball *Ball)

(off *Ball)
(and (ending?) (prin "+"))))))) # Game over

(prin "."))))) # Stop event
(bye))

20 Rosetta Code Tasks starting with R 751

Visualize (debug)
(de showWorld ()

(disp *World 0
’((This)

(pack
(if (== *Agent This) "*" " ")
(: field)
(if (: ball) (lowc @) " ")))))

An online demo version of this server runs on port 54545 of "picolisp.com". It
can be used for testing.

For local tests, you can start also it interactively:

: (newGame 8 8 20 40) (showWorld)

+---+---+---+---+---+---+---+---+
8 | R Y | B | R R Br| Rb Br|

+ + + + + +---+---+ +
7 | Yy G G Gb| Y Gg Rr| Y |

+---+ + + +---+ +---+ +
6 | R Y B Rr *G Y | Y Br|

+---+---+ + +---+---+ +---+
5 | B Ry G R | Yy Yy Y | B |

+ +---+---+ +---+ +---+ +
4 | R | R R Gg B G B Y |

+ +---+---+ +---+---+ + +
3 | R Rr| Y B G | Yr B | R |

+ + +---+---+---+ + +---+
2 | Y | B | B Bb Gr B B Yy|

+ + + + +---+ +---+ +
1 | Rr| R G Gr R G R | G |

+---+---+---+---+---+---+---+---+
a b c d e f g h

This displays the field colors in upper case letters, the balls in lower case
letters, and the position of the agent with an asterisk.

752 20 Rosetta Code Tasks starting with R

Remove duplicate elements

Given an Array, derive a sequence of elements in which all duplicates are
removed.

There are basically three approaches seen here:

· Put the elements into a hash table which does not allow duplicates. The
complexity is O(n) on average, and O(n2) worst case. This approach re-
quires a hash function for your type (which is compatible with equality),
either built-in to your language, or provided by the user.

· Sort the elements and remove consecutive duplicate elements. The com-
plexity of the best sorting algorithms is O(n log n). This approach requires
that your type be “comparable”, i.e., have an ordering. Putting the elements
into a self-balancing binary search tree is a special case of sorting.

· Go through the list, and for each element, check the rest of the list to see
if it appears again, and discard it if it does. The complexity is O(n2). The
up-shot is that this always works on any type (provided that you can test
for equality).

There is a built-in function

(uniq (2 4 6 1 2 3 4 5 6 1 3 5))

Output:

-> (2 4 6 1 3 5)

20 Rosetta Code Tasks starting with R 753

Remove lines from a file

The task is to demonstrate how to remove a specific line or a number of lines
from a file. This should be implemented as a routine that takes three parame-
ters (filename, starting line, and the number of lines to be removed). For the
purpose of this task, line numbers and the number of lines start at one, so to
remove the first two lines from the file foobar.txt, the parameters should
be: foobar.txt, 1, 2

Empty lines are considered and should still be counted, and if the specified line
is empty, it should still be removed. An appropriate message should appear if
an attempt is made to remove lines beyond the end of the file.

(de deleteLines (File Start Cnt)
(let L (in File (make (until (eof) (link (line)))))

(if (> (+ (dec ’Start) Cnt) (length L))
(quit "Not enough lines")
(out File

(mapc prinl (cut Start ’L))
(mapc prinl (nth L (inc Cnt)))))))

754 20 Rosetta Code Tasks starting with R

Remove the first and last characters from a string/Top
and tail

[aka Substring/Top and tail]

The task is to demonstrate how to remove the first and last characters from a
string. The solution should demonstrate how to obtain the following results:

· String with first character removed

· String with last character removed

· String with both the first and last characters removed

If the program uses UTF-8 or UTF-16, it must work on any valid Unicode
code point, whether in the Basic Multilingual Plane or above it. The program
must reference logical characters (code points), not 8-bit code units for UTF-8
or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit
ASCII, or EUC-JP) are not required to handle all Unicode characters.

: (pack (cdr (chop "knight"))) # Remove first character
-> "night"

: (pack (head -1 (chop "socks"))) # Remove last character
-> "sock"

: (pack (cddr (rot (chop "brooms")))) # Remove first and last characters
-> "room"

20 Rosetta Code Tasks starting with R 755

Rename a file

In this task, the job is to rename the file called “input.txt” into “output.txt”
and a directory called “docs” into “mydocs”. This should be done twice: once
“here”, i.e. in the current working directory and once in the filesystem root.

(call ’mv "input.txt" "output.txt")
(call ’mv "docs" "mydocs")
(call ’mv "/input.txt" "/output.txt")
(call ’mv "/docs" "/mydocs")

756 20 Rosetta Code Tasks starting with R

Rendezvous

Demonstrate the “rendezvous” communications technique by implementing a
printer monitor.

Rendezvous can be implemented in PicoLisp via the following function:

(de rendezvous (Pid . Exe)
(when

(catch ’(NIL)
(tell Pid ’setq ’Rendezvous (lit (eval Exe)))
NIL)

(tell Pid ’quit @))) # Raise caught error in caller

The caller invokes it in the callee via the
’[http://software-lab.de/doc/refT.html#tell tell]’ interprocess communication,
and it uses ’tell’ in turn to communicate results (and possible errors) back to
the caller.

Use case task:

(de printLine (Str)
(cond

((gt0 *Ink) (prinl *ID ": " Str) (dec ’*Ink))
(*Backup (rendezvousPrint @ Str) T)
(T (quit "Out of Ink"))))

(de rendezvousPrint (Printer Str)
(let Rendezvous NIL

(tell Printer ’rendezvous *Pid ’printLine Str) # Call entry point
(unless (wait 6000 Rendezvous) # Block max. 1 minute

(quit "Rendezvous timed out"))))

Start RESERVE printer process
(unless (setq *ReservePrinter (fork))

(setq *ID 2 *Ink 5)
(wait)) # Run forever

Start MAIN printer process
(unless (setq *MainPrinter (fork))

(setq *ID 1 *Ink 5 *Backup *ReservePrinter)
(wait))

20 Rosetta Code Tasks starting with R 757

Start Humpty Dumpty process
(unless (fork)

(when
(catch ’(NIL)

(for Line
(quote

"Humpty Dumpty sat on a wall."
"Humpty Dumpty had a great fall."
"All the king’s horses and all the king’s men"
"Couldn’t put Humpty together again.")

(rendezvousPrint *MainPrinter Line)))
(prinl " Humpty Dumpty: " @ "!"))

(bye))

Start Mother Goose process
(unless (fork)

(when
(catch ’(NIL)

(for Line
(quote

"Old Mother Goose"
"When she wanted to wander,"
"Would ride through the air"
"On a very fine gander."
"Jack’s mother came in,"
"And caught the goose soon,"
"And mounting its back,"
"Flew up to the moon.")

(rendezvousPrint *MainPrinter Line)))
(prinl " Mother Goose: " @ "!"))

(bye))

Prepare to terminate all processes upon exit
(push ’*Bye ’(tell ’bye))

Output:

1: Old Mother Goose
1: Humpty Dumpty sat on a wall.
1: When she wanted to wander,
1: Humpty Dumpty had a great fall.
1: Would ride through the air
2: All the king’s horses and all the king’s men
2: On a very fine gander.
2: Jack’s mother came in,
2: And caught the goose soon,
2: And mounting its back,

Humpty Dumpty: Out of Ink!

758 20 Rosetta Code Tasks starting with R

Repeat a string

Take a string and repeat it some number of times. Example: repeat(“ha”, 5)
=> “hahahahaha”

If there is a simpler/more efficient way to repeat a single “character” (i.e.
creating a string filled with a certain character), you might want to show that
as well (i.e. repeat-char(“*”, 5) => “*****”).

(pack (need 5 "ha"))
-> "hahahahaha"

or:

(pack (make (do 5 (link "ha"))))
-> "hahahahaha"

20 Rosetta Code Tasks starting with R 759

Respond to an unknown method call

Demonstrate how to make the object respond (sensibly/usefully) to an invo-
cation of a method on it that it does not support through its class definitions.
Note that this is not the same as just invoking a defined method whose name
is given dynamically; the method named at the point of invocation must not
be defined.

This task is intended only for object systems that use a dynamic dispatch
mechanism without static checking.

See also Send an unknown method call.

The function ’[http://software-lab.de/doc/refT.html#try try]’ is used to send a
message to an object for which it is not known whether it inherits a method for
that message or not. As opposed to the syntacically equivalent
’[http://software-lab.de/doc/refS.html#send send]’ function, ’try’ does not give
an error, but returns NIL. We might redefine ’send’ to get an effect analog to
CLOS.

(redef send (Msg Obj . @)
(or

(pass try Msg Obj)
(pass ’no-applicable-method> Obj Msg)))

(de no-applicable-method> (This Msg)
(pack "No method for " Msg " on " This))

(class +A)

(dm do-something> ()
(pack "Do something to " This))

Test:

: (object ’A ’(+A))
-> A
: (object ’B ’(+B))
-> B
: (list (send ’do-something> ’A) (send ’do-something> ’B))
-> ("Do something to A" "No method for do-something> on B")

760 20 Rosetta Code Tasks starting with R

Return multiple values

Show how to return more than one value from a function.

A PicoLisp function returns a single value. For multiple return values, a cons
pair or a list may be used.

(de addsub (X Y)
(list (+ X Y) (- X Y)))

Test:

: (addsub 4 2)
-> (6 2)
: (addsub 3 1)
-> (4 2)
: (+ (car (addsub 4 2)) (car (addsub 3 1)))
-> 10
: (sum + (addsub 4 2) (addsub 3 1))
-> 14

20 Rosetta Code Tasks starting with R 761

Reverse a string

Take a string and reverse it. For example, “asdf” becomes “fdsa”.

For extra credit, preserve Unicode combining characters. For example, “asdf”
becomes “fdsa”, not “fdsa”.

(pack (flip (chop "")))

Output:

-> ""

762 20 Rosetta Code Tasks starting with R

Rock-paper-scissors

The task is to implement the classic children’s game Rock-paper-scissors, as
well as a simple predictive AI player.

Rock Paper Scissors is a two player game. Each player chooses one of rock,
paper or scissors, without knowing the other player’s choice. The winner is
decided by a set of rules:

· Rock beats scissors

· Scissors beat paper

· Paper beats rock.

If both players choose the same thing, there is no winner for that round.

For this task, the computer will be one of the players. The operator will select
Rock, Paper or Scissors and the computer will keep a record of the choice
frequency, and use that information to make a weighted random choice in an
attempt to defeat its opponent.

(use (C Mine Your)
(let (Rock 0 Paper 0 Scissors 0)

(loop
(setq Mine

(let N (if (gt0 (+ Rock Paper Scissors)) (rand 1 @) 0)
(seek

’((L) (le0 (dec ’N (caar L))))
’(Rock Paper Scissors .))))

(prin "Enter R, P or S to play, or Q to quit: ")
(loop

(and (= "Q" (prinl (setq C (uppc (key))))) (bye))
(T (setq Your (find ’((S) (pre? C S)) ’(Rock Paper Scissors))))
(prinl "Bad input - try again"))

(prinl
"I say " (cadr Mine) ", You say " Your ": "
(cond

((== Your (cadr Mine)) "Draw")
((== Your (car Mine)) "I win")
(T "You win")))

(inc Your))))

http://en.wikipedia.org/wiki/Rock-paper-scissors

20 Rosetta Code Tasks starting with R 763

Roman numerals/Encode

Create a function taking a positive integer as its parameter and returning a
string containing the Roman Numeral representation of that integer.

Modern Roman numerals are written by expressing each digit separately start-
ing with the left most digit and skipping any digit with a value of zero. In
Roman numerals 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in
MCMXC. 2008 is written as 2000=MM, 8=VIII; or MMVIII. 1666 uses each
Roman symbol in descending order: MDCLXVI.

(de roman (N)
(pack

(make
(mapc

’((C D)
(while (>= N D)

(dec ’N D)
(link C)))

’(M CM D CD C XC L XL X IX V IV I)
(1000 900 500 400 100 90 50 40 10 9 5 4 1)))))

Output:

: (roman 1009)
-> "MIX"

: (roman 1666)
-> "MDCLXVI"

764 20 Rosetta Code Tasks starting with R

Roman numerals/Decode

Create a function that takes a Roman numeral as its argument and returns its
value as a numeric decimal integer. You don’t need to validate the form of the
Roman numeral.

Modern Roman numerals are written by expressing each decimal digit of the
number to be encoded separately, starting with the leftmost digit and skipping
any 0s. So 1990 is rendered “MCMXC” (1000 = M, 900 = CM, 90 = XC) and
2008 is rendered “MMVIII” (2000 = MM, 8 = VIII). The Roman numeral for
1666, “MDCLXVI”, uses each letter in descending order.

(de roman2decimal (Rom)
(let L (replace (chop Rom) ’M 1000 ’D 500 ’C 100 ’L 50 ’X 10 ’V 5 ’I 1)

(sum ’((A B) (if (>= A B) A (- A))) L (cdr L))))

Test:

: (roman2decimal "MCMXC")
-> 1990

: (roman2decimal "MMVIII")
-> 2008

: (roman2decimal "MDCLXVI")
-> 1666

20 Rosetta Code Tasks starting with R 765

Roots of a function

Create a program that finds and outputs the roots of a given function, range
and (if applicable) step width. The program should identify whether the root
is exact or approximate.

For this example, use f(x)=x3-3x2+2x.

(de findRoots (F Start Stop Step Eps)
(filter

’((N) (> Eps (abs (F N))))
(range Start Stop Step)))

(scl 12)

(mapcar round
(findRoots

’((X) (+ (*/ X X X ‘(* 1.0 1.0)) (*/ -3 X X 1.0) (* 2 X)))
-1.0 3.0 0.0001 0.00000001))

Output:

-> ("0.000" "1.000" "2.000")

766 20 Rosetta Code Tasks starting with R

Roots of a quadratic function

Write a program to find the roots of a quadratic equation, i.e., solve the equa-
tion ax2 + bx + c = 0. Your program must correctly handle non-real roots, but

it need not check that .

The problem of solving a quadratic equation is a good example of how dan-
gerous it can be to ignore the peculiarities of floating-point arithmetic. The
obvious way to implement the quadratic formula suffers catastrophic loss of
accuracy when one of the roots to be found is much closer to 0 than the other.
In their classic textbook on numeric methods Computer Methods for Mathe-
matical Computations, George Forsythe, Michael Malcolm, and Cleve Moler
suggest trying the naive algorithm with a = 1, b = 105, and c = 1. (For double-
precision floats, set b = 109.) Consider the following implementation in Ada:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;

procedure Quadratic_Equation is
type Roots is array (1..2) of Float;
function Solve (A, B, C : Float) return Roots is

SD : constant Float := sqrt (B**2 - 4.0 * A * C);
AA : constant Float := 2.0 * A;

begin
return ((- B + SD) / AA, (- B - SD) / AA);

end Solve;

R : constant Roots := Solve (1.0, -10.0E5, 1.0);
begin

Put_Line ("X1 =" & Float’Image (R (1)) & " X2 =" & Float’Image (R (2)));
end Quadratic_Equation;

Sample output:

X1 = 1.00000E+06 X2 = 0.00000E+00

As we can see, the second root has lost all significant figures. The right answer
is that X2 is about 10 6. The naive method is numerically unstable.

Suggested by Middlebrook (D-OA), a better numerical method: to define two

parameters and

and the two roots of the quardratic are: and

http://www.pdas.com/fmm.htm
http://www.pdas.com/fmm.htm

20 Rosetta Code Tasks starting with R 767

Task: do it better. This means that given a = 1, b = 109, and c = 1, both of the
roots your program returns should be greater than 10 11. Or, if your language
can’t do floating-point arithmetic any more precisely than single precision,
your program should be able to handle b = 106. Either way, show what your
program gives as the roots of the quadratic in question. See page 9 of “What
Every Scientist Should Know About Floating-Point Arithmetic” for a possible
algorithm.

(scl 40)

(de solveQuad (A B C)
(let SD (sqrt (- (* B B) (* 4 A C)))

(if (lt0 B)
(list

(*/ (- SD B) A 2.0)
(*/ C 2.0 (*/ A A (- SD B) ‘(* 1.0 1.0))))

(list
(*/ C 2.0 (*/ A A (- 0 B SD) ‘(* 1.0 1.0)))
(*/ (- 0 B SD) A 2.0)))))

(mapcar round
(solveQuad 1.0 -1000000.0 1.0)
(6 .))

Output:

-> ("999,999.999999" "0.000001")

http://dlc.sun.com/pdf/800-7895/800-7895.pdf
http://dlc.sun.com/pdf/800-7895/800-7895.pdf

768 20 Rosetta Code Tasks starting with R

Roots of unity

The purpose of this task is to explore working with complex numbers. Given
n, find the n-th roots of unity.

(load "@lib/math.l")

(for N (range 2 10)
(let Angle 0.0

(prin N ": ")
(for I N

(let Ipart (sin Angle)
(prin

(round (cos Angle) 4)
(if (lt0 Ipart) "-" "+")
"j"
(round (abs Ipart) 4)
" "))

(inc ’Angle (*/ 2 pi N)))
(prinl)))

http://en.wikipedia.org/wiki/Roots_of_unity

20 Rosetta Code Tasks starting with R 769

Rosetta Code/Count examples

Find the total number of programming examples for each task and the total
for all tasks.

Essentially, count the number of occurrences of =={{header| on each task
page.

Output:

100 doors: 20 examples.
99 Bottles of Beer: 29 examples.
Abstract type: 10 examples.

Total: X examples.

(load "@lib/http.l")

(client "rosettacode.org" 80
"mw/api.php?action=query\&list=categorymembers
\&cmtitle=Category:Programming_Tasks\&cmlimit=500\&format=xml"

(while (from " title=\"")
(let Task (till "\"")

(client "rosettacode.org" 80 (pack "wiki/" (replace Task " " "_"))
(let Cnt 0

(while (from "")
(unless (sub? "." (till "<" T))

(inc ’Cnt)))
(out NIL (prinl (ht:Pack Task) ": " Cnt)))))))

Output (05may10):

100 doors: 79
24 game: 21
24 game/Solve: 15
99 Bottles of Beer: 95
A+B: 37
Abstract type: 29
...

770 20 Rosetta Code Tasks starting with R

Rosetta Code/Find unimplemented tasks

Given the name of a language on Rosetta Code, find all tasks which are not
implemented in that language.

Note: Implementations should allow for fetching more data than can be re-
turned in one request to Rosetta Code.

You’ll need to use the Media Wiki API, which you can find out about locally,
here, or in Media Wiki’s API documentation at, API:Query

(load "@lib/http.l" "@lib/xm.l")

(de rosettaCategory (Cat)
(let (Cont NIL Xml)

(make
(loop

(client "rosettacode.org" 80
(pack

"mw/api.php?action=query\&list=categorymembers\&cmtitle=Category:"
Cat
"\&cmlimit=200\&format=xml"
Cont)

(while (line))
(setq Xml (and (xml?) (xml))))

(NIL Xml)
(for M (body Xml ’query ’categorymembers)

(link (attr M ’title)))
(NIL (attr Xml ’query-continue’ categorymembers ’cmcontinue))
(setq Cont (pack "\&cmcontinue=" @))))))

(de unimplemented (Task)
(diff

(rosettaCategory "Programming_Tasks")
(rosettaCategory Task)))

http://rosettacode.org/mw/api.php
http://www.mediawiki.org/wiki/API_Query

20 Rosetta Code Tasks starting with R 771

Rosetta Code/Fix code tags

Fix Rosetta Code deprecated code tags, with these rules:

Change <%s> to <lang%s>
Change </%s> to </lang>
Change <code%s> to <lang%s>
Change </code> to </lang>

Usage:

./convert.py < wikisource.txt > converted.txt

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(let Lang ’("ada" "awk" "c" "forth" "prolog" "python" "z80")
(in NIL

(while (echo "<")
(let S (till ">" T)

(cond
((pre? "code " S) (prin "<lang" (cddddr (chop S))))
((member S Lang) (prin "<lang " S))
((= S "/code") (prin "</lang"))
((and (pre? "/" S) (member (pack (cdr (chop S))) Lang))

(prin "</lang"))
(T (prin "<" S)))))))

(bye)

772 20 Rosetta Code Tasks starting with R

Rosetta Code/Rank languages by popularity

Sort most popular programming languages based in number of members in
Rosetta Code categories
(from http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000)

Sample output on 6 June 2011:

1. 520 - Tcl
2. 489 - PicoLisp
3. 479 - Python
4. 460 - J
5. 426 - Ruby
6. 415 - Ada
7. 401 - PureBasic
8. 393 - D
9. 385 - Haskell

10. 371 - Go
11. 366 - Java
12. 358 - OCaml
13. 357 - Perl
14. 327 - AutoHotkey
15. 322 - Common Lisp
16. 321 - C++
17. 314 - Unicon
18. 305 - Clojure
19. 289 - Icon
20. 282 - Lua
...

Filtering wrong results is optional. You can check against Special:MostLinkedCategories

http://www.rosettacode.org/mw/index.php?title=Special:Categories&limit=5000

20 Rosetta Code Tasks starting with R 773

(load "@lib/http.l")

(for (I . X)
(flip

(sort
(make

(client "rosettacode.org" 80
"mw/index.php?title=Special:Categories\&limit=5000"
(while (from "<a href=\"/wiki/Category:")

(let Cat (till "\"")
(from "(")
(when (format (till " " T))

(link (cons @ (ht:Pack Cat))))))))))
(prinl (align 3 I) ". " (car X) " - " (cdr X)))

Output (07apr10):

1. 390 - Tcl
2. 389 - Programming_Tasks
3. 359 - Python
4. 344 - Ruby
5. 326 - J
6. 316 - OCaml
7. 315 - C
8. 312 - Haskell
9. 296 - Perl
10. 281 - Common_Lisp

...

Output (09aug12):

1. 668 - Tcl
2. 625 - PicoLisp
3. 612 - Python
4. 602 - C
5. 600 - Programming_Tasks
6. 582 - J
7. 563 - Ruby
8. 557 - Go
9. 551 - Examples_needing_attention
10. 549 - Ada

...

774 20 Rosetta Code Tasks starting with R

Rot-13

Implement a “rot-13” function (or procedure, class, subroutine, or other
“callable” object as appropriate to your programming environment). Option-
ally wrap this function in a utility program which acts like a common UNIX
utility, performing a line-by-line rot-13 encoding of every line of input con-
tained in each file listed on its command line, or (if no filenames are passed
thereon) acting as a filter on its “standard input.” (A number of UNIX scripting
languages and utilities, such as awk and sed either default to processing files
in this way or have command line switches or modules to easily implement
these wrapper semantics, e.g., Perl and Python).

The “rot-13” encoding is commonly known from the early days of Usenet
“Netnews” as a way of obfuscating text to prevent casual reading of spoiler
or potentially offensive material. Many news reader and mail user agent pro-
grams have built-in “rot-13” encoder/decoders or have the ability to feed a
message through any external utility script for performing this (or other) ac-
tions.

The definition of the rot-13 function is to simply replace every letter of the
ASCII alphabet with the letter which is “rotated” 13 characters “around” the
26 letter alphabet from its normal cardinal position (wrapping around from “z”
to “a” as necessary). Thus the letters “abc” become “nop” and so on. Tech-
nically rot-13 is a “monoalphabetic substitution cipher” with a trivial “key”.
A proper implementation should work on upper and lower case letters, pre-
serve case, and pass all non-alphabetic characters in the input stream through
without alteration.

(de rot13-Ch (C)
(if

(or
(member C ’‘(apply circ (chop "ABCDEFGHIJKLMNOPQRSTUVWXYZ")))
(member C ’‘(apply circ (chop "abcdefghijklmnopqrstuvwxyz"))))

(nth @ 14 1)
C))

http://en.wikipedia.org/wiki/Spoiler_(media)

20 Rosetta Code Tasks starting with R 775

Run as a daemon or service

A daemon is a service that runs in the background independent of a users login
session.

Demonstrate how a program disconnects from the terminal to run as a daemon
in the background.

Write a small program that writes a message roughly once a second to its
stdout which should be redirected to a file.

Note that in some language implementations it may not be possible to discon-
nect from the terminal, and instead the process needs to be started with stdout
(and stdin) redirected to files before program start. If that is the case then a
helper program to set up this redirection should be written in the language
itself. A shell wrapper, as would be the usual solution on Unix systems, is not
appropriate.

(unless (fork)
(out "file.log"

(println *Pid) # First write the daemon’s PID to the file
(for N 3600 # Write count for about one hour (if not killed)

(wait 1000)
(println N)
(flush)))

(bye)) # Child terminates after one hour

(bye) # Parent terminates immediately

http://en.wikipedia.org/wiki/Daemon_(computing)

776 20 Rosetta Code Tasks starting with R

Run-length encoding

Given a string containing uppercase characters (A-Z), compress repeated
‘runs’ of the same character by storing the length of that run, and provide
a function to reverse the compression. The output can be anything, as long as
you can recreate the input with it.

Example:

Input: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

Output: 12W1B12W3B24W1B14W

Note: the encoding step in the above example is the same as a step of the
Look-and-say sequence.

20 Rosetta Code Tasks starting with R 777

(de encode (Str)
(pack

(make
(for (Lst (chop Str) Lst)

(let (N 1 C)
(while (= (setq C (pop ’Lst)) (car Lst))

(inc ’N))
(link N C))))))

(de decode (Str)
(pack

(make
(let N 0

(for C (chop Str)
(if (>= "9" C "0")

(setq N (+ (format C) (* 10 N)))
(do N (link C))
(zero N)))))))

(and
(prinl "Data: "

"WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW")
(prinl "Encoded: " (encode @))
(prinl "Decoded: " (decode @)))

Output:

Data: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW
Encoded: 12W1B12W3B24W1B14W
Decoded: WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

778 20 Rosetta Code Tasks starting with R

Runtime evaluation

Demonstrate your language’s ability for programs to execute code written in
the language provided at runtime. Show us what kind of program fragments
are permitted (e.g. expressions vs. statements), how you get values in and out
(e.g. environments, arguments, return values), if applicable what lexical/static
environment the program is evaluated in, and what facilities for restricting
(e.g. sandboxes, resource limits) or customizing (e.g. debugging facilities) the
execution.

You may not invoke a separate evaluator program, or invoke a compiler and
then its output, unless the interface of that program, and the syntax and means
of executing it, are considered part of your language/library/platform.

For a more constrained task giving a specific program fragment to evaluate,
see Eval in environment.

In PicoLisp there is a formal equivalence of code and data. Almost any peace of
data is potentially executable. PicoLisp has three internal data types: Numbers,
symbols and lists. Though in certain contexts (e.g. GUI objects) also atomic
data (numbers and symbols) are evaluated as code entities, a typical executable
item is a list.

The PicoLisp reference distinguishes between two terms: An ’exe’ (expression) is
an executable list, with a function as the first element, followed by arguments.
A ’prg’ (program) is a list of ’exe’s, to be executed sequentially.

’exe’s and ’prg’s are implicit in the whole runtime system. For example, the
body of a function is a ’prg’, the "true" branch of an ’if’ call is an ’exe’,
while the "false" branch again is a ’prg’.

For explicit execution, an ’exe’ can be evaluated by passing it to the function
’[http://software-lab.de/doc/refE.html#eval eval]’, while a ’prg’ can be handled
by ’[http://software-lab.de/doc/refR.html#run run]’.

As PicoLisp uses exclusively dynamic binding, any ’exe’ or ’prg’ can be executed
in arbitrary contexts. The environmet can be controlled in any conceivable way,
through implicit function parameter bindings, or explicitly with the aid of
functions like ’[http://software-lab.de/doc/refB.html#bind bind]’,
’[http://software-lab.de/doc/refL.html#let let]’ or
’[http://software-lab.de/doc/refJ.html#job job]’.

20 Rosetta Code Tasks starting with R 779

Runtime evaluation/In an environment

Given a program in the language (as a string or AST) with a free variable
named x (or another name if that is not valid syntax), evaluate it with x bound
to a provided value, then evaluate it again with x bound to another provided
value, then subtract the result of the first from the second and return or print
it.

Do so in a way which:

· does not involve string manipulation of the input source code

· is plausibly extensible to a runtime-chosen set of bindings rather than just
x

· does not make x a global variable

or note that these are impossible.

(let Expression ’(+ X (* X X)) # Local expression
(println

(+
(let X 3

(eval Expression))
(let X 4

(eval Expression))))
(let Function (list ’(X) Expression) # Build a local function

(println
(+

(Function 3)
(Function 4)))))

Output:

32
32

Chapter 21

Rosetta Code Tasks starting with S

S-Expressions

S-Expressions are one convenient way to parse and store data.

Write a simple reader and writer for S-Expressions that handles quoted and
unquoted strings, integers and floats.

The reader should read a single but nested S-Expression from a string and
store it in a suitable datastructure (list, array, etc). Newlines and other whites-
pace may be ignored unless contained within a quoted string. “()” inside
quoted strings are not interpreted, but treated as part of the string. Handling
escaped quotes inside a string is optional; thus “(foo"bar)” maybe treated
as a string “foo"bar”, or as an error.

For this, the reader need not recognise “\” for escaping, but should, in addi-
tion, recognize numbers if the language has appropriate datatypes.

Languages that support it may treat unquoted strings as symbols.

Note that with the exception of “()"” (“\” if escaping is supported) and
whitespace there are no special characters. Anything else is allowed without

The reader should be able to read the following input

((data "quoted data" 123 4.5)
(data (!@# (4.5) "(more" "data)")))

and turn it into a native datastructure. (see the Pike, Python and Ruby imple-
mentations for examples of native data structures.)

The writer should be able to take the produced list and turn it into a new S-
Expression. Strings that don’t contain whitespace or parentheses () don’t need
to be quoted in the resulting S-Expression, but as a simplification, any string
may be quoted.

781

http://en.wikipedia.org/wiki/S-Expression

782 21 Rosetta Code Tasks starting with S

The ’[http://software-lab.de/doc/refA.html#any any]’ function parses an
s-expression from a string (indentical to the way
’[http://software-lab.de/doc/refR.html#read read]’ does this from an input
stream).

: (any "((data \"quoted data\" 123 4.5) (data (!@# (4.5) \"(more\" \"data)\")))")
-> ((data "quoted data" 123 5) (data (!@# (5) "(more" "data)")))

: (view @)
+---+-- data
| |
| +-- "quoted data"
| |
| +-- 123
| |
| +-- 5
|
+---+-- data

|
+---+-- !@#

|
+---+-- 5
|
+-- "(more"
|
+-- "data)"

Implementing a subset of ’any’ explicitly:

(de readSexpr ()
(case (skip)

("(" (char) (readList))
("\"" (char) (readString))
(T (readAtom)))))

(de readList ()
(make

(loop
(NIL (skip))
(T (= @ ")") (char))
(link (readSexpr)))))

(de readString ()
(pack

(make
(until (= "\"" (or (peek) (quit "Unterminated string")))

(link (char)))
(char))))

(de readAtom ()
(let X

(make
(until (or (sp? (peek)) (member (peek) ’("(" ")")))

(link (char))))
(or (format X) (intern (pack X)))))

21 Rosetta Code Tasks starting with S 783

It can be used in a pipe to read from a string:

: (pipe (prin "((data \"quoted data\" 123 4.5)
(data (!@# (4.5)\"(more\" \"data)\")))")(readSexpr))

-> ((data "quoted data" 123 5) (data (!@# (5) "(more" "data)")))

’[http://software-lab.de/doc/refS.html#sym sym]’ does the reverse (i.e. builds a
symbol (string) from an expression).

: (sym @@)
-> "((data \"quoted data\" 123 5) (data (!@# (5) \"(more\" \"data)\")))"

Implementing a subset of the built-in printer:

(de printSexpr (Expr Fun)
(cond

((pair Expr)
(Fun "(")
(printSexpr (car Expr) Fun)
(for X (cdr Expr)

(Fun " ")
(printSexpr X Fun))

(Fun ")"))
((str? Expr)

(Fun "\"")
(mapc Fun (chop Expr))
(Fun "\""))

(T (mapc Fun (chop Expr)))))

This can be used for plain printing

: (printSexpr
’((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)")))
prin)

((data "quoted data" 123 5) (data (!@# (5) "(more" "data)")))

or to collect the characters into a string:

: (pack
(make

(printSexpr
’((data "quoted data" 123 4.5) (data (!@# (4.5) "(more" "data)")))
link)))

-> "((data \"quoted data\" 123 5) (data (!@# (5) \"(more\" \"data)\")))"

784 21 Rosetta Code Tasks starting with S

SEDOLs

For each number list of 6-digit SEDOLs, calculate and append the checksum
digit.

That is, given this input:

710889
B0YBKJ
406566
B0YBLH
228276
B0YBKL
557910
B0YBKR
585284
B0YBKT
B00030

Produce this output:

7108899
B0YBKJ7
4065663
B0YBLH2
2282765
B0YBKL9
5579107
B0YBKR5
5852842
B0YBKT7
B000300

For extra credit, check each input is correctly formed, especially with respect
to valid characters allowed in a SEDOL string.

C.f. Luhn test

http://en.wikipedia.org/wiki/SEDOL

21 Rosetta Code Tasks starting with S 785

(de sedol (Str)
(pack Str

(char
(+ ‘(char "0")

(\%
(- 10

(\%
(sum

’((W C)
(cond

((>= "9" C "0")
(* W (format C)))

((>= "Z" (setq C (uppc C)) "A")
(* W (+ 10 (- (char C) ‘(char "A")))))))

(1 3 1 7 3 9)
(chop Str))

10))
10)))))

(for S ’("710889" "B0YBKJ" "406566" "B0YBLH" "228276" "B0YBKL"
"557910" "B0YBKR" "585284" "B0YBKT" "B00030")

(prinl (sedol S)))

786 21 Rosetta Code Tasks starting with S

SHA-1

SHA-1 or SHA1 is a one-way hash function; it computes a 160-bit message
digest. SHA-1 often appears in security protocols; for example, many HTTPS
websites use RSA with SHA-1 to secure their connections. BitTorrent uses
SHA-1 to verify downloads. Git and Mercurial use SHA-1 digests to identify
commits.

A US government standard, FIPS 180-1, defines SHA-1.

Find the SHA-1 message digest for a string of octets. You may either call
a SHA-1 library, or implement SHA-1 in your language. Both approaches
interest Rosetta Code.

(let Str "Rosetta Code"
(pack

(mapcar ’((B) (pad 2 (hex B)))
(native "libcrypto.so" "SHA1" ’(B . 20) Str (length Str) ’(NIL (20))))))

Output:

-> "48C98F7E5A6E736D790AB740DFC3F51A61ABE2B5"

http://www.itl.nist.gov/fipspubs/fip180-1.htm

21 Rosetta Code Tasks starting with S 787

Safe addition

Implementation of interval arithmetic and more generally fuzzy number arith-
metic require operations that yield safe upper and lower bounds of the exact
result. For example, for an addition, it is the operations * and * defined as: a
+ b a + b a + b. Additionally it is desired that the width of the interval (a +
b) - (a + b) would be about the machine epsilon after removing the exponent
part.

Differently to the standard floating-point arithmetic, safe interval arithmetic is
accurate (but still imprecise). I.e. the result of each defined operation contains
(though does not identify) the exact mathematical outcome.

Usually a FPU’s have machine +,-,*,/ operations accurate within the machine
precision. To illustrate it, let us consider a machine with decimal floating-
point arithmetic that has the precision is 3 decimal points. If the result of
the machine addition is 1.23, then the exact mathematical result is within the
interval]1.22, 1.24[. When the machine rounds towards zero, then the exact
result is within [1.23,1.24[. This is the basis for an implementation of safe
addition.

PicoLisp uses scaled integer arithmetics, with unlimited precision, for all
operations on real numbers. For that reason addition and subtraction are always
exact. Multiplication is also exact (unless the result is explicitly scaled by
the user), and division in combination with the remainder.

http://en.wikipedia.org/wiki/Interval_arithmetic
http://en.wikipedia.org/wiki/Floating_Point_Unit

788 21 Rosetta Code Tasks starting with S

Same Fringe

Write a routine that will compare the leaves (“fringe”) of two binary trees to
determine whether they are the same list of leaves when visited left-to-right.
The structure or balance of the trees does not matter; only the number, order,
and value of the leaves is important.

Any solution is allowed here, but many computer scientists will consider it
inelegant to collect either fringe in its entirety before starting to collect the
other one. In fact, this problem is usually proposed in various forums as a
way to show off various forms of concurrency (tree-rotation algorithms have
also been used to get around the need to collect one tree first). Thinking of
it a slightly different way, an elegant solution is one that can perform the
minimum amount of work to falsify the equivalence of the fringes when they
differ somewhere in the middle, short-circuiting the unnecessary additional
traversals and comparisons.

Any representation of a binary tree is allowed, as long as the nodes are order-
able, and only downward links are used (for example, you may not use parent
or sibling pointers to avoid recursion).

This uses coroutines to traverse the trees, so it works only in the
64-bit version.

(de nextLeaf (Rt Tree)
(co Rt

(recur (Tree)
(when Tree

(recurse (cadr Tree))
(yield (car Tree))
(recurse (cddr Tree))))))

(de cmpTrees (Tree1 Tree2)
(prog1

(use (Node1 Node2)
(loop

(setq
Node1 (nextLeaf "rt1" Tree1)
Node2 (nextLeaf "rt2" Tree2))

(T (nor Node1 Node2) T)
(NIL (= Node1 Node2))))

(co "rt1")
(co "rt2")))

21 Rosetta Code Tasks starting with S 789

Test:

: (balance ’*Tree1 (range 1 7))
-> NIL
: (for N (5 4 6 3 7 1 2) (idx ’*Tree2 N T))
-> NIL

: (view *Tree1 T)
7

6
5

4
3

2
1

-> NIL

: (view *Tree2 T)
7

6
5

4
3

2
1

-> NIL

: (cmpTrees *Tree1 *Tree2)
-> T

790 21 Rosetta Code Tasks starting with S

Scope modifiers

Most programming languages offer support for subroutines. When execu-
tion changes between subroutines, different sets of variables and functions
(“scopes”) are available to the program. Frequently these sets are defined by
the placement of the variable and function declarations (“static scoping” or
“lexical scoping”). These sets may also be defined by special modifiers to the
variable and function declarations.

Show the different scope modifiers available in your language and briefly ex-
plain how they change the scope of their variable or function. If your language
has no scope modifiers, note it.

21 Rosetta Code Tasks starting with S 791

PicoLisp distinguishes between "scope" and "binding". The scope of a
symbol determines its visibility in a given context (whether or not
it can be accessed), while binding is about assigning it a value.

Scope

In PicoLisp, the scope type of a symbol is either "internal",
"transient" or "external". It is specified lexically: Internal symbols
are just normal symbols. Transient symbols are surrounded by double
quotes (and thus look like strings in other languages), and/or with an
underlined font if possible. External symbols are surrounded by
braces.

* The scope of an internal symbol is global. This means that a symbol
like AB123 is always the same object, residing at a certain location
in memory (pointer equality).

* A transient symbol like "AB123" is the same only within the current
transient scope. This is normally a single source file, but may be
further subdivided. Within that scope it can be used like an internal
symbol, but after the transient scope is closed it cannot be accessed
by its name any longer. This behavior is similar to "static"
identifiers in the C language.

* External symbols like {AB123} are persistent database symbols. They
have a permanent identity among different processes and over time.
Besides that, they have the same structure like internal and transient
symbols: A value, properties and a name.

Binding

Regardless of the scope, the binding of symbols to values is always
dynamic. This happens implicitly for function parameters, or
explicitly with functions like
[http://software-lab.de/doc/refL.html#let let],
[http://software-lab.de/doc/refU.html#use use],
[http://software-lab.de/doc/refB.html#bind bind],
[http://software-lab.de/doc/refJ.html#job job] and others. This means
that the current value of a symbol is saved locally, then set to the
new value. When done, the old value is restored. Closures are created
by maintaining an explicit environment. More about that
[http://software-lab.de/doc/faq.html#dynamic here].

792 21 Rosetta Code Tasks starting with S

Script name

[aka ’Program name’]

The task is to programmatically obtain the name used to invoke the program.
(For example determine whether the user ran “python hello.py”, or “python
hellocaller.py”, a program importing the code from “hello.py”.)

Sometimes a multiline shebang is necessary in order to provide the script
name to a language’s internal ARGV.

See also Command-line arguments

Examples from GitHub.

The function ’[http://software-lab.de/doc/refC.html#cmd cmd]’ returns the
command name.

: (cmd)
-> "/usr/bin/picolisp"

https://github.com/mcandre/scriptname

21 Rosetta Code Tasks starting with S 793

Scripted Main

It is useful to be able to execute a main() function only when a program is run
directly. This is a central feature in programming scripts; the feature is called
scripted main.

Examples from GitHub.

Sometimes getting the ScriptName is required in order to determine when to
run main().

PicoLisp normally does it the other way round: It calls main from the command
line with the ’-’ syntax if desired. Create an executable file (chmod +x)
"life.l":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de meaningOfLife ()
42)

(de lifemain ()
(prinl "Main: The meaning of life is " (meaningOfLife))
(bye))

and an executable file (chmod +x) "test.l":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "life.l")

(prinl "Test: The meaning of life is " (meaningOfLife))
(bye)

Test:

\$./life.l -lifemain
Main: The meaning of life is 42

\$./test.l
Test: The meaning of life is 42

https://github.com/mcandre/scriptedmain

794 21 Rosetta Code Tasks starting with S

Search a list

Find the index of a string (needle) in an indexable, ordered collection of
strings (haystack). Raise an exception if the needle is missing. If there is more
than one occurrence then return the smallest index to the needle.

As an extra task, return the largest index to a needle that has multiple occur-
rences in the haystack.

Note that in PicoLisp all indexes are one-based
(the first element has the position ’1’)

(de lastIndex (Item Lst)
(- (length Lst) (index Item (reverse Lst)) -1))

(de findNeedle (Fun Sym Lst)
(prinl Sym " " (or (Fun Sym Lst) "not found")))

(let Lst ’(Zig Zag Wally Ronald Bush Krusty Charlie Bush Bozo)
(findNeedle index ’Washington Lst)
(findNeedle index ’Bush Lst)
(findNeedle lastIndex ’Bush Lst))

Output:

Washington not found
Bush 5
Bush 8

21 Rosetta Code Tasks starting with S 795

Secure temporary file

Create a temporary file, securely and exclusively (opening it such that there
are no possible race conditions). It’s fine assuming local filesystem seman-
tics (NFS or other networking filesystems can have signficantly more compli-
cated semantics for satisfying the “no race conditions” criteria). The function
should automatically resolve name collisions and should only fail in cases
where permission is denied, the filesystem is read-only or full, or similar con-
ditions exist (returning an error or raising an exception as appropriate to the
language/environment).

The ’tmp’ function returns temporary file names which are exclusively for the
current process (based on the process ID). These files are automatically deleted
upon process termination. Background tasks within a single PicoLisp process is
always non-preemptive, therefore dedicated locks are usually not necessary. If
they are (e.g. because such a file name is passed to a child process), explicit
locks with the ’ctl’ functions are possible.

: (out (tmp "foo") (println 123)) # Write tempfile
-> 123

: (in (tmp "foo") (read)) # Read tempfile
-> 123

: (let F (tmp "foo")
(ctl F # Get exclusive lock

(let N (in F (read)) # Atomic increment
(out F (println (inc N))))))

-> 124

796 21 Rosetta Code Tasks starting with S

Self-describing numbers

There are several integers numbers called “self-describing” or ”self-descriptive”

Integers with the property that, when digit positions are labeled 0 to N-1, the
digit in each position is equal to the number of times that that digit appears in
the number.

For example 2020 is a four digit self describing number.

Position “0” has value 2 and there is two 0 in the number. Position “1” has
value 0 because there are not 1’s in the number. Position “2” has value 2 and
there is two 2. And the position “3” has value 0 and there are zero 3’s.

Self-describing numbers < 100.000.000: 1210 - 2020 - 21200 - 3211000 -
42101000

Task Description

1. Write a function/routine/method/. . . that will check whether a given posi-
tive integer is self-describing.

2. As an optional stretch goal - generate and display the set of self-describing
numbers.

(de selfDescribing (N)
(not

(find ’((D I) (<> D (cnt = N (circ I))))
(setq N (mapcar format (chop N)))
(range 0 (length N)))))

Output:

: (filter selfDescribing (range 1 4000000))
-> (1210 2020 21200 3211000)

http://en.wikipedia.org/wiki/Self-descriptive_number

21 Rosetta Code Tasks starting with S 797

Self-referential sequence

There are several ways to generate a self-referential sequence. One very com-
mon one (the Look-and-say sequence) is to start with a positive integer, then
generate the next term by concatenating enumerated groups of adjacent alike
digits:

0, 10, 1110, 3110, 132110, 1113122110, 311311222110 . . .

The terms generated grow in length geometrically and never converge.

Another way to generate a self-referential sequence is to summarize the pre-
vious term.

Count how many of each alike digit there is, then concatenate the sum and
digit for each of the sorted enumerated digits. Note that the first five terms are
the same as for the previous sequence.

0, 10, 1110, 3110, 132110, 13123110, 23124110 . . . see The On-Line Ency-
clopedia of Integer Sequences

Sort the digits largest to smallest. Do not include counts of digits that do not
appear in the previous term.

Depending on the seed value, series generated this way always either converge
to a stable value or to a short cyclical pattern. (For our purposes, I’ll use con-
verge to mean an element matches a previously seen element.) The sequence
shown, with a seed value of 0, converges to a stable value of 1433223110 after
11 iterations. The seed value that converges most quickly is 22. It goes stable
after the first element. (The next element is 22, which has been seen before.)

http://oeis.org/A036058
http://oeis.org/A036058

798 21 Rosetta Code Tasks starting with S

Task:

Find all the positive integer seed values under 1000000, for the above con-
vergent self-referential sequence, that takes the largest number of iterations
before converging. Then print out the number of iterations and the sequence
they return. Note that different permutations of the digits of the seed will yield
the same sequence. For this task, assume leading zeros are not permitted.

Seed Value(s): 9009 9090 9900

Iterations: 21

Sequence: (same for all three seeds except for first element)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

See also: Self-describing numbers and Look-and-say sequence

21 Rosetta Code Tasks starting with S 799

Using ’las’ from [[Look-and-say sequence#PicoLisp]]:

(de selfRefSequence (Seed)
(let L (mapcar format (chop Seed))

(make
(for (Cache NIL (not (idx ’Cache L T)))

(setq L
(las (flip (sort (copy (link L))))))))))

(let Res NIL
(for Seed 1000000

(let N (length (selfRefSequence Seed))
(cond

((> N (car Res)) (setq Res (list N Seed)))
((= N (car Res)) (queue ’Res Seed)))))

(println ’Values: (cdr Res))
(println ’Iterations: (car Res))
(mapc prinl (selfRefSequence (cadr Res))))

Output:

Values: (9009 9090 9900)
Iterations: 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

800 21 Rosetta Code Tasks starting with S

Send an unknown method call

Invoke an object method where the name of the method to be invoked can be
generated at run time.

Cf

· Respond to an unknown method call.

· Runtime evaluation

This can be done with the ’[http://software-lab.de/doc/refS.html#send send]’
function.

(send (expression) Obj arg1 arg2)

21 Rosetta Code Tasks starting with S 801

Send email

Write a function to send an email. The function should have parameters for
setting From, To and Cc addresses; the Subject, and the message text, and
optionally fields for the server name and login details.

· If appropriate, explain what notifications of problems/success are given.

· Solutions using libraries or functions from the language are preferred, but
failing that, external programs can be used with an explanation.

· Note how portable the solution given is between operating systems when
multi-OS languages are used.

(Remember to obfuscate any sensitive data used in examples)

PicoLisp has a built-in ’[http://software-lab.de/doc/refM.html#mail mail]’
function. A minimal call would be

(mail "localhost" 25 "me@from.org" "you@to.org" "Subject" NIL "Hello")

Instead of "Hello" an arbitrary number of arguments may follow (possibly
containing executable expressions) for the message body.

The 6th argument (here ’NIL’) may specify a list of attachments.

802 21 Rosetta Code Tasks starting with S

Sequence of non-squares

Show that the following remarkable formula gives the sequence of non-square
natural numbers:

n + floor(1/2 + sqrt(n))

· Print out the values for n in the range 1 to 22

· Show that no squares occur for n less than one million

http://www.research.att.com/~njas/sequences/A000037
http://en.wikipedia.org/wiki/Natural_number

21 Rosetta Code Tasks starting with S 803

(de sqfun (N)
(+ N (sqrt N T))) # ’sqrt’ rounds when called with ’T’

(for I 22
(println I (sqfun I)))

(for I 1000000
(let (N (sqfun I) R (sqrt N))

(when (= N (* R R))
(prinl N " is square"))))

Output:

1 2
2 3
3 5
4 6
5 7
6 8
7 10
8 11
9 12
10 13
11 14
12 15
13 17
14 18
15 19
16 20
17 21
18 22
19 23
20 24
21 26
22 27

804 21 Rosetta Code Tasks starting with S

Set

A set is a collection of elements, without duplicates and without order.

Show each of these set operations:

· Set creation

· Test m ∈ S – “m is an element in set S”

· A ∪ B – union; a set of all elements either in set A or in set B.

· A ∩ B – intersection; a set of all elements in both set A and set B.

· A \ B – difference; a set of all elements in set A, except those in set B.

· A ⊆ B – subset; true if every element in set A is also in set B.

· A = B – equality; true if every element of set A is in set B and vice-versa.

As an option, show some other set operations. (If A ⊆ B, but A 6= B, then A
is called a true or proper subset of B, written A ⊂ B or A ⊆ B.) As another
option, show how to modify a mutable set.

One might implement a set using an associative array (with set elements as
array keys and some dummy value as the values). One might also implement
a set with a binary search tree, or with a hash table, or with an ordered array
of binary bits (operated on with bitwise binary operators). The basic test, m
S, is O(n) with a sequential list of elements, O(log n) with a balanced binary
search tree, or (O(1) average-case, O(n) worst case) with a hash table.

21 Rosetta Code Tasks starting with S 805

We may use plain lists, or ’[http://software-lab.de/doc/refI.html#idx idx]’
structures for sets. A set may contain any type of data.

===Using lists===

(setq
Set1 (1 2 3 7 abc "def" (u v w))
Set2 (2 3 5 hello (x y z))
Set3 (3 hello (x y z)))

Element tests (any non-NIL value means "yes")
: (member "def" Set1)
-> ("def" (u v w))

: (member "def" Set2)
-> NIL

: (member ’(x y z) Set2)
-> ((x y z))

Union
: (uniq (append Set1 Set2))
-> (1 2 3 7 abc "def" (u v w) 5 hello (x y z))

Intersection
: (sect Set1 Set2)
-> (2 3)

Difference
: (diff Set1 Set2)
-> (1 7 abc "def" (u v w))

Test for subset
: (not (diff Set1 Set2))
-> NIL # Set1 is not a subset of Set2

: (not (diff Set3 Set2))
-> T # Set3 is a subset of Set2

Test for equality
: (= (sort (copy Set1)) (sort (copy Set2)))
-> NIL

: (= (sort (copy Set2)) (sort (copy Set2)))
-> T

806 21 Rosetta Code Tasks starting with S

===Using ’idx’ structures===

Create three test-sets
(balance ’Set1 (1 2 3 7 abc "def" (u v w)))
(balance ’Set2 (2 3 5 hello (x y z)))
(balance ’Set3 (3 hello (x y z)))

Get contents
: (idx ’Set1)
-> (1 2 3 7 abc "def" (u v w))

: (idx ’Set2)
-> (2 3 5 hello (x y z))

Element tests (any non-NIL value means "yes")
: (idx ’Set1 "def")
-> ("def" (abc) (u v w))

: (idx ’Set2 "def")
-> NIL

: (idx ’Set2 ’(x y z))
-> ((x y z))

Union
: (use S

(balance ’S (idx ’Set1))
(balance ’S (idx ’Set2) T)
(idx ’S))

-> (1 2 3 5 7 abc "def" hello (u v w) (x y z))

Intersection
: (sect (idx ’Set1) (idx ’Set2))
-> (2 3)

Difference
: (diff (idx ’Set1) (idx ’Set2))
-> (1 7 abc "def" (u v w))

21 Rosetta Code Tasks starting with S 807

Test for subset
: (not (diff (idx ’Set1) (idx ’Set2)))
-> NIL # Set1 is not a subset of Set2

: (not (diff (idx ’Set3) (idx ’Set2)))
-> T # Set3 is a subset of Set2

Test for equality
: (= (idx ’Set1) (idx ’Set2))
-> NIL

: (= (idx ’Set2) (idx ’Set2))
-> T

808 21 Rosetta Code Tasks starting with S

Set consolidation

Given two sets of items then if any item is common to any set then the result
of applying consolidation to those sets is a set of sets whose contents is:

· The two input sets if no common item exists between the two input sets of
items.

· The single set that is the union of the two input sets if they share a common
item.

Given N sets of items where N>2 then the result is the same as repeatedly
replacing all combinations of two sets by their consolidation until no further
consolidation between set pairs is possible. If N<2 then consolidation has no
strict meaning and the input can be returned.

Example 1: Given the two sets {A,B} and {C,D} then there is no common
element between the sets and the result is the same as the input.

Example 2: Given the two sets {A,B} and {B,D} then there is a common
element B between the sets and the result is the single set {B,D,A}. (Note
that order of items in a set is immaterial: {A,B,D} is the same as {B,D,A}
and {D,A,B}, etc).

Example 3: Given the three sets {A,B} and {C,D} and {D,B} then there
is no common element between the sets {A,B} and {C,D} but the sets
{A,B} and {D,B} do share a common element that consolidates to pro-
duce the result {B,D,A}. On examining this result with the remaining set,
{C,D}, they share a common element and so consolidate to the final output
of the single set {A,B,C,D}

Example 4: The consolidation of the five sets:

{H,I,K}, {A,B}, {C,D}, {D,B}, and {F,G,H}

Is the two sets:

{A, C, B, D}, and {G, F, I, H, K}

21 Rosetta Code Tasks starting with S 809

(de consolidate (S)
(when S

(let R (cons (car S))
(for X (consolidate (cdr S))

(if (mmeq X (car R))
(set R (uniq (conc X (car R))))
(conc R (cons X))))

R)))

Test:

: (consolidate ’((A B) (C D)))
-> ((A B) (C D))
: (consolidate ’((A B) (B D)))
-> ((B D A))
: (consolidate ’((A B) (C D) (D B)))
-> ((D B C A))
: (consolidate ’((H I K) (A B) (C D) (D B) (F G H)))
-> ((F G H I K) (D B C A))

810 21 Rosetta Code Tasks starting with S

Seven-sided dice from five-sided dice

Given an equal-probability generator of one of the integers 1 to 5 as dice5;
create dice7 that generates a pseudo-random integer from 1 to 7 in equal
probability using only dice5 as a source of random numbers, and check the
distribution for at least 1000000 calls using the function created in Simple
Random Distribution Checker.

Implementation suggestion: dice7 might call dice5 twice, re-call if four
of the 25 combinations are given, otherwise split the other 21 combinations
into 7 groups of three, and return the group index from the rolls.

(Task adapted from an answer on stackoverflow.com)

(de dice5 ()
(rand 1 5))

(de dice7 ()
(use R

(until (> 21 (setq R (+ (* 5 (dice5)) (dice5) -6))))
(inc (\% R 7))))

Output:

: (let R NIL
(do 1000000 (accu ’R (dice7) 1))
(sort R))

-> ((1 . 142295) (2 . 142491) (3 . 143448) (4 . 143129)
(5 . 142701) (6 . 143142) (7 . 142794))

http://stackoverflow.com/questions/90715/what-are-the-best-programming-puzzles-you-came-across

21 Rosetta Code Tasks starting with S 811

Shell one-liner

Show how to specify and execute a short program in the language from a
command shell, where the input to the command shell is only one line in
length.

Avoid depending on the particular shell or operating system used as much as is
reasonable; if the language has notable implementations which have different
command argument syntax, or the systems those implementations run on have
different styles of shells, it would be good to show multiple examples.

\$ picolisp -’prinl "Hello world!"’ -bye
Hello world!

812 21 Rosetta Code Tasks starting with S

Short-circuit evaluation

Assume functions a and b return boolean values, and further, the execution
of function b takes considerable resources without side effects, and is to be
minimised.

If we needed to compute:

x = a() and b()

Then it would be best to not compute the value of b() if the value of a() is
computed as False, as the value of x can then only ever be False.

Similarly, if we needed to compute:

y = a() or b()

Then it would be best to not compute the value of b() if the value of a() is
computed as True, as the value of y can then only ever be True.

Some languages will stop further computation of boolean equations as soon as
the result is known, so-called short-circuit evaluation of boolean expressions

Task Description
The task is to create two functions named a and b, that take and return the same
boolean value. The functions should also print their name whenever they are
called. Calculate and assign the values of the following equations to a variable
in such a way that function b is only called when necessary:

x = a(i) and b(j)
y = a(i) or b(j)

If the language does not have short-circuit evaluation, this might be achieved
with nested if statements.

http://en.wikipedia.org/wiki/Short-circuit_evaluation

21 Rosetta Code Tasks starting with S 813

(de a (F)
(msg ’a)
F)

(de b (F)
(msg ’b)
F)

(mapc
’((I J)

(for Op ’(and or)
(println I Op J ’-> (Op (a I) (b J)))))

’(NIL NIL T T)
’(NIL T NIL T))

Output:

a
NIL and NIL -> NIL
a
b
NIL or NIL -> NIL
a
NIL and T -> NIL
a
b
NIL or T -> T
a
b
T and NIL -> NIL
a
T or NIL -> T
a
b
T and T -> T
a
T or T -> T

814 21 Rosetta Code Tasks starting with S

Show the epoch

Choose popular date libraries used by your language and show the epoch those
libraries use. A demonstration is preferable (e.g. setting the internal represen-
tation of the date to 0 ms/ns/etc., or another way that will still show the epoch
even if it is changed behind the scenes by the implementers), but text from
(with links to) documentation is also acceptable where a demonstration is im-
possible/impractical. For consistency’s sake, show the date in UTC time where
possible.

See also: Date format

The ’date’ function in PicoLisp returns a day number, starting first of March of
the year zero. Calculated according to the gregorian calendar (despite that that
calendar wasn’t used in 0 AD yet).

: (date 1)
-> (0 3 1) # Year zero, March 1st

http://en.wikipedia.org/wiki/Epoch_(reference_date)#Computing

21 Rosetta Code Tasks starting with S 815

Sierpinski carpet

Produce a graphical or ASCII-art representation of a Sierpinski carpet of order
N. For example, the Sierpinski carpet of order 3 should look like this:

###########################
#
###########################
###
#
###
###########################
#
###########################
######### #########
#
######### #########
###
#
###
######### #########
#
######### #########
###########################
#
###########################
###
#
###
###########################
#
###########################

The use of # characters is not rigidly required for ASCII art. The important
requirement is the placement of whitespace and non-whitespace characters.

See also Sierpinski triangle

http://en.wikipedia.org/wiki/Sierpinski_carpet

816 21 Rosetta Code Tasks starting with S

(de carpet (N)
(let Carpet ’("#")

(do N
(setq Carpet

(conc
(mapcar ’((S) (pack S S S)) Carpet)
(mapcar

’((S) (pack S (replace (chop S) "#" " ") S))
Carpet)

(mapcar ’((S) (pack S S S)) Carpet))))))

(mapc prinl (carpet 3))

21 Rosetta Code Tasks starting with S 817

Sierpinski triangle

Produce an ASCII representation of a Sierpinski triangle of order N. For ex-
ample, the Sierpinski triangle of order 4 should look like this:

*
* *

* *
* * * *

* *
* * * *

* * * *
* * * * * * * *
* *

* * * *
* * * *

* * * * * * * *
* * * *

* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *

See also Sierpinski carpet

(de sierpinski (N)
(let (D ’("*") S " ")

(do N
(setq

D (conc
(mapcar ’((X) (pack S X S)) D)
(mapcar ’((X) (pack X " " X)) D))

S (pack S S)))
D))

(mapc prinl (sierpinski 4))

http://en.wikipedia.org/wiki/Sierpinski_triangle

818 21 Rosetta Code Tasks starting with S

Sieve of Eratosthenes

The Sieve of Eratosthenes is a simple algorithm that finds the prime numbers
up to a given integer. Implement this algorithm, with the only allowed opti-
mization that the outer loop can stop at the square root of the limit, and the
inner loop may start at the square of the prime just found. That means espe-
cially that you shouldn’t optimize by using pre-computed wheels, i.e. don’t
assume you need only to cross out odd numbers (wheel based on 2), numbers
equal to 1 or 5 modulo 6 (wheel based on 2 and 3), or similar wheels based on
low primes.

If there’s an easy way to add such a wheel based optimization, implement this
as an alternative version.

Note

· It is important that the sieve algorithm be the actual algorithm used to find
prime numbers for the task.

Cf

· Primality by trial division.

· Prime decomposition.

(de sieve (N)
(let Sieve (range 1 N)

(set Sieve)
(for I (cdr Sieve)

(when I
(for (S (nth Sieve (* I I)) S (nth (cdr S) I))

(set S))))
(filter bool Sieve)))

Output:

: (sieve 100)
-> (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

21 Rosetta Code Tasks starting with S 819

Simple database

Write a simple tool to track a small set of data. The tool should have a com-
mandline interface to enter at least two different values. The entered data
should be stored in a structured format and saved to disk.

It does not matter what kind of data is being tracked. It could be your CD
collection, your friends birthdays, or diary.

You should track the following details:

· A description of the item. (e.g., title, name)

· A category or tag (genre, topic, relationship such as “friend” or “family”)

· A date (either the date when the entry was made or some other date that
is meaningful, like the birthday); the date may be generated or entered
manually

· Other optional fields

The command should support the following Command-line arguments to run:

· Add a new entry

· Print the latest entry

· Print the latest entry for each category

· Print all entries sorted by a date

The category may be realized as a tag or as structure (by making all entries in
that category subitems)

The file format on disk should be human readable, but it need not be stan-
dardized. A natively available format that doesn’t need an external library is
preferred. Avoid developing your own format however if you can use an al-
ready existing one. If there is no existing format available pick one of: JSON,
S-Expressions, YAML, or others.

See also Take notes on the command line for a related task.

http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats

820 21 Rosetta Code Tasks starting with S

The ’[http://software-lab.de/doc/refR.html#rc rc]’ resource file handling
function is used typically for such tasks. It also takes care of proper locking
and protection.

#!/usr/bin/pil

(de usage ()
(prinl

"Usage:ˆJ\
sdb <file> add <title> <cat> <date> ... Add a new entryˆJ\
sdb <file> get <title> Retrieve an entryˆJ\
sdb <file> latest Print the latest entryˆJ\
sdb <file> categories Print the latest for each catˆJ\
sdb <file> Print all, sorted by date"))

(de printEntry (E)
(apply println (cdddr E) (car E) (cadr E) (datStr (caddr E))))

(ifn (setq *File (opt))
(usage)
(case (opt)

(add
(let (Ttl (opt) Cat (opt))

(if (strDat (opt))
(rc *File Ttl (cons Cat @ (argv)))
(prinl "Bad date"))))

(get
(let Ttl (opt)

(when (rc *File Ttl)
(printEntry (cons Ttl @)))))

(latest
(printEntry (maxi caddr (in *File (read)))))

(categories
(for Cat (by cadr group (in *File (read)))

(printEntry (maxi caddr Cat))))
(NIL

(mapc printEntry (by caddr sort (in *File (read)))))
(T (usage))))

(bye)

21 Rosetta Code Tasks starting with S 821

Test:

\$ sdb CDs add "Title 1" "Category 1" 2011-11-13
\$ sdb CDs add "Title 2" "Category 2" 2011-11-12
\$ sdb CDs add "Title 3" "Category 1" 2011-11-14 foo bar
\$ sdb CDs add "Title 4" "Category 2" 2011-11-15 mumble

\$ sdb CDs get "Title 3"
"Title 3" "Category 1" "2011-11-14" "foo" "bar"

\$ sdb CDs latest
"Title 4" "Category 2" "2011-11-15" "mumble"

\$ sdb CDs categories
"Title 4" "Category 2" "2011-11-15" "mumble"
"Title 3" "Category 1" "2011-11-14" "foo" "bar"

\$ sdb CDs
"Title 2" "Category 2" "2011-11-12"
"Title 1" "Category 1" "2011-11-13"
"Title 3" "Category 1" "2011-11-14" "foo" "bar"
"Title 4" "Category 2" "2011-11-15" "mumble"

822 21 Rosetta Code Tasks starting with S

Simple quaternion type and operations

[aka ’Quaternion type’]

Quaternions are an extension of the idea of complex numbers.

A complex number has a real and complex part written sometimes as a +
bi, where a and b stand for real numbers and i stands for the square root of
minus 1. An example of a complex number might be -3 + 2i, where the
real part, a is -3.0 and the complex part, b is +2.0.

A quaternion has one real part and three imaginary parts, i, j, and k. A quater-
nion might be written as a + bi + cj + dk. In this numbering system,
ii = jj = kk = ijk = -1. The order of multiplication is important,
as, in general, for two quaternions q1 and q2; q1q2 != q2q1. An example
of a quaternion might be 1 +2i +3j +4k

There is a list form of notation where just the numbers are shown and the
imaginary multipliers i, j, and k are assumed by position. So the example
above would be written as (1, 2, 3, 4)

Task Description
Given the three quaternions and their components:

q = (1, 2, 3, 4) = (a, b, c, d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)

And a wholly real number r = 7.

Your task is to create functions or classes to perform simple maths with quater-
nions including computing:

1. The norm of a quaternion:

2. The negative of a quaternion:
=(-a, -b, -c, -d)

3. The conjugate of a quaternion:
=(a, -b, -c, -d)

4. Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)

5. Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)

6. Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)

http://en.wikipedia.org/wiki/Quaternion

21 Rosetta Code Tasks starting with S 823

7. Multiplication of two quaternions q1 and q2 is given by:
(a1a2 b1b2 c1c2 d1d2,
a1b2 + b1a2 + c1d2 d1c2,
a1c2 b1d2 + c1a2 + d1b2,
a1d2 + b1c2 c1b2 + d1a2)

8. Show that, for the two quaternions q1 and q2:
q1q2 != q2q1

If your language has built-in support for quaternions then use it.

C.f.

· Vector products

· On Quaternions; or on a new System of Imaginaries in Algebra. By Sir
William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed.
and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Pe-
tersburgh, Berlin, Turin and Paris, Member of the American Academy of
Arts and Sciences, and of other Scientific Societies at Home and Abroad,
Andrews’ Prof. of Astronomy in the University of Dublin, and Royal As-
tronomer of Ireland.

http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/QLetter/QLetter.pdf

824 21 Rosetta Code Tasks starting with S

(scl 6)

(def ’quatCopy copy)

(de quatNorm (Q)
(sqrt (sum * Q Q)))

(de quatNeg (Q)
(mapcar - Q))

(de quatConj (Q)
(cons (car Q) (mapcar - (cdr Q))))

(de quatAddR (Q R)
(cons (+ R (car Q)) (cdr Q)))

(de quatAdd (Q1 Q2)
(mapcar + Q1 Q2))

(de quatMulR (Q R)
(mapcar */ (mapcar * Q (circ R)) (1.0 .)))

(de quatMul (Q1 Q2)
(mapcar

’((Ops I)
(sum ’((Op R I) (Op (*/ R (get Q2 I) 1.0))) Ops Q1 I))

’((+ - - -) (+ + + -) (+ - + +) (+ + - +))
’((1 2 3 4) (2 1 4 3) (3 4 1 2) (4 3 2 1))))

(de quatFmt (Q)
(mapcar ’((R S) (pack (format R *Scl) S))

Q
’(" + " "i + " "j + " "k")))

21 Rosetta Code Tasks starting with S 825

Test:

(setq
Q (1.0 2.0 3.0 4.0)
Q1 (2.0 3.0 4.0 5.0)
Q2 (3.0 4.0 5.0 6.0)
R 7.0)

(prinl "R = " (format R *Scl))
(prinl "Q = " (quatFmt Q))
(prinl "Q1 = " (quatFmt Q1))
(prinl "Q2 = " (quatFmt Q2))
(prinl)
(prinl "norm(Q) = " (format (quatNorm Q) *Scl))
(prinl "norm(Q1) = " (format (quatNorm Q1) *Scl))
(prinl "norm(Q2) = " (format (quatNorm Q2) *Scl))
(prinl "net(Q) = " (quatFmt (quatNeg Q)))
(prinl "conj(Q) = " (quatFmt (quatConj Q)))
(prinl "Q + R = " (quatFmt (quatAddR Q R)))
(prinl "Q1 + Q2 = " (quatFmt (quatAdd Q1 Q2)))
(prinl "Q * R = " (quatFmt (quatMulR Q R)))
(prinl "Q1 * Q2 = " (quatFmt (quatMul Q1 Q2)))
(prinl "Q2 * Q1 = " (quatFmt (quatMul Q2 Q1)))
(prinl (if (= (quatMul Q1 Q2) (quatMul Q2 Q1)) "Equal" "Not equal"))

Output:

R = 7.000000
Q = 1.000000 + 2.000000i + 3.000000j + 4.000000k
Q1 = 2.000000 + 3.000000i + 4.000000j + 5.000000k
Q2 = 3.000000 + 4.000000i + 5.000000j + 6.000000k

norm(Q) = 5.477225
norm(Q1) = 7.348469
norm(Q2) = 9.273618
net(Q) = -1.000000 + -2.000000i + -3.000000j + -4.000000k
conj(Q) = 1.000000 + -2.000000i + -3.000000j + -4.000000k
Q + R = 8.000000 + 2.000000i + 3.000000j + 4.000000k
Q1 + Q2 = 5.000000 + 7.000000i + 9.000000j + 11.000000k
Q * R = 7.000000 + 14.000000i + 21.000000j + 28.000000k
Q1 * Q2 = -56.000000 + 16.000000i + 24.000000j + 26.000000k
Q2 * Q1 = -56.000000 + 18.000000i + 20.000000j + 28.000000k
Not equal

826 21 Rosetta Code Tasks starting with S

Simple windowed application

This task asks to create a window with a label that says “There have been no
clicks yet” and a button that says “click me”. Upon clicking the button with
the mouse, the label should change and show the number of times the button
has been clicked.

The standard PicoLisp GUI is HTTP based. Connect your browser to
http://localhost:8080 after starting the following script.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@ext.l" "@lib/http.l" "@lib/xhtml.l" "@lib/form.l")

(zero *Count)

(de start ()
(app)
(action

(html 0 "Clicks" NIL NIL
(form NIL

(gui ’(+Init +TextField) "There have been no clicks yet")
(----)
(gui ’(+JS +Button) "click me"

’(set> (field -1)
(pack "Clicked " (inc ’*Count) " times")))))))

(server 8080 "!start")
(wait)

21 Rosetta Code Tasks starting with S 827

Simulate input/Keyboard

Send simulated keystrokes to a GUI window, or terminal. You should specify
whether the target may be externally created (i.e., if the keystrokes are going
to an application other than the application that is creating them).

PicoLisp comes with a dedicated browser GUI. A library based on web scraping (in
"lib/scrape.l") can be used to drive that GUI under program control. It allows
to read GUI pages, click on HTML links, enter text into forms, and press submit
buttons. In that way one application can control another application.

The documented [http://software-lab.de/doc/app.html#minApp demo application],
which is also available online at [http://7fach.de/8080 app.7fach.de], is used
in the following example. Keyboard input is simulated with the function ’enter’
to fill the login form’s name and password fields.

(load "@lib/http.l" "@lib/scrape.l")

Connect to the demo app at http://7fach.de/8080
(scrape "7fach.de" 80 "8080")

Log in
(expect "’admin’ logged in"

(enter 3 "admin") # Enter user name into 3rd field
(enter 4 "admin") # Enter password into 4th field
(press "login")) # Press the "login" button

(click "Items") # Open "Items" dialog
(click "Spare Part") # Click on "Spare Part" article
(prinl (value 8)) # Print the price (12.50)
(click "logout") # Log out

Output:

12.50

The same example is used in the related task [[Simulate input/Mouse#PicoLisp]].

828 21 Rosetta Code Tasks starting with S

Simulate input/Mouse

Simulate the click of a mouse button by the user. Specify if the target GUI
may be externally created.

PicoLisp comes with a dedicated browser GUI. A library based on web scraping (in
"lib/scrape.l") can be used to drive that GUI under program control. It allows
to read GUI pages, click on HTML links, enter text into forms, and press submit
buttons. In that way one application can control another application.

The documented [http://software-lab.de/doc/app.html#minApp demo application],
which is also available online at [http://7fach.de/8080 app.7fach.de], is used
in the following example. Mouse input is simulated with the functions ’click’
(click on a HTML link) and ’press’ (press a submit button).

(load "@lib/http.l" "@lib/scrape.l")

Connect to the demo app at http://7fach.de/8080
(scrape "7fach.de" 80 "8080")

Log in
(expect "’admin’ logged in"

(enter 3 "admin") # Enter user name into 3rd field
(enter 4 "admin") # Enter password into 4th field
(press "login")) # Press the "login" button

(click "Items") # Open "Items" dialog
(click "Spare Part") # Click on "Spare Part" article
(prinl (value 8)) # Print the price (12.50)
(click "logout") # Log out

Output:
12.50

The same example is used in the related task [[Simulate input/Keyboard#PicoLisp]].

21 Rosetta Code Tasks starting with S 829

Singleton

A Global Singleton is a class of which only one instance exists within a pro-
gram. Any attempt to use non-static members of the class involves performing
operations on this one instance.

As there is no physical difference between classes and objects, we
can use the class symbol itself.

(class +Singleton)

(dm message1> ()
(prinl "This is method 1 on " This))

(dm message2> ()
(prinl "This is method 2 on " This))

Output:

: (message1> ’+Singleton)
This is method 1 on +Singleton
-> +Singleton

: (message2> ’+Singleton)
This is method 2 on +Singleton
-> +Singleton

830 21 Rosetta Code Tasks starting with S

Singly-linked list/Element definition

Define the data structure for a singly-linked list element. Said element should
contain a data member capable of holding a numeric value, and the link to the
next element should be mutable.

In PicoLisp, the singly-linked list is the most important data structure. Many
built-in functions deal with linked lists. A list consists of interconnected
"cells". Cells are also called "cons pairs", because they are constructed with
the function ’[http://software-lab.de/doc/refC.html#cons cons]’.

Each cell consists of two parts: A CAR and a CDR. Both may contain (i.e. point
to) arbitrary data (numbers, symbols, other cells, or even to itself). In the
case of a linked list, the CDR points to the rest of the list.

The CAR of a cell can be manipulated with
’[http://software-lab.de/doc/refS.html#set set]’
and the CDR with ’[http://software-lab.de/doc/refC.html#con con]’.

21 Rosetta Code Tasks starting with S 831

Singly-linked list/Element insertion

Using the link element defined in Singly-Linked List (element), define a
method to insert an element into a singly-linked list following a given ele-
ment.

Using this method, insert an element C into a list comprised of elements A
−> B, following element A.

Destructive operation

(de insertAfter (Item Lst New)
(when (member Item Lst)

(con @ (cons New (cdr @))))
Lst)

Non-destructive operation

(de insertAfter (Item Lst New)
(if (index Item Lst)

(conc (cut @ ’Lst) (cons New Lst))
Lst))

Output in both cases:

: (insertAfter ’A ’(A B) ’C)
-> (A C B)

: (insertAfter ’A ’(X Y Z A B D E) ’C)
-> (X Y Z A C B D E)

832 21 Rosetta Code Tasks starting with S

Singly-linked list/Traversal

Traverse from the beginning of a singly-linked list to the end.

We might use map functions

(mapc println ’(a "cde" (X Y Z) 999))

or flow control functions

(for X ’(a "cde" (X Y Z) 999)
(println X))

Output in both cases:

a
"cde"
(X Y Z)
999

21 Rosetta Code Tasks starting with S 833

Sleep

Write a program that does the following in this order:

· Input an amount of time to sleep in whatever units are most natural for your
language (milliseconds, seconds, ticks, etc.). This unit should be noted in
comments or in a description.

· Print “Sleeping. . . ”

· Sleep the main thread for the given amount of time.

· Print “Awake!”

· End.

(prinl "Sleeping...")
(wait 2000) # Wait for 2 seconds
(prinl "Awake!")

As wait will continue executing background events, another possibility (for a
complete stop) is calling some external program like

(prinl "Sleeping...")
(call ’sleep 2) # Wait for 2 seconds
(prinl "Awake!")

834 21 Rosetta Code Tasks starting with S

Sockets

For this exercise a program is open a socket to localhost on port 256 and
send the message “hello socket world” before closing the socket. Catching
any exceptions or errors is not required.

(when (connect "localhost" 256)
(out @ (prinl "hello socket world"))
(close @))

21 Rosetta Code Tasks starting with S 835

Sokoban

Demonstrate how to find a solution to a given Sokoban level. For the purpose
of this task (formally, a PSPACE-complete problem) any method may be used.
However a move-optimal or push-optimal (or any other -optimal) solutions is
preferred.

Sokoban levels are usually stored as a character array where

· space is an empty square

· # is a wall

· @ is the player

· $ is a box

· . is a goal

· + is the player on a goal

· * is a box on a goal

Sokoban solutions are usually stored in the LURD format, where lowercase l,
u, r and d represent a move in that (left, up, right, down) direction and capital
LURD represents a push.

Please state if you use some other format for either the input or output, and
why.

For more information, see the Sokoban wiki.

http://en.wikipedia.org/wiki/Sokoban
http://www.sokobano.de/wiki/index.php?title=Main_Page

836 21 Rosetta Code Tasks starting with S

This searches for a solution, without trying for the push-optimal one. The
player moves between the pushes, however, are minimized.

(load "@lib/simul.l")

Display board
(de display ()

(disp *Board NIL
’((This)

(pack
(if2 (== This *Pos) (memq This *Goals)

"+" # Player on goal
"@" # Player elsewhere
(if (: val) "*" ".") # On gloal
(or (: val) " ")) # Elsewhere

" "))))

Initialize
(de main (Lst)

(mapc
’((B L)

(mapc
’((This C)

(case C
(" ")
("." (push ’*Goals This))
("@" (setq *Pos This))
("\$" (=: val C) (push ’*Boxes This))
(T (=: val C))))

B L))
(setq *Board (grid (length (car Lst)) (length Lst)))
(apply mapcar (flip (mapcar chop Lst)) list))

(display))

Generate possible push-moves
(de pushes ()

(make
(for Box *Boxes

(unless (or (; (west Box) val) (; (east Box) val))
(when (moves (east Box))

(link (cons (cons Box (west Box)) *Pos "L" @)))
(when (moves (west Box))

(link (cons (cons Box (east Box)) *Pos "R" @))))
(unless (or (; (south Box) val) (; (north Box) val))

(when (moves (north Box))
(link (cons (cons Box (south Box)) *Pos "D" @)))

(when (moves (south Box))
(link (cons (cons Box (north Box)) *Pos "U" @)))))))

21 Rosetta Code Tasks starting with S 837

Moves of player to destination
(de moves (Dst Hist)

(or
(== Dst *Pos)
(mini length

(extract
’((Dir)

(with ((car Dir) Dst)
(cond

((== This *Pos) (cons (cdr Dir)))
((: val))
((memq This Hist))
((moves This (cons Dst Hist))

(cons (cdr Dir) @)))))
’((west . "r") (east . "l") (south . "u") (north . "d"))))))

Find solution
(de go (Res)

(unless (idx ’*Hist (sort (copy *Boxes)) T) # No repeated state
(if (find ’((This) (<> "\$" (: val))) *Goals)

(pick
’((Psh)

(setq # Move

*Pos (caar Psh)

*Boxes (cons (cdar Psh) (delq *Pos *Boxes)))
(put *Pos ’val NIL)
(put (cdar Psh) ’val "\$")
(prog1 (go (append (cddr Psh) Res))

(setq # Undo move

*Pos (cadr Psh)

*Boxes (cons (caar Psh) (delq (cdar Psh) *Boxes)))
(put (cdar Psh) ’val NIL)
(put (caar Psh) ’val "\$")))

(pushes))
(display) # Display solution
(pack (flip Res)))))

838 21 Rosetta Code Tasks starting with S

Test:

(main
(quote

"#######"
"# #"
"# #"
"#. # #"
"#. \$\$ #"
"#.\$\$ #"
"#.# @#"
"#######"))

(prinl)
(go)

Output:

8 # # # # # # #
7 # #
6 # #
5 # . # #
4 # . \$ \$ #
3 # . \$ \$ #
2 # . # @ #
1 # # # # # # #

a b c d e f g

8 # # # # # # #
7 # #
6 # @ #
5 # * # #
4 # * #
3 # * #
2 # * # #
1 # # # # # # #

a b c d e f g
-> "uuulDLLulDDurrrrddlUruLLLrrddlUruLdLUUdrruulLulD"

21 Rosetta Code Tasks starting with S 839

Solve a Hidato puzzle

The task is to write a program which solves Hidato puzzles.

The rules are:

· You are given a grid with some numbers placed in it. The other squares in
the grid will be blank.

· The grid is not necessarily rectangular.

· The grid may have holes in it.

· The grid is always connected.

· The number “1” is always present, as is another number that is equal
to the number of squares in the grid. Other numbers are present so as
to force the solution to be unique.

· It may be assumed that the difference between numbers present on the
grid is not greater than lucky 13.

· The aim is to place a natural number in each blank square so that in the
sequence of numbered squares from “1” upwards, each square is in the
wp:Moore neighborhood of the squares immediately before and after it in
the sequence (except for the first and last squares, of course, which only
have one-sided constraints).

· Thus, if the grid was overlaid on a chessboard, a king would be able to
make legal moves along the path from first to last square in numerical
order.

· A square may only contain one number.

· In a proper Hidato puzzle, the solution is unique.

http://en.wikipedia.org/wiki/Hidato
http://en.wikipedia.org/wiki/Moore_neighborhood

840 21 Rosetta Code Tasks starting with S

For example the following problem

has the following solution, with path marked on it:

21 Rosetta Code Tasks starting with S 841

(load "@lib/simul.l")

(de hidato (Lst)
(let Grid (grid (length (maxi length Lst)) (length Lst))

(mapc
’((G L)

(mapc
’((This Val)

(nond
(Val

(with (: 0 1 1) (con (: 0 1))) # Cut off west
(with (: 0 1 -1) (set (: 0 1))) # east
(with (: 0 -1 1) (con (: 0 -1))) # south
(with (: 0 -1 -1) (set (: 0 -1))) # north
(set This))

((=T Val) (=: val Val))))
G L))

Grid
(apply mapcar (reverse Lst) list))

(let Todo
(by ’((This) (: val)) sort

(mapcan ’((Col) (filter ’((This) (: val)) Col))
Grid))

(let N 1
(with (pop ’Todo)

(recur (N Todo)
(unless (> (inc ’N) (; Todo 1 val))

(find
’((Dir)

(with (Dir This)
(cond

((= N (: val))
(if (cdr Todo) (recurse N @) T))

((not (: val))
(=: val N)
(or (recurse N Todo) (=: val NIL))))))

(quote
west east south north
((X) (or (south (west X)) (west (south X))))
((X) (or (north (west X)) (west (north X))))
((X) (or (south (east X)) (east (south X))))
((X) (or (north (east X)) (east (north X)))))))))))

(disp Grid 0
’((This)

(if (: val) (align 3 @) " ")))))

842 21 Rosetta Code Tasks starting with S

Test:

(hidato
(quote

(T 33 35 T T)
(T T 24 22 T)
(T T T 21 T T)
(T 26 T 13 40 11)
(27 T T T 9 T 1)
(NIL NIL T T 18 T T)
(NIL NIL NIL NIL T 7 T T)
(NIL NIL NIL NIL NIL NIL 5 T)))

Output:

+---+---+---+---+---+---+---+---+
8 | 32 33 35 36 37| | | |

+ + + + + +---+---+---+
7 | 31 34 24 22 38| | | |

+ + + + + +---+---+---+
6 | 30 25 23 21 12 39| | |

+ + + + + + +---+---+
5 | 29 26 20 13 40 11| | |

+ + + + + + +---+---+
4 | 27 28 14 19 9 10 1| |

+---+---+ + + + + +---+
3 | | | 15 16 18 8 2| |

+---+---+---+---+ + + +---+
2 | | | | | 17 7 6 3|

+---+---+---+---+---+---+ + +
1 | | | | | | | 5 4|

+---+---+---+---+---+---+---+---+
a b c d e f g h

21 Rosetta Code Tasks starting with S 843

Sort an array of composite structures

Sort an array of composite structures by a key. For example, if you define a
composite structure that presents a name-value pair (in pseudocode):

Define structure pair such that:
name as a string
value as a string

and an array of such pairs:

x: array of pairs

then define a sort routine that sorts the array x by the key name.

This task can always be accomplished with Sorting Using a Custom Com-
parator. If your language is not listed here, please see the other article.

By default, the [http://software-lab.de/doc/refS.html#sort sort] function in
PicoLisp returns an ascending list (of any type)

: (sort ’(("def" 456) ("abc" 789) ("ghi" 123)))
-> (("abc" 789) ("def" 456) ("ghi" 123))

To sort by a certain sub-element, the function
[http://software-lab.de/doc/refB.html#by by] can be used. For example, to
sort by the first element

: (by car sort ’(("def" 456) ("abc" 789) ("ghi" 123)))
-> (("abc" 789) ("def" 456) ("ghi" 123))

or by the second element

: (by cadr sort ’(("def" 456) ("abc" 789) ("ghi" 123)))
-> (("ghi" 123) ("def" 456) ("abc" 789))

844 21 Rosetta Code Tasks starting with S

Sort an integer array

Sort an array (or list) of integers in ascending numerical order. Use a sorting
facility provided by the language/library if possible.

The [http://software-lab.de/doc/refS.html#sort sort] function in
PicoLisp returns already by default an ascending list (of any type,
not only integers):

(sort (2 4 3 1 2))
-> (1 2 2 3 4)

21 Rosetta Code Tasks starting with S 845

Sort disjoint sublist

Given a list of values and a set of integer indices into that value list, the task
is to sort the values at the given indices, but preserving the values at indices
outside the set of those to be sorted.

Make your example work with the following list of values and set of indices:

values: [7, 6, 5, 4, 3, 2, 1, 0]
indices: {6, 1, 7}

Where the correct result would be:

[7, 0, 5, 4, 3, 2, 1, 6].

Note that for one based, rather than the zero-based indexing above, use the
indices: {7, 2, 8}. The indices are described as a set rather than a list
but any collection-type of those indices without duplication may be used as
long as the example is insensitive to the order of indices given.

The indices are incremented here, as PicoLisp is 1-based

(let (Values (7 6 5 4 3 2 1 0) Indices (7 2 8))
(mapc

’((V I) (set (nth Values I) V))
(sort (mapcar ’((N) (get Values N)) Indices))
(sort Indices))

Values)

Output:

-> (7 0 5 4 3 2 1 6)

846 21 Rosetta Code Tasks starting with S

Sort stability

When sorting records in a table by a particular column or field, a stable sort
will always retain the relative order of records that have the same key.

For example, in this table of countries and cities, a stable sort on the second
column, the cities, would keep the US Birmingham above the UK Birming-
ham. (Although an unstable sort might, in this case, place the US Birmingham
above the UK Birmingham, a stable sort routine would guarantee it).

UK London
US New York
US Birmingham
UK Birmingham

Similarly, stable sorting on just the first column would generate “UK London”
as the first item and “US Birmingham” as the last item (since the order of the
elements having the same first word – “UK” or “US” – would be maintained).

1. Examine the documentation on any in-built sort routines supplied by a lan-
guage.

2. Indicate if an in-built routine is supplied

3. If supplied, indicate whether or not the in-built routine is stable.

(This Wikipedia table shows the stability of some common sort routines).

The [http://software-lab.de/doc/refS.html#sort sort] function is unstable

http://en.wikipedia.org/wiki/Stable_sort#Stability
http://en.wikipedia.org/wiki/Stable_sort#Comparison_of_algorithms

21 Rosetta Code Tasks starting with S 847

Sort using a custom comparator

Sort an array (or list) of strings in order of descending length, and in ascending
lexicographic order for strings of equal length. Use a sorting facility provided
by the language/library, combined with your own callback comparison func-
tion.

Note: Lexicographic order is case-insensitive.

By default, the [http://software-lab.de/doc/refS.html#sort sort] function in
PicoLisp returns an ascending list (of any type). To get a result in descending
order, the "greater than" function can be supplied

: (sort ’("def" "abc" "ghi") >)
-> ("ghi" "def" "abc")

or simply the result reversed (which is, btw, the most efficient way)

: (flip (sort ’("def" "abc" "ghi")))
-> ("ghi" "def" "abc")

848 21 Rosetta Code Tasks starting with S

Sorting algorithms/Bead sort

Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort
it.

For other sorting algorithms, see Category:Sorting Algorithms, or:

O(n logn) Sorts
Heapsort | Mergesort | Quicksort
O(n log2n) Sorts
Shell Sort
O(n2) Sorts
Bubble sort | Cocktail sort | Comb sort | Gnome sort | Insertion sort | Selec-
tion sort | Strand sort
Other Sorts
Bead sort | Bogosort | Counting sort | Pancake sort | Permutation sort |
Radix sort | Sleep sort | Stooge sort

In this task, the goal is to sort an array of positive integers using the Bead Sort
Algorithm.

Algorithm has O(S), where S is the sum of the integers in the input set: Each
bead is moved individually. This is the case when bead sort is implemented
without a mechanism to assist in finding empty spaces below the beads, such
as in software implementations.

The following implements a direct model of the bead sort algorithm.
Each pole is a list of ’T’ symbols for the beads.

(de beadSort (Lst)
(let Abacus (cons NIL)

(for N Lst # Thread beads on poles
(for (L Abacus (ge0 (dec ’N)) (cdr L))

(or (cdr L) (queue ’L (cons)))
(push (cadr L) T)))

(make
(while (gt0 (cnt pop (cdr Abacus))) # Drop and count beads

(link @)))))

Output:

: (beadSort (5 3 1 7 4 1 1 20))
-> (20 7 5 4 3 1 1 1)

http://en.wikipedia.org/wiki/Bead_sort
http://en.wikipedia.org/wiki/Bead_sort

21 Rosetta Code Tasks starting with S 849

Sorting algorithms/Bogosort

Bogosort a list of numbers. Bogosort simply shuffles a collection randomly
until it is sorted.

“Bogosort” is a perversely inefficient algorithm only used as an in-joke. Its
average run-time is O(n!) because the chance that any given shuffle of a set
will end up in sorted order is about one in n factorial, and the worst case is
infinite since there’s no guarantee that a random shuffling will ever produce a
sorted sequence. Its best case is O(n) since a single pass through the elements
may suffice to order them.

Pseudocode:

while not InOrder(list) do
Shuffle(list)

done

The Knuth shuffle may be used to implement the shuffle part of this algorithm.

(de bogosort (Lst)
(loop

(map
’((L) (rot L (rand 1 (length L))))
Lst)

(T (apply <= Lst) Lst)))

Output:

: (bogosort (make (do 9 (link (rand 1 999)))))
-> (1 167 183 282 524 556 638 891 902)

: (bogosort (make (do 9 (link (rand 1 999)))))
-> (20 51 117 229 671 848 883 948 978)

: (bogosort (make (do 9 (link (rand 1 999)))))
-> (1 21 72 263 391 476 794 840 878)

http://en.wikipedia.org/wiki/Bogosort

850 21 Rosetta Code Tasks starting with S

Sorting algorithms/Bubble sort

In this task, the goal is to sort an array of elements using the bubble sort
algorithm. The elements must have a total order and the index of the array can
be of any discrete type. For languages where this is not possible, sort an array
of integers.

The bubble sort is generally considered to be the simplest sorting algorithm.
Because of its simplicity and ease of visualization, it is often taught in intro-
ductory computer science courses. Because of its abysmal O(n2) performance,
it is not used often for large (or even medium-sized) datasets.

The bubble sort works by passing sequentially over a list, comparing each
value to the one immediately after it. If the first value is greater than the sec-
ond, their positions are switched. Over a number of passes, at most equal to
the number of elements in the list, all of the values drift into their correct po-
sitions (large values “bubble” rapidly toward the end, pushing others down
around them). Because each pass finds the maximum item and puts it at the
end, the portion of the list to be sorted can be reduced at each pass. A boolean
variable is used to track whether any changes have been made in the current
pass; when a pass completes without changing anything, the algorithm exits.

This can be expressed in pseudocode as follows (assuming 1-based indexing):

repeat
hasChanged:= false
decrement itemCount
repeat with index from 1 to itemCount

if (item at index) > (item at (index + 1))
swap (item at index) with (item at (index + 1))
hasChanged:= true

until hasChanged = false

References

· The article on Wikipedia.

· Dance interpretation.

http://en.wikipedia.org/wiki/Bubble_sort
http://www.youtube.com/watch?v=lyZQPjUT5B4&feature=youtu.be

21 Rosetta Code Tasks starting with S 851

(de bubbleSort (Lst)
(use Chg

(loop
(off Chg)
(for (L Lst (cdr L) (cdr L))

(when (> (car L) (cadr L))
(xchg L (cdr L))
(on Chg)))

(NIL Chg Lst))))

852 21 Rosetta Code Tasks starting with S

Sorting algorithms/Cocktail sort

The cocktail shaker sort is an improvement on the Bubble Sort. The improve-
ment is basically that values “bubble” both directions through the array, be-
cause on each iteration the cocktail shaker sort bubble sorts once forwards and
once backwards. Pseudocode for the algorithm (from wikipedia):

function cocktailSort(A: list of sortable items)
do

swapped:= false
for each i in 0 to length(A) - 2 do

if A[i] > A[i+1] then // test whether the two
// elements are in the wrong
// order

swap(A[i], A[i+1]) // let the two elements
// change places

swapped:= true;
if swapped = false then

// we can exit the outer loop here if no swaps occurred.
break do-while loop;

swapped:= false
for each i in length(A) - 2 down to 0 do

if A[i] > A[i+1] then
swap(A[i], A[i+1])
swapped:= true;

while swapped; // if no elements have been swapped,
// then the list is sorted

http://en.wikipedia.org/wiki/Cocktail_sort

21 Rosetta Code Tasks starting with S 853

(de cocktailSort (Lst)
(use (Swapped L)

(loop
(off Swapped)
(setq L Lst)
(while (cdr L)

(when (> (car L) (cadr L))
(xchg L (cdr L))
(on Swapped))

(pop ’L))
(NIL Swapped Lst)
(off Swapped)
(loop

(setq L (prior L Lst)) # Not recommended (inefficient)
(when (> (car L) (cadr L))

(xchg L (cdr L))
(on Swapped))

(T (== Lst L)))
(NIL Swapped Lst))))

Output:

: (cocktailSort (make (do 9 (link (rand 1 999)))))
-> (1 167 183 282 524 556 638 891 902)
: (cocktailSort (make (do 9 (link (rand 1 999)))))
-> (82 120 160 168 205 226 408 708 719)

854 21 Rosetta Code Tasks starting with S

Sorting algorithms/Comb sort

The Comb Sort is a variant of the Bubble Sort. Like the Shell sort, the Comb
Sort increases the gap used in comparisons and exchanges (dividing the gap
by

· Combsort11 makes sure the gap ends in (11, 8, 6, 4, 3, 2, 1), which is
significantly faster than the other two possible endings

· Combsort with different endings changes to a more efficient sort when the
data is almost sorted (when the gap is small). Comb sort with a low gap
isn’t much better than the Bubble Sort.

Pseudocode:

function combsort(array input)
gap:= input.size //initialize gap size
loop until gap = 1 and swaps = 0

//update the gap value for a next comb. Below is an example
gap:= int(gap / 1.25)
if gap < 1

//minimum gap is 1
gap:= 1

end if
i:= 0
swaps:= 0 //see Bubble Sort for an explanation
//a single "comb" over the input list
loop until i + gap >= input.size //see Shell sort for similar idea

if input[i] > input[i+gap]
swap(input[i], input[i+gap])
swaps:= 1 // Flag a swap has occurred, so the

// list is not guaranteed sorted
end if
i:= i + 1

end loop
end loop

end function

21 Rosetta Code Tasks starting with S 855

(de combSort (Lst)
(let (Gap (length Lst) Swaps NIL)

(while (or (> Gap 1) Swaps)
(setq Gap (max 1 (/ (* Gap 4) 5)))
(off Swaps)
(use Lst

(for (G (cdr (nth Lst Gap)) G (cdr G))
(when (> (car Lst) (car G))

(xchg Lst G)
(on Swaps))

(pop ’Lst)))))
Lst)

Output:

: (combSort (88 18 31 44 4 0 8 81 14 78 20 76 84 33 73 75 82 5 62 70))
-> (0 4 5 8 14 18 20 31 33 44 62 70 73 75 76 78 81 82 84 88)

856 21 Rosetta Code Tasks starting with S

Sorting algorithms/Counting sort

Implement the Counting sort. This is a way of sorting integers when the min-
imum and maximum value are known.

Pseudocode:

function countingSort(array, min, max):
count: array of (max - min + 1) elements
initialize count with 0
for each number in array do

count[number - min]:= count[number - min] + 1
done
z:= 0
for i from min to max do

while (count[i - min] > 0) do
array[z]:= i
z:= z+1
count[i - min]:= count[i - min] - 1

done
done

The min and max can be computed apart, or be known a priori.

Note: we know that, given an array of integers, its maximum and minimum
values can be always found; but if we imagine the worst case for an array
of 32 bit integers, we see that in order to hold the counts, we need an array
of 232 elements, i.e., we need, to hold a count value up to 232-1, more or
less 4 Gbytes. So the counting sort is more practical when the range is (very)
limited and minimum and maximum values are known a priori. (Anyway
sparse arrays may limit the impact of the memory usage)

http://en.wikipedia.org/wiki/Counting_sort

21 Rosetta Code Tasks starting with S 857

(de countingSort (Lst Min Max)
(let Count (need (- Max Min -1) 0)

(for N Lst
(inc (nth Count (- N Min -1))))

(make
(map

’((C I)
(do (car C) (link (car I))))

Count
(range Min Max)))))

Output:

: (countingSort (5 3 1 7 4 1 1 20) 1 20)
-> (1 1 1 3 4 5 7 20)

858 21 Rosetta Code Tasks starting with S

Sorting algorithms/Gnome sort

Gnome sort is a sorting algorithm which is similar to Insertion sort, except
that moving an element to its proper place is accomplished by a series of
swaps, as in Bubble Sort.

The pseudocode for the algorithm is:

function gnomeSort(a[0..size-1])
i:= 1
j:= 2
while i < size do

if a[i-1] <= a[i] then
// for descending sort, use >= for comparison
i:= j
j:= j + 1

else
swap a[i-1] and a[i]
i:= i - 1
if i = 0 then

i:= j
j:= j + 1

endif
endif

done

Task: implement the Gnome sort in your language to sort an array (or list) of
numbers.

(de gnomeSort (Lst)
(let J (cdr Lst)

(for (I Lst (cdr I))
(if (>= (cadr I) (car I))

(setq I J J (cdr J))
(xchg I (cdr I))
(if (== I Lst)

(setq I J J (cdr J))
(setq I (prior I Lst))))))

Lst)

21 Rosetta Code Tasks starting with S 859

Sorting algorithms/Heapsort

Heapsort is an in-place sorting algorithm with worst case and average com-
plexity of O(nŁlogn). The basic idea is to turn the array into a binary heap
structure, which has the property that it allows efficient retrieval and removal
of the maximal element. We repeatedly “remove” the maximal element from
the heap, thus building the sorted list from back to front. Heapsort requires
random access, so can only be used on an array-like data structure.

Pseudocode:

function heapSort(a, count) is
input: an unordered array a of length count

(first place a in max-heap order)
heapify(a, count)

end:= count - 1
while end > 0 do

(swap the root(maximum value) of the heap with the
last element of the heap)
swap(a[end], a[0])
(decrement the size of the heap so that the previous
max value will stay in its proper place)
end:= end - 1
(put the heap back in max-heap order)
siftDown(a, 0, end)

http://en.wikipedia.org/wiki/Heapsort

860 21 Rosetta Code Tasks starting with S

function heapify(a,count) is
(start is assigned the index in a of the last parent node)
start:= (count - 2) / 2

while start 0 do
(sift down the node at index start to the proper place
such that all nodes below the start index are in heap
order)

siftDown(a, start, count-1)
start:= start - 1

(after sifting down the root all nodes/elements are in heap order)

function siftDown(a, start, end) is
(end represents the limit of how far down the heap to sift)
root:= start

while root * 2 + 1 end do (While the root has at least one child)
child:= root * 2 + 1 (root*2+1 points to the left child)
(If the child has a sibling and the child’s value is less than its sibling’s...)
if child + 1 end and a[child] < a[child + 1] then

child:= child + 1 (... then point to the right child instead)
if a[root] < a[child] then (out of max-heap order)

swap(a[root], a[child])
root:= child (repeat to continue sifting down the child now)

else
return

Write a function to sort a collection of integers using heapsort.

21 Rosetta Code Tasks starting with S 861

(de heapSort (A Cnt)
(let Cnt (length A)

(for (Start (/ Cnt 2) (gt0 Start) (dec Start))
(siftDown A Start (inc Cnt)))

(for (End Cnt (> End 1) (dec End))
(xchg (nth A End) A)
(siftDown A 1 End)))

A)

(de siftDown (A Start End)
(use Child

(for (Root Start (> End (setq Child (* 2 Root))))
(and

(> End (inc Child))
(> (get A (inc Child)) (get A Child))
(inc ’Child))

(NIL (> (get A Child) (get A Root)))
(xchg (nth A Root) (nth A Child))
(setq Root Child))))

Output:

: (heapSort (make (do 9 (link (rand 1 999)))))
-> (1 167 183 282 524 556 638 891 902)

862 21 Rosetta Code Tasks starting with S

Sorting algorithms/Insertion sort

An O(n2) sorting algorithm which moves elements one at a time into the cor-
rect position. The algorithm consists of inserting one element at a time into
the previously sorted part of the array, moving higher ranked elements up as
necessary. To start off, the first (or smallest, or any arbitrary) element of the
unsorted array is considered to be the sorted part.

Although insertion sort is an O(n2) algorithm, its simplicity, low overhead,
good locality of reference and efficiency make it a good choice in two cases
(i) small n, (ii) as the final finishing-off algorithm for O(n logn) algorithms
such as mergesort and quicksort.

The algorithm is as follows (from wikipedia):

function insertionSort(array A)
for i from 1 to length[A]-1 do

value:= A[i]
j:= i-1
while j >= 0 and A[j] > value do

A[j+1]:= A[j]
j:= j-1

done
A[j+1] = value

done

Writing the algorithm for integers will suffice.

(de insertionSort (Lst)
(for (I (cdr Lst) I (cdr I))

(for (J Lst (n== J I) (cdr J))
(T (> (car J) (car I))

(rot J (offset I J)))))
Lst)

Output:

: (insertionSort (5 3 1 7 4 1 1 20))
-> (1 1 1 3 4 5 7 20)

http://en.wikipedia.org/wiki/Insertion_sort#Algorithm

21 Rosetta Code Tasks starting with S 863

Sorting algorithms/Pancake sort

Sort an array of integers (of any convenient size) into ascending order using
Pancake sorting. In short, instead of individual elements being sorted, the only
operation allowed is to “flip” one end of the list, like so:

Before:
6 7 8 9 2 5 3 4 1
After:
9 8 7 6 2 5 3 4 1

Only one end of the list can be flipped; this should be the low end, but the
high end is okay if it’s easier to code or works better, but it must be the same
end for the entire solution. (The end flipped can’t be arbitrarily changed.)

Show both the initial, unsorted list and the final sorted list. (Intermediate steps
during sorting are optional.) Optimizations are optional (but recommended).

For more information on pancake sorting, see the Wikipedia entry.

See also: Number reversal game

http://en.wikipedia.org/wiki/Pancake_sorting
http://en.wikipedia.org/wiki/Pancake_sorting

864 21 Rosetta Code Tasks starting with S

(de pancake (Lst)
(prog1 (flip Lst (index (apply max Lst) Lst))

(for (L @ (cdr (setq Lst (cdr L))) (cdr L))
(con L (flip Lst (index (apply max Lst) Lst))))))

Output:

: (trace ’flip)
-> flip

: (pancake (6 7 2 1 8 9 5 3 4))
flip : (6 7 2 1 8 9 5 3 4) 6
flip = (9 8 1 2 7 6 5 3 4)
flip : (8 1 2 7 6 5 3 4) 1
flip = (8 1 2 7 6 5 3 4)
flip : (1 2 7 6 5 3 4) 3
flip = (7 2 1 6 5 3 4)
flip : (2 1 6 5 3 4) 3
flip = (6 1 2 5 3 4)
flip : (1 2 5 3 4) 3
flip = (5 2 1 3 4)
flip : (2 1 3 4) 4
flip = (4 3 1 2)
flip : (3 1 2) 1
flip = (3 1 2)
flip : (1 2) 2
flip = (2 1)
-> (9 8 7 6 5 4 3 2 1)

21 Rosetta Code Tasks starting with S 865

Sorting algorithms/Permutation sort

Permutation sort, which proceeds by generating the possible permutations of
the input array/list until discovering the sorted one.

Pseudocode:

while not InOrder(list) do
nextPermutation(list)

done

(de permutationSort (Lst)
(let L Lst

(recur (L) # Permute
(if (cdr L)

(do (length L)
(T (recurse (cdr L)) Lst)
(rot L)
NIL)

(apply <= Lst)))))

Output:

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (82 120 160 168 205 226 408 708 719)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (108 212 330 471 667 716 739 769 938)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (118 253 355 395 429 548 890 900 983)

866 21 Rosetta Code Tasks starting with S

Sorting algorithms/Radix sort

In this task, the goal is to sort an integer array with the radix sort algorithm.
The primary purpose is to complete the characterization of sort algorithms
task.

This is a LSD base-2 radix sort using queues:

(de radixSort (Lst)
(let Mask 1

(while
(let (Pos (list NIL NIL) Neg (list NIL NIL) Flg)

(for N Lst
(queue

(if2 (ge0 N) (bit? Mask N)
(cdr Pos) Pos Neg (cdr Neg))

N)
(and (>= (abs N) Mask) (on Flg)))

(setq
Lst (conc (apply conc Neg) (apply conc Pos))
Mask (* 2 Mask))

Flg)))
Lst)

Output:

: (radixSort (make (do 12 (link (rand -999 999)))))
-> (-999 -930 -666 -336 -218 68 79 187 391 405 697 922)

http://en.wikipedia.org/wiki/Radix_sort

21 Rosetta Code Tasks starting with S 867

Sorting algorithms/Selection sort

In this task, the goal is to sort an array (or list) of elements using the Selection
sort algorithm. It works as follows:

First find the smallest element in the array and exchange it with the element in
the first position, then find the second smallest element and exchange it with
the element in the second position, and continue in this way until the entire
array is sorted. Its asymptotic complexity is O(n2) making it inefficient on
large arrays. Its primary purpose is for when writing data is very expensive
(slow) when compared to reading, eg writing to flash memory or EEPROM.
No other sorting algorithm has less data movement.

For more information see the article on Wikipedia.

(de selectionSort (Lst)
(map

’((L) (and (cdr L) (xchg L (member (apply min @) L))))
Lst)

Lst)

http://en.wikipedia.org/wiki/Selection_sort

868 21 Rosetta Code Tasks starting with S

Sorting algorithms/Shell sort

In this task, the goal is to sort an array of elements using the Shell sort algo-
rithm, a diminishing increment sort. The Shell sort is named after its inventor,
Donald Shell, who published the algorithm in 1959. Shellsort is a sequence
of interleaved insertion sorts based on an increment sequence. The increment
size is reduced after each pass until the increment size is 1. With an increment
size of 1, the sort is a basic insertion sort, but by this time the data is guaran-
teed to be almost sorted, which is insertion sort’s “best case”. Any sequence
will sort the data as long as it ends in 1, but some work better than others.
Empirical studies have shown a geometric increment sequence with a ratio of
about 2.2 work well in practice. [1] Other good sequences are found at the
On-Line Encyclopedia of Integer Sequences.

(de shellSort (A)
(for (Inc (*/ (length A) 2) (gt0 Inc) (*/ Inc 10 22))

(for (I Inc (get A I) (inc I))
(let (Tmp @ J I)

(while (and (>= J Inc) (> (get A (- J Inc)) Tmp))
(set (nth A J) (get A (- J Inc)))
(dec ’J Inc))

(set (nth A J) Tmp))))
A)

Output:

: (shellSort (make (do 9 (link (rand 1 999)))))
-> (1 167 183 282 524 556 638 891 902)

: (shellSort (make (do 9 (link (rand 1 999)))))
-> (82 120 160 168 205 226 408 708 719)

: (shellSort (make (do 9 (link (rand 1 999)))))
-> (108 212 330 471 667 716 739 769 938)

http://en.wikipedia.org/wiki/Shell_sort
http://www.cs.princeton.edu/~rs/shell/
https://oeis.org/search?q=shell+sort

21 Rosetta Code Tasks starting with S 869

Sorting algorithms/Sleep sort

In general, sleep sort works by starting a separate task for each item to be
sorted, where each task sleeps for an interval corresponding to the item’s sort
key, then emits the item. Items are then collected sequentially in time.

Task: Write a program that implements sleep sort. Have it accept non-negative
integers on the command line and print the integers in sorted order. If this
is not idomatic in your language or environment, input and output may be
done differently. Enhancements for optimization, generalization, practicality,
robustness, and so on are not required.

Sleep sort was presented anonymously on 4chan and has been discussed on
Hacker News.

http://dis.4chan.org/read/prog/1295544154
http://news.ycombinator.com/item?id=2657277

870 21 Rosetta Code Tasks starting with S

Sleeping in main process
(de sleepSort (Lst)

(make
(for (I . N) Lst

(task (- I) (* N 100) N N I I
(link N)
(pop ’Lst)
(task (- I))))

(wait NIL (not Lst))))

Sleeping in child processes
(de sleepSort (Lst)

(make
(for N Lst

(task (pipe (wait (* N 100))) N N
(link N)
(pop ’Lst)
(task (close @))))

(wait NIL (not Lst))))

Output in both cases:

: (sleepSort (3 1 4 1 5 9 2 6 5))
-> (1 1 2 3 4 5 5 6 9)

Just printing (no sorted result list)

Basically the C code.

(for N (3 1 4 1 5 9 2 6 5)
(unless (fork)

(call ’sleep N)
(msg N)
(bye)))

Output:

1
1
2
3
4
5
5
6
9

21 Rosetta Code Tasks starting with S 871

Sorting algorithms/Stooge sort

Show the Stooge Sort for an array of integers. The Stooge Sort algorithm is as
follows:

algorithm stoogesort(array L, i = 0, j = length(L)-1)
if L[j] < L[i] then

L[i] L[j]
if j - i > 1 then

t := (j - i + 1)/3
stoogesort(L, i , j-t)
stoogesort(L, i+t, j)
stoogesort(L, i , j-t)

return L

(de stoogeSort (L N)
(default N (length L))
(let P (nth L N)

(when (> (car L) (car P))
(xchg L P)))

(when (> N 2)
(let D (/ N 3)

(stoogeSort L (- N D))
(stoogeSort (nth L (inc D)) (- N D))
(stoogeSort L (- N D))))

L)

Test:

: (apply < (stoogeSort (make (do 100 (link (rand))))))
-> T

http://en.wikipedia.org/wiki/Stooge_sort

872 21 Rosetta Code Tasks starting with S

Sorting algorithms/Strand sort

Implement the Strand sort. This is a way of sorting numbers by extracting
shorter sequences of already sorted numbers from an unsorted list.

(de strandSort (Lst)
(let Res NIL # Result list

(while Lst
(let Sub (circ (car Lst)) # Build sublist as fifo

(setq
Lst (filter

’((X)
(or

(> (car Sub) X)
(nil (fifo ’Sub X))))

(cdr Lst))
Res (make

(while (or Res Sub) # Merge
(link

(if2 Res Sub
(if (>= (car Res) (cadr Sub))

(fifo ’Sub)
(pop ’Res))

(pop ’Res)
(fifo ’Sub))))))))

Res))

Test:

: (strandSort (3 1 5 4 2))
-> (1 2 3 4 5)

: (strandSort (3 abc 1 (d e f) 5 T 4 NIL 2))
-> (NIL 1 2 3 4 5 abc (d e f) T)

http://en.wikipedia.org/wiki/Strand_sort

21 Rosetta Code Tasks starting with S 873

Soundex

Soundex is an algorithm for creating indices for words based on their pronun-
ciation. The goal is for homophones to be encoded to the same representation
so that they can be matched despite minor differences in spelling (from the
WP article).

(de soundex (Str)
(pack

(pad -4
(cons

(uppc (char (char Str)))
(head 3

(let Last NIL
(extract

’((C)
(and

(setq C
(case (uppc C)

(‘(chop "BFPV") "1")
(‘(chop "CGJKQSXZ") "2")
(("D" "T") "3")
("L" "4")
(("M" "N") "5")
("R" "6")))

(<> Last C)
(setq Last C)))

(cdr (chop Str)))))))))

Output:

: (mapcar soundex ’("Soundex" "Example" "Sownteks" "Ekzampul"))
-> ("S532" "E251" "S532" "E251")

http://en.wikipedia.org/wiki/soundex
http://en.wikipedia.org/wiki/soundex

874 21 Rosetta Code Tasks starting with S

Special variables

Special variables have a predefined meaning within the programming lan-
guage. The task is to list the special variables used within the language.

PicoLisp has no special variables, but some naming conventions concerning
the "meaning" of a variable’s (i.e. symbol’s) value:

- Global variables start with an asterisk ’*’
- Functions and other global symbols start with a lower case letter
- Locally bound symbols start with an upper case letter
- Local functions start with an underscore ’_’
- Classes start with a plus-sign ’+’, where the first letter

- is in lower case for abstract classes
- and in upper case for normal classes

- Methods end with a right arrow ’>’
- Class variables may be indicated by an upper case letter

For historical reasons, the global constant symbols ’T’ and ’NIL’ do not obey
these rules, and are written in upper case.

21 Rosetta Code Tasks starting with S 875

Speech synthesis

Render the text “This is an example of speech synthesis.”
as speech.

(call ’espeak "This is an example of speech synthesis.")

876 21 Rosetta Code Tasks starting with S

Special characters

List the special characters and escape sequences in the language.

See also: Quotes

Markup:
() [] List
. Dotted pair (when surounded by white space)
" Transient symbol (string)
{} External symbol (database object)
\ Escape for following character
Comment line
#{ }# Comment block

Read macros:
’ The ’quote’ function
‘ Evaluate and insert a list element
˜ Evaluate and splice a partial list
, Indexed reference

Within strings:
ˆ ASCII control character
\ At end of line: Continue on next line, skipping white space

21 Rosetta Code Tasks starting with S 877

Spiral matrix

Produce a spiral array. A spiral array is a square arrangement of the first N2
natural numbers, where the numbers increase sequentially as you go around
the edges of the array spiralling inwards.

For example, given 5, produce this array:

0 1 2 3 4
15 16 17 18 5
14 23 24 19 6
13 22 21 20 7
12 11 10 9 8

This example uses ’grid’ from "lib/simul.l", which maintains a two-dimensional
structure and is normally used for simulations and board games.

(load "@lib/simul.l")

(de spiral (N)
(prog1 (grid N N)

(let (Dir ’(north east south west .) This ’a1)
(for Val (* N N)

(=: val Val)
(setq This

(or
(with ((car Dir) This)

(unless (: val) This))
(with ((car (setq Dir (cdr Dir))) This)

(unless (: val) This))))))))

(mapc
’((L)

(for This L (prin (align 3 (: val))))
(prinl))

(spiral 5))

Output:

1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

878 21 Rosetta Code Tasks starting with S

Stable marriage problem

Solve the Stable marriage problem using the Gale/Shapley algorithm.

Problem description
Given an equal number of men and women to be paired for marriage, each
man ranks all the women in order of his preference and each women ranks all
the men in order of her preference.

A stable set of engagements for marriage is one where no man prefers a
women over the one he is engaged to, where that other woman also prefers
that man over the one she is engaged to. I.e. with consulting marriages, there
would be no reason for the engagements between the people to change.

Gale and Shapley proved that there is a stable set of engagements for any set
of preferences and the first link above gives their algorithm for finding a set
of stable engagements.

http://en.wikipedia.org/wiki/Stable_marriage_problem

21 Rosetta Code Tasks starting with S 879

Task Specifics
Given ten males:

abe, bob, col, dan, ed, fred, gav, hal, ian, jon

And ten females:

abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan

And a complete list of ranked preferences, where the most liked is to the left:

abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay
bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay
col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan
dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi
ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay

fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay
gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay
hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee
ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve
jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope

abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal
bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal
cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon
dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed
eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob
fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal
gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian
hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred
ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan
jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan

1. Use the Gale Shapley algorithm to find a stable set of engagements

2. Perturb this set of engagements to form an unstable set of engagements
then check this new set for stability.

References

1. The Stable Marriage Problem. (Eloquent description and background in-
formation).

2. Gale-Shapley Algorithm Demonstration.

http://www.cs.columbia.edu/~evs/intro/stable/writeup.html
http://sephlietz.com/gale-shapley/

880 21 Rosetta Code Tasks starting with S

3. Another Gale-Shapley Algorithm Demonstration.

(setq

*Boys (list
(de abe abi eve cath ivy jan dee fay bea hope gay)
(de bob cath hope abi dee eve fay bea jan ivy gay)
(de col hope eve abi dee bea fay ivy gay cath jan)
(de dan ivy fay dee gay hope eve jan bea cath abi)
(de ed jan dee bea cath fay eve abi ivy hope gay)
(de fred bea abi dee gay eve ivy cath jan hope fay)
(de gav gay eve ivy bea cath abi dee hope jan fay)
(de hal abi eve hope fay ivy cath jan bea gay dee)
(de ian hope cath dee gay bea abi fay ivy jan eve)
(de jon abi fay jan gay eve bea dee cath ivy hope))

*Girls (list
(de bi bob fred jon gav ian abe dan ed col hal)
(de bea bob abe col fred gav dan ian ed jon hal)
(de cath fred bob ed gav hal col ian abe dan jon)
(de dee fred jon col abe ian hal gav dan bob ed)
(de eve jon hal fred dan abe gav col ed ian bob)
(de fay bob abe ed ian jon dan fred gav col hal)
(de gay jon gav hal fred bob abe col ed dan ian)
(de hope gav jon bob abe ian dan hal ed col fred)
(de ivy ian col hal gav fred bob abe ed jon dan)
(de jan ed hal gav abe bob jon col ian fred dan))

*Couples NIL)

(bind *Boys
(while

(find
’((Boy) (and (val Boy) (not (asoq Boy *Couples))))

*Boys)
(let (Boy @ Girl (pop Boy) Pair (find ’((P) (== Girl (cdr P))) *Couples))

(nond
(Pair (push ’*Couples (cons Boy Girl))) # Girl is free
((memq Boy (memq (car Pair) (val Girl))) # Girl prefers Boy

(set Pair Boy))))))

(for Pair *Couples
(prinl (cdr Pair) " is engaged to " (car Pair)))

http://mathsite.math.berkeley.edu/smp/smp.html

21 Rosetta Code Tasks starting with S 881

(de checkCouples ()
(unless

(filter
’((Pair)

(let (Boy (car Pair) Girl (cdr Pair))
(find

’((B)
(and

(memq Boy (cdr (memq B (val Girl)))) # Girl prefers B
(memq

(cdr (asoq B *Couples)) # and B prefers Girl
(cdr (memq Girl (val B))))

(prinl
Girl " likes " B " better than " Boy " and "
B " likes " Girl " better than "
(cdr (asoq B *Couples)))))

(val Girl))))

*Couples)
(prinl "All marriages are stable")))

(checkCouples)
(prinl)
(prinl "Engage fred with abi and jon with bea")
(con (asoq ’fred *Couples) ’abi)
(con (asoq ’jon *Couples) ’bea)
(checkCouples)

Output:

dee is engaged to col
fay is engaged to dan
eve is engaged to hal
gay is engaged to gav
bea is engaged to fred
jan is engaged to ed
ivy is engaged to abe
hope is engaged to ian
cath is engaged to bob
abi is engaged to jon
All marriages are stable

Engage fred with abi and jon with bea
fay likes jon better than dan and jon likes fay better than bea
eve likes jon better than hal and jon likes eve better than bea
gay likes jon better than gav and jon likes gay better than bea
bea likes fred better than jon and fred likes bea better than abi

882 21 Rosetta Code Tasks starting with S

Stack

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.

A stack is a container of elements with last in, first out access policy. Some-
times it also called LIFO. The stack is accessed through its top. The basic
stack operations are:

· push stores a new element onto the stack top;

· pop returns the last pushed stack element, while removing it from the stack;

· empty tests if the stack contains no elements.

Sometimes the last pushed stack element is made accessible for immutable
access (for read) or mutable access (for write):

· top (sometimes called peek to keep with the p theme) returns the topmost
element without modifying the stack.

Stacks allow a very simple hardware implementation. They are common in
almost all processors. In programming stacks are also very popular for their
way (LIFO) of resource management, usually memory. Nested scopes of lan-
guage objects are naturally implemented by a stack (sometimes by multiple
stacks). This is a classical way to implement local variables of a reentrant
or recursive subprogram. Stacks are also used to describe a formal computa-
tional framework. See stack machine. Many algorithms in pattern matching,
compiler construction (e.g. recursive descent parsers), and machine learning
(e.g. based on tree traversal) have a natural representation in terms of stacks.

Create a stack supporting the basic operations: push, pop, empty.

http://en.wikipedia.org/wiki/Stack_automaton
http://en.wikipedia.org/wiki/Recursive_descent
http://en.wikipedia.org/wiki/Tree_traversal

21 Rosetta Code Tasks starting with S 883

The built-in functions [http://software-lab.de/doc/refP.html#push push] and
[http://software-lab.de/doc/refP.html#pop pop] are used to maintain a
stack ((of any type).

(push ’Stack 3)
(push ’Stack 2)
(push ’Stack 1)

: Stack
-> (1 2 3)

: (pop ’Stack)
-> 1

: Stack
-> (2 3)

: (set ’Stack) # empty
-> NIL

: Stack
-> NIL

884 21 Rosetta Code Tasks starting with S

Stack traces

Many programming languages allow for introspection of the current call stack
environment. This can be for a variety of purposes such as enforcing security
checks, debugging, or for getting access to the stack frame of callers.

This task calls for you to print out (in a manner considered suitable for the
platform) the current call stack. The amount of information printed for each
frame on the call stack is not constrained, but should include at least the name
of the function or method at that level of the stack frame. You may explicitly
add a call to produce the stack trace to the (example) code being instrumented
for examination.

The task should allow the program to continue after generating the stack trace.
The task report here must include the trace from a sample program.

21 Rosetta Code Tasks starting with S 885

PicoLisp doesn’t keep full backtrace information at runtime. This is for
performance reasons. However, existing variable bindings (environments) can be
inspected with the ’[http://software-lab.de/doc/refE.html#env env]’ function, so
this can be used to build your own stack frames.

The following is analog to (though simpler than) the built-in
’[http://software-lab.de/doc/refT.html#trace trace]’ mechanism. The function
’\$\$’ (corresponds to ’[http://software-lab.de/doc/ref_.html#\$ \$]’ for tracing)
is inserted by ’stackAll’ into every function and method definition
(corresponds to ’[http://software-lab.de/doc/refT.html#traceAll traceAll]’).
Then, when stopping at a ’[http://software-lab.de/doc/refD.html#debug debug]’
breakpoint or an error handler, ’dumpStack’ can be used to inspect the stack
contents.

As this mechanism uses ’let’ to hold the stack frames, it is robust also across
catch/throw, coroutines and error handling.

(off "Stack")

(de \$\$ "Prg"
(let "Stack" (cons (cons (car "Prg") (env)) "Stack") # Build stack frame

(set "Stack"
(delq (asoq ’"Stack" (car "Stack")) # Remove self-created entries

(delq (asoq ’"Prg" (car "Stack"))
(car "Stack"))))

(run (cdr "Prg")))) # Run body

(de stackAll (Excl)
(let *Dbg NIL

(for "X" (all)
(or

(memq "X" Excl)
(memq "X" ’(\$\$ @ @@ @@@))
(= ‘(char "*") (char "X"))
(cond

((= ‘(char "+") (char "X"))
(for "Y" (pair (val "X"))

(and
(pair "Y")
(fun? (cdr "Y"))
(unless (== ’\$\$ (caaddr "Y"))

(con (cdr "Y")
(list

(cons ’\$\$
(cons (car "Y" "X")

(cddr "Y")))))))))
((pair (getd "X"))

(let "Y" @
(unless (== ’\$\$ (caadr "Y"))

(con "Y"
(list (cons ’\$\$ "X" (cdr "Y"))))))))))))

886 21 Rosetta Code Tasks starting with S

(de dumpStack ()
(more (reverse (cdr "Stack")))
T)

Test:

(de foo (A B)
(let C 3

(bar (inc ’A) (inc ’B) (inc ’C))))

(de bar (A D E)
(let (A 7 B 8 C 9)

(! println A B C))) # Set a breakpoint before (println A B C)

(stackAll)

: (foo 1 2) # Call ’foo’
(println A B C) # Stopped at breakpoint in ’bar’
! (dumpStack) # Dump stack history
(foo (A . 1) (B . 2) (@ . T)) # Hit <enter> on each line to continue
(bar (B . 3) (C . 4) (A . 2) (D . 3) (E . 4) (@ . T))
-> T
! # Hit <enter> to continue execution
7 8 9 # Output of (println A B C)
-> 9
:

21 Rosetta Code Tasks starting with S 887

Stair-climbing puzzle

From Chung-Chieh Shan (LtU):

Your stair-climbing robot has a very simple low-level API: the “step” func-
tion takes no argument and attempts to climb one step as a side effect. Un-
fortunately, sometimes the attempt fails and the robot clumsily falls one step
instead. The “step” function detects what happens and returns a boolean flag:
true on success, false on failure. Write a function “step up” that climbs one
step up [from the initial position] (by repeating “step” attempts if necessary).
Assume that the robot is not already at the top of the stairs, and neither does it
ever reach the bottom of the stairs. How small can you make “step up”? Can
you avoid using variables (even immutable ones) and numbers?

Here’s a pseudocode of a simple recursive solution without using variables:

func step_up()
{

if not step() {
step_up();
step_up();

}
}

Inductive proof that step up() steps up one step, if it terminates:

· Base case (if the step() call returns true): it stepped up one step. QED

· Inductive case (if the step() call returns false): Assume that recursive calls
to step up() step up one step. It stepped down one step (because step()
returned false), but now we step up two steps using two step up() calls.
QED

The second (tail) recursion above can be turned into an iteration, as follows:

func step_up()
{

while not step() {
step_up();

}
}

(de stepUp ()
(until (step1) # (’step1’, because ’step’ is a system function)

(stepUp)))

http://lambda-the-ultimate.org/node/1872

888 21 Rosetta Code Tasks starting with S

Standard deviation

Write a stateful function, class, generator or coroutine that takes a series of
floating point numbers, one at a time, and returns the running standard de-
viation of the series. The task implementation should use the most natural
programming style of those listed for the function in the implementation lan-
guage; the task must state which is being used. Do not apply Bessel’s cor-
rection; the returned standard deviation should always be computed as if the
sample seen so far is the entire population.

Use this to compute the standard deviation of this demonstration set, {2,4,4,4,5,5,7,9},
which is 2.

See also: Moving Average

(scl 2)

(de stdDev ()
(curry ((Data)) (N)

(push ’Data N)
(let (Len (length Data) M (*/ (apply + Data) Len))

(sqrt
(*/

(sum
’((N) (*/ (- N M) (- N M) 1.0))
Data)

1.0
Len)

T))))

(let Fun (stdDev)
(for N (2.0 4.0 4.0 4.0 5.0 5.0 7.0 9.0)

(prinl (format N *Scl) " -> " (format (Fun N) *Scl))))

Output:

2.00 -> 0.00
4.00 -> 1.00
4.00 -> 0.94
4.00 -> 0.87
5.00 -> 0.98
5.00 -> 1.00
7.00 -> 1.40
9.00 -> 2.00

http://en.wikipedia.org/wiki/Standard_Deviation
http://en.wikipedia.org/wiki/Standard_Deviation
http://en.wikipedia.org/wiki/Bessel%27s_correction
http://en.wikipedia.org/wiki/Bessel%27s_correction

21 Rosetta Code Tasks starting with S 889

State name puzzle

Background

This task is inspired by Mark Nelson’s DDJ Column “Wordplay” and one of
the weekly puzzle challenges from Will Shortz on NPR Weekend Edition [1]
and originally attributed to David Edelheit.

The challenge was to take the names of two U.S. States, mix them all together,
then rearrange the letters to form the names of two different U.S. States (so
that all four state names differ from one another). What states are these?

The problem was reissued on the Unicon Discussion Web which includes
several solutions with analysis. Several techniques may be helpful and you
may wish to refer to Gdel numbering, equivalence relations, and equivalence
classes. The basic merits of these were discussed in the Unicon Discussion
Web.

A second challenge in the form of a set of fictitious new states was also pre-
sented.

http://drdobbs.com/windows/198701685
http://www.npr.org/templates/story/story.php?storyId=9264290
https://tapestry.tucson.az.us/twiki/bin/view/Main/StateNamesPuzzle
http://en.wikipedia.org/wiki/Goedel_numbering
http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Equivalence_classes
http://en.wikipedia.org/wiki/Equivalence_classes

890 21 Rosetta Code Tasks starting with S

Task:
Write a program to solve the challenge using both the original list of states
and the fictitious list.

Caveats:

· case and spacing isn’t significant - just letters (harmonize case)

· don’t expect the names to be in any order - such as being sorted

· don’t rely on names to be unique (eliminate duplicates - meaning if Iowa
appears twice you can only use it once)

Comma separated list of state names used in the original puzzle:

"Alabama", "Alaska", "Arizona", "Arkansas",
"California", "Colorado", "Connecticut",
"Delaware",
"Florida", "Georgia", "Hawaii",
"Idaho", "Illinois", "Indiana", "Iowa",
"Kansas", "Kentucky", "Louisiana",
"Maine", "Maryland", "Massachusetts", "Michigan",
"Minnesota", "Mississippi", "Missouri", "Montana",
"Nebraska", "Nevada", "New Hampshire", "New Jersey",
"New Mexico", "New York", "North Carolina", "North Dakota",
"Ohio", "Oklahoma", "Oregon",
"Pennsylvania", "Rhode Island",
"South Carolina", "South Dakota", "Tennessee", "Texas",
"Utah", "Vermont", "Virginia",
"Washington", "West Virginia", "Wisconsin", "Wyoming"

Comma separated list of additional fictitious state names to be added to the
original (Includes a duplicate):

"New Kory", "Wen Kory", "York New", "Kory New", "New Kory"

21 Rosetta Code Tasks starting with S 891

(setq *States
(group

(mapcar ’((Name) (cons (clip (sort (chop (lowc Name)))) Name))
(quote

"Alabama" "Alaska" "Arizona" "Arkansas"
"California" "Colorado" "Connecticut"
"Delaware"
"Florida" "Georgia" "Hawaii"
"Idaho" "Illinois" "Indiana" "Iowa"
"Kansas" "Kentucky" "Louisiana"
"Maine" "Maryland" "Massachusetts" "Michigan"
"Minnesota" "Mississippi" "Missouri" "Montana"
"Nebraska" "Nevada" "New Hampshire" "New Jersey"
"New Mexico" "New York" "North Carolina" "North Dakota"
"Ohio" "Oklahoma" "Oregon"
"Pennsylvania" "Rhode Island"
"South Carolina" "South Dakota" "Tennessee" "Texas"
"Utah" "Vermont" "Virginia"
"Washington" "West Virginia" "Wisconsin" "Wyoming"
"New Kory" "Wen Kory" "York New" "Kory New" "New Kory"))))

(extract
’((P)

(when (cddr P)
(mapcar

’((X)
(cons

(cadr (assoc (car X) *States))
(cadr (assoc (cdr X) *States))))

(cdr P))))
(group

(mapcon
’((X)

(extract
’((Y)

(cons
(sort (conc (copy (caar X)) (copy (car Y))))
(caar X)
(car Y)))

(cdr X)))

*States)))

Output:

-> ((("North Carolina" . "South Dakota") ("North Dakota" . "South Carolina")))

892 21 Rosetta Code Tasks starting with S

Statistics/Basic

Statistics is all about large groups of numbers. When talking about a set of
sampled data, most frequently used is their mean value and standard devia-
tion (stddev). If you have set of data xi where , the mean is

, while the stddev is .

When examining a large quantity of data, one often uses a histogram, which
shows the counts of data samples falling into a prechosen set of intervals (or
bins). When plotted, often as bar graphs, it visually indicates how often each
data value occurs.

Task Using your language’s random number routine, generate real numbers in
the range of [0, 1]. It doesn’t matter if you chose to use open or closed range.
Create 100 of such numbers (i.e. sample size 100) and calculate their mean
and stddev. Do so for sample size of 1,000 and 10,000, maybe even higher
if you feel like. Show a histogram of any of these sets. Do you notice some
patterns about the standard deviation?

Extra Sometimes so much data need to be processed that it’s impossible to
keep all of them at once. Can you calculate the mean, stddev and histogram of
a trillion numbers? (You don’t really need to do a trillion numbers, just show
how it can be done.)

Hint

For a finite population with equal probabilities at all points, one can derive:

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/3333Standard_deviation
http://en.wikipedia.org/wiki/3333Standard_deviation
http://en.wikipedia.org/wiki/Histogram

21 Rosetta Code Tasks starting with S 893

The following has no limit on the number of samples. The ’statistics’ function
accepts an executable body ’Prg’, which it calls repeatedly to get the samples.

(scl 6)

(de statistics (Cnt . Prg)
(prinl Cnt " numbers")
(let (Sum 0 Sqr 0 Hist (need 10 NIL 0))

(do Cnt
(let N (run Prg 1) # Get next number

(inc ’Sum N)
(inc ’Sqr (*/ N N 1.0))
(inc (nth Hist (inc (/ N 0.1))))))

(let M (*/ Sum Cnt)
(prinl "Mean: " (round M))
(prinl "StdDev: "

(round
(sqrt

(* 1.0
(- (*/ Sqr Cnt) (*/ M M 1.0)))))))

(for (I . H) Hist
(prin (format I 1) " ")
(do (*/ H 400 Cnt) (prin ’=))
(prinl))))

Test:

(statistics 100
(rand 0 (dec 1.0)))

(prinl)

(statistics 10000
(rand 0 (dec 1.0)))

(prinl)

(statistics 1000000
(rand 0 (dec 1.0)))

(prinl)

894 21 Rosetta Code Tasks starting with S

Output:
100 numbers
Mean: 0.501
StdDev: 0.284
0.1 ==
0.2 ====================================
0.3 ==
0.4 ========================
0.5 ========================
0.6 ==
0.7 ==
0.8 ====================================
0.9 ========================
1.0 ==

10000 numbers
Mean: 0.501
StdDev: 0.288
0.1 =======================================
0.2 ==
0.3 =======================================
0.4 ===
0.5 ===
0.6 ==
0.7 ===
0.8 ==
0.9 ==
1.0 ==

1000000 numbers
Mean: 0.500
StdDev: 0.289
0.1 ==
0.2 ==
0.3 ==
0.4 ==
0.5 ==
0.6 ==
0.7 ==
0.8 ==
0.9 ==
1.0 ==

21 Rosetta Code Tasks starting with S 895

Stem-and-leaf plot

Create a well-formatted stem-and-leaf plot from the following data set, where
the leaves are the last digits:

12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131
115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128
121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13
27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116
111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34
133 45 120 30 127 31 116 146

The primary intent of this task is the presentation of information. It is accept-
able to hardcode the data set or characteristics of it (such as what the stems
are) in the example, insofar as it is impractical to make the example generic
to any data set. For example, in a computation-less language like HTML the
data set may be entirely prearranged within the example; the interesting char-
acteristics are how the proper visual formatting is arranged.

If possible, the output should not be a bitmap image. Monospaced plain
text is acceptable, but do better if you can. It may be a window, i.e. not a
file.

Note: If you wish to try multiple data sets, you might try this generator.

http://en.wikipedia.org/wiki/Stem-and-leaf_plot

896 21 Rosetta Code Tasks starting with S

(de *Data
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119
58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127
29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43
117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106
33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27
27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146)

(let L
(group

(mapcar
’((N)

(cons
(or (format (head -1 (setq N (chop N)))) 0)
(last N)))

(sort *Data)))
(for I (range (caar L) (car (last L)))

(prinl (align 3 I) " | " (glue " " (cdr (assoc I L))))))

Output:

0 | 7 7
1 | 2 3 8 8
2 | 3 5 7 7 7 7 7 7 8 8 9 9
3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9
4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8
5 | 2 3 7 8 8
6 | 1 3 8
7 | 1
8 |
9 | 6 9
10 | 4 5 5 5 5 6 7 9 9 9
11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9
12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8
13 | 1 2 3 9
14 | 1 6

21 Rosetta Code Tasks starting with S 897

Straddling checkerboard

Implement functions to encrypt and decrypt a message using the straddling
checkerboard method. When setting the checkerboard up, it should take a 28
character alphabet (A-Z plus a full stop and an escape character) and two
different numbers representing the blanks in the first row. The output will be
a series of decimal digits.

When encrypting, numbers should be encrypted by inserting the escape char-
acter before each digit, then including the digit unencrypted. This should be
reversed for decryption.

http://en.wikipedia.org/wiki/Straddling_checkerboard
http://en.wikipedia.org/wiki/Straddling_checkerboard

898 21 Rosetta Code Tasks starting with S

(de *Straddling
(NIL "H" "O" "L" NIL "M" "E" "S" NIL "R" "T")
("3" "A" "B" "C" "D" "F" "G" "I" "J" "K" "N")
("7" "P" "Q" "U" "V" "W" "X" "Y" "Z" "." "/")
("79" "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"))

(de straddle (Str)
(pack

(mapcar
’((C)

(pick
’((L)

(and
(index C (cdr L))
(cons (car L) (dec @))))

*Straddling))
(chop (uppc Str)))))

(de unStraddle (Str)
(pack

(make
(for (L (chop Str) L)

(let C (pop ’L)
(setq C

(if (assoc C *Straddling)
(get (cdr @) (inc (format (pop ’L))))
(get (cdar *Straddling) (inc (format C)))))

(link (if (= "/" C) (pop ’L) C)))))))

Output:

: (straddle "One night-it was on the twentieth of March, 1888-I was returning")
-> "13953936350936974306139905974539936590

1344308320791798798798367430685972839363935"

: (unStraddle @)
-> "ONENIGHTITWASONTHETWENTIETHOFMARCH1888IWASRETURNING"

21 Rosetta Code Tasks starting with S 899

String case

Take the string “alphaBETA”, and demonstrate how to convert it to UPPER-
CASE and lower-case. Use the default encoding of a string literal or plain
ASCII if there is no string literal in your language. Show any additional case
conversion functions (e.g. swapping case, capitalizing the first letter, etc.) that
may be included in the library of your language.

(let Str "alphaBETA"
(prinl (uppc Str))
(prinl (lowc Str)))

900 21 Rosetta Code Tasks starting with S

String concatenation

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic
data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Create a string variable equal to any text value. Create another string variable
whose value is the original variable concatenated with another string literal.

To illustrate the operation, show the content of the variables.

(let Str1 "First text"
(prinl Str1 " literal")
(let Str2 (pack Str1 " literal")

(prinl Str2)))

21 Rosetta Code Tasks starting with S 901

String interpolation (included)

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic
data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

Given a string and defined variables or values, string interpolation is the re-
placement of defined character sequences in the string by values or variable
values.

For example, given an original string of "Mary had a X lamb.", a
value of “big”, and if the language replaces X in its interpolation routine,
then the result of its interpolation would be the string "Mary had a big
lamb".

(Languages usually include an infrequently used character or sequence of
characters to indicate what is to be replaced such as “%”, or “#” rather than
“X”).

The task is to:

1. Use your languages inbuilt string interpolation abilities to interpolate a
string missing the text "little" which is held in a variable, to produce
the output string "Mary had a little lamb".

2. If possible, give links to further documentation on your languages string
interpolation features.

Note: The task is not to create a string interpolation routine, but to show a
language’s built-in capability.

(let Extra "little"
(prinl (text "Mary had a @1 lamb." Extra)))

http://en.wikipedia.org/wiki/String_literal#Variable_interpolation

902 21 Rosetta Code Tasks starting with S

String length

In this task, the goal is to find the character and byte length of a string. This
means encodings like UTF-8 need to be handled properly, as there is not nec-
essarily a one-to-one relationship between bytes and characters. By character,
we mean an individual Unicode code point, not a user-visible grapheme con-
taining combining characters. For example, the character length of “mse” is 5
but the byte length is 7 in UTF-8 and 10 in UTF-16.

Non-BMP code points (those between 0x10000 and 0x10FFFF) must also be
handled correctly: answers should produce actual character counts in code
points, not in code unit counts. Therefore a string like “” (consisting of the
7 Unicode characters U+1D518 U+1D52B U+1D526 U+1D520 U+1D52C
U+1D521 U+1D522) is 7 characters long, not 14 UTF-16 code units; and it
is 28 bytes long whether encoded in UTF-8 or in UTF-16.

Please mark your examples with ===Character Length=== or ===Byte Length===.
If your language is capable of providing the string length in graphemes,
mark those examples with ===Grapheme Length===. For example, the string
“Jos” (“J\x{332}o\x{332}s\x{332}e\x{301}\x{332}”) has 4 user-visible
graphemes, 9 characters (code points), and 14 bytes when encoded in UTF-8.

(let Str "mse"
(prinl "Character Length of \"" Str "\" is " (length Str))
(prinl "Byte Length of \"" Str "\" is " (size Str)))

Output:

Character Length of "mse" is 5
Byte Length of "mse" is 7
-> 7

21 Rosetta Code Tasks starting with S 903

Strip a set of characters from a string

The task is to create a function that strips a set of characters from a string.
The function should take two arguments: the first argument being a string to
stripped and the second, a string containing the set of characters to be stripped.
The returned string should contain the first string, stripped of any characters
in the second argument:

print stripchars("She was a soul stripper. She took my heart!","aei")
Sh ws soul strppr. Sh took my hrt!

(de strDiff (Str1 Str2)
(pack (diff (chop Str1) (chop Str2))))

Test:

: (strDiff "She was a soul stripper. She took my heart!" "aei")
-> "Sh ws soul strppr. Sh took my hrt!"

904 21 Rosetta Code Tasks starting with S

Strip block comments

A block comment begins with a beginning delimiter and ends with a ending
delimiter, including the delimiters. These delimiters are often multi-character
sequences.

Task: Strip block comments from program text (of a programming language
much like classic C). Your demos should at least handle simple, non-nested
and multiline block comment delimiters. The beginning delimiter is the two-
character sequence “/*” and the ending delimiter is “*/”.

Sample text for stripping:

/**
* Some comments

* longer comments here that we can parse.

*
* Rahoo

*/
function subroutine() {
a = /* inline comment */ b + c;
}
/*/ <-- tricky comments */

/**
* Another comment.

*/
function something() {
}

Extra credit: Ensure that the stripping code is not hard-coded to the particular
delimiters described above, but instead allows the caller to specify them. (If
your language supports them, optional parameters may be useful for this.)

C.f: Strip comments from a string

21 Rosetta Code Tasks starting with S 905

(in "sample.txt"
(while (echo "/*")

(out "/dev/null" (echo "*/"))))

Output:

function subroutine() {
a = b + c ;

}

function something() {
}

906 21 Rosetta Code Tasks starting with S

Strip comments from a string

The task is to remove text that follow any of a set of comment markers, (in
these examples either a hash or a semicolon) from a string or input line.

The following examples will be truncated to either “apples, pears” or “apples,
pears”. (This example has flipped between “apples, pears” and “apples, pears”
in the past.)

apples, pears # and bananas
apples, pears; and bananas

Cf. Strip block comments

(for Str ’("apples, pears # and bananas" "apples, pears ; and bananas")
(prinl (car (split (chop Str) "#" ";"))))

Output:

apples, pears
apples, pears

21 Rosetta Code Tasks starting with S 907

Strip control codes and extended characters from a
string

The task is to strip control codes and extended characters from a string. The
solution should demonstrate how to achieve each of the following results:

· a string with control codes stripped (but extended characters not stripped)

· a string with control codes and extended characters stripped

In ASCII, the control codes have decimal codes 0 through to 31 and 127 and
greater than 126. On an ASCII based system, if the control codes are stripped,
the resultant string would have all of its characters within the range of 32 to
126 decimal on the ascii table.

On a non-ASCII based system, we consider characters that do not have a
corresponding glyph on the ASCII table (within the ASCII range of 32 to 126
decimal) to be an extended character for the purpose of this task.

908 21 Rosetta Code Tasks starting with S

Control characters in strings are written with a hat (ˆ) in PicoLisp.
ˆ? is the DEL character.

(de stripCtrl (Str)
(pack

(filter
’((C)

(nor (= "ˆ?" C) (> " " C "ˆA")))
(chop Str))))

(de stripCtrlExt (Str)
(pack

(filter
’((C) (> "ˆ?" C "ˆ_"))
(chop Str))))

Test:

: (char "ˆ?")
-> 127

: (char "ˆ_")
-> 31

: (stripCtrl "ˆIˆM a b cˆ? d ")
-> " a b c d "

: (stripCtrlExt "ˆIˆM a b cˆ? d ")
-> " a b c d "

21 Rosetta Code Tasks starting with S 909

Strip whitespace from a string/Top and tail

The task is to demonstrate how to strip leading and trailing whitespace from
a string. The solution should demonstrate how to achieve the following three
results:

· String with leading whitespace removed

· String with trailing whitespace removed

· String with both leading and trailing whitespace removed

For the purposes of this task whitespace includes non printable characters such
as the space character, the tab character, and other such characters that have
no corresponding graphical representation.

(de trimLeft (Str)
(pack (flip (trim (flip (chop Str))))))

(de trimRight (Str)
(pack (trim (chop Str))))

(de trimBoth (Str)
(pack (clip (chop Str))))

Test:

: (trimLeft " ˆG ˆI trimmed left ˆL ")
-> "trimmed left ˆL "

: (trimRight " ˆG ˆI trimmed right ˆL ")
-> " ˆG ˆI trimmed right"

: (trimBoth " ˆG ˆI trimmed both ˆL ")
-> "trimmed both"

910 21 Rosetta Code Tasks starting with S

Subset sum problem

Implement a function/procedure/method/subroutine that takes a set —array —
list — stream — table — collection of words with integer weights, and identi-
fies a non-empty subset of them whose weights sum to zero (cf. the Dropbox
Diet candidate screening exercise and the Subset sum problem Wikipedia ar-
ticle).

For example, for this set of weighted words, one solution would be the set
of words {elysee, efferent, deploy, departure, centipede, bonnet, balm, arch-
bishop}, because their respective weights of -326, 54, 44, 952, -658, 452, 397,
and -915 sum to zero.

http://www.dropbox.com/jobs/challenges
http://en.wikipedia.org/wiki/Subset_sum_problem

21 Rosetta Code Tasks starting with S 911

word weight

alliance -624

archbishop -915

balm 397

bonnet 452

brute 870

centipede -658

cobol 362

covariate 590

departure 952

deploy 44

diophantine 645

efferent 54

elysee -326

eradicate 376

escritoire 856

exorcism -983

fiat 170

filmy -874

flatworm 503

gestapo 915

infra -847

isis -982

lindholm 999

markham 475

mincemeat -880

moresby 756

mycenae 183

plugging -266

smokescreen 423

speakeasy -745

vein 813

Table 21.1: Table of
weighted words

912 21 Rosetta Code Tasks starting with S

Another solution would be the set of words {flatworm, gestapo, infra, isis,
lindholm, plugging, smokescreen, speakeasy}, because their respective weights
of 503, 915, -847, -982, 999, -266, 423, and -745 also sum to zero.

You may assume the weights range from -1000 to 1000. If there are multi-
ple solutions, only one needs to be found. Use any algorithm you want and
demonstrate it on a set of at least 30 weighted words with the results shown
in a human readable form. Note that an implementation that depends on enu-
merating all possible subsets is likely to be infeasible.

(de *Words
(alliance . -624) (archbishop . -915) (balm . 397) (bonnet . 452)
(brute . 870) (centipede . -658) (cobol . 362) (covariate . 590)
(departure . 952) (deploy . 44) (diophantine . 645) (efferent . 54)
(elysee . -326) (eradicate . 376) (escritoire . 856) (exorcism . -983)
(fiat . 170) (filmy . -874) (flatworm . 503) (gestapo . 915)
(infra . -847) (isis . -982) (lindholm . 999) (markham . 475)
(mincemeat . -880) (moresby . 756) (mycenae . 183) (plugging . -266)
(smokescreen . 423) (speakeasy . -745) (vein . 813))

Minimal brute force solution:

(load "@lib/simul.l") # For ’subsets’

(pick
’((N)

(find ’((L) (=0 (sum cdr L)))
(subsets N *Words)))

(range 1 (length *Words)))

Output:

-> ((archbishop . -915) (gestapo . 915))

21 Rosetta Code Tasks starting with S 913

Substring

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic
data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Matching

Memory Operations
Pointers & references | Addresses

In this task display a substring:

· starting from n characters in and of m length;

· starting from n characters in, up to the end of the string;

· whole string minus last character;

· starting from a known character within the string and of m length;

· starting from a known substring within the string and of m length.

If the program uses UTF-8 or UTF-16, it must work on any valid Unicode
code point, whether in the Basic Multilingual Plane or above it. The program
must reference logical characters (code points), not 8-bit code units for UTF-8
or 16-bit code units for UTF-16. Programs for other encodings (such as 8-bit
ASCII, or EUC-JP) are not required to handle all Unicode characters.

914 21 Rosetta Code Tasks starting with S

(let Str (chop "This is a string")
(prinl (head 4 (nth Str 6))) # From 6 of 4 length
(prinl (nth Str 6)) # From 6 up to the end
(prinl (head -1 Str)) # Minus last character
(prinl (head 8 (member "s" Str))) # From character "s" of length 8
(prinl # From "isa" of length 8

(head 8
(seek ’((S) (pre? "is a" S)) Str))))

Output:

is a
is a string
This is a strin
s is a s
is a str

21 Rosetta Code Tasks starting with S 915

Subtractive generator

A subtractive generator calculates a sequence of random numbers, where
each number is congruent to the subtraction of two previous numbers from
the sequence. The formula is

· rn = r(n i) r(n j)(mod m)

for some fixed values of i, j and m, all positive integers. Supposing that i > j,
then the state of this generator is the list of the previous numbers from rn i to
rn 1. Many states generate uniform random integers from 0 to m 1, but some
states are bad. A state, filled with zeros, generates only zeros. If m is even,
then a state, filled with even numbers, generates only even numbers. More
generally, if f is a factor of m, then a state, filled with multiples of f, generates
only multiples of f.

All subtractive generators have some weaknesses. The formula correlates rn,
r(n i) and r(n j); these three numbers are not independent, as true random num-
bers would be. Anyone who observes i consecutive numbers can predict the
next numbers, so the generator is not cryptographically secure. The authors
of Freeciv (utility/rand.c) and xpat2 (src/testit2.c) knew another problem: the
low bits are less random than the high bits.

The subtractive generator has a better reputation than the linear congruential
generator, perhaps because it holds more state. A subtractive generator might
never multiply numbers: this helps where multiplication is slow. A subtractive
generator might also avoid division: the value of r(n i) r(n j) is always between
m and m, so a program only needs to add m to negative numbers.

The choice of i and j affects the period of the generator. A popular choice is i
= 55 and j = 24, so the formula is

· rn = r(n 55) r(n 24)(mod m)

The subtractive generator from xpat2 uses

· rn = r(n 55) r(n 24)(mod 109)

The implementation is by J. Bentley and comes from program tools/universal.c
of the DIMACS (netflow) archive at Rutgers University. It credits Knuth,
TAOCP, Volume 2, Section 3.2.2 (Algorithm A).

http://svn.gna.org/viewcvs/freeciv/trunk/utility/rand.c?view=markup
ftp://dimacs.rutgers.edu/pub/netflow/
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

916 21 Rosetta Code Tasks starting with S

Bentley uses this clever algorithm to seed the generator.

1. Start with a single seed in range 0 to 109 1.

2. Set s0 = seed and s1 = 1. The inclusion of s1 = 1 avoids some bad states
(like all zeros, or all multiples of 10).

3. Compute s2,s3,. . . ,s54 using the subtractive formula sn = s(n 2) s(n 1)(mod
109).

4. Reorder these 55 values so r0 = s34, r1 = s13, r2 = s47, . . . , rn = s(34 * (n + 1)(mod 55)).

· This is the same order as s0 = r54, s1 = r33, s2 = r12, . . . , sn =
r((34 * n) 1(mod 55)).

· This rearrangement exploits how 34 and 55 are relatively prime.

5. Compute the next 165 values r55 to r219. Store the last 55 values.

This generator yields the sequence r220, r221, r222 and so on. For example, if
the seed is 292929, then the sequence begins with r220 = 467478574, r221 =
512932792, r222 = 539453717. By starting at r220, this generator avoids a bias
from the first numbers of the sequence. This generator must store the last 55
numbers of the sequence, so to compute the next rn. Any array or list would
work; a ring buffer is ideal but not necessary.

Implement a subtractive generator that replicates the sequences from xpat2.

/mw/index.php?title=Ring_buffer&action=edit&redlink=1

21 Rosetta Code Tasks starting with S 917

Using a circular list (as a true "ring" buffer).

(setq

*Bentley (apply circ (need 55))

*Bentley2 (nth *Bentley 32))

(de subRandSeed (S)
(let (N 1 P (nth *Bentley 55))

(set P S)
(do 54

(set (setq P (nth P 35)) N)
(when (lt0 (setq N (- S N)))

(inc ’N 1000000000))
(setq S (car P))))

(do 165 (subRand)))

(de subRand ()
(when (lt0 (dec *Bentley (pop ’*Bentley2)))

(inc *Bentley 1000000000))
(pop ’*Bentley))

Test:

(subRandSeed 292929)
(do 7 (println (subRand)))

Output:

467478574
512932792
539453717
20349702
615542081
378707948
933204586

918 21 Rosetta Code Tasks starting with S

Sudoku

Solve a partially filled-in normal 9x9 Sudoku grid and display the result in a
human-readable format. Algorithmics of Sudoku may help implement this.

(load "lib/simul.l")

Fields/Board
val lst

(setq

*Board (grid 9 9)

*Fields (apply append *Board))

Init values to zero (empty)
(for L *Board

(for This L
(=: val 0)))

Build lookup lists
(for (X . L) *Board

(for (Y . This) L
(=: lst

(make
(let A (* 3 (/ (dec X) 3))

(do 3
(inc ’A)
(let B (* 3 (/ (dec Y) 3))

(do 3
(inc ’B)
(unless (and (= A X) (= B Y))

(link
(prop (get *Board A B) ’val)))))))

(for Dir ’(‘west ‘east ‘south ‘north)
(for (This (Dir This) This (Dir This))

(unless (memq (:: val) (made))
(link (:: val)))))))))

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

21 Rosetta Code Tasks starting with S 919

Cut connections (for display only)
(for (X . L) *Board

(for (Y . This) L
(when (member X (3 6))

(con (car (val This))))
(when (member Y (4 7))

(set (cdr (val This))))))

Display board
(de display ()

(disp *Board 0
’((This)

(if (=0 (: val))
" "
(pack " " (: val) " ")))))

Initialize board
(de main (Lst)

(for (Y . L) Lst
(for (X . N) L

(put *Board X (- 10 Y) ’val N)))
(display))

Find solution
(de go ()

(unless
(recur (*Fields)

(with (car *Fields)
(if (=0 (: val))

(loop
(NIL

(or
(assoc (inc (:: val)) (: lst))
(recurse (cdr *Fields))))

(T (= 9 (: val)) (=: val 0)))
(recurse (cdr *Fields)))))

(display)))

(main
(quote

(5 3 0 0 7 0 0 0 0)
(6 0 0 1 9 5 0 0 0)
(0 9 8 0 0 0 0 6 0)
(8 0 0 0 6 0 0 0 3)
(4 0 0 8 0 3 0 0 1)
(7 0 0 0 2 0 0 0 6)
(0 6 0 0 0 0 2 8 0)
(0 0 0 4 1 9 0 0 5)
(0 0 0 0 8 0 0 7 9)))

920 21 Rosetta Code Tasks starting with S

Output:

+---+---+---+---+---+---+---+---+---+
9 | 5 3 | 7 | |

+ + + + + + + + + +
8 | 6 | 1 9 5 | |

+ + + + + + + + + +
7 | 9 8 | | 6 |

+---+---+---+---+---+---+---+---+---+
6 | 8 | 6 | 3 |

+ + + + + + + + + +
5 | 4 | 8 3 | 1 |

+ + + + + + + + + +
4 | 7 | 2 | 6 |

+---+---+---+---+---+---+---+---+---+
3 | 6 | | 2 8 |

+ + + + + + + + + +
2 | | 4 1 9 | 5 |

+ + + + + + + + + +
1 | | 8 | 7 9 |

+---+---+---+---+---+---+---+---+---+
a b c d e f g h i

(go)
+---+---+---+---+---+---+---+---+---+

9 | 5 3 4 | 6 7 8 | 9 1 2 |
+ + + + + + + + + +

8 | 6 7 2 | 1 9 5 | 3 4 8 |
+ + + + + + + + + +

7 | 1 9 8 | 3 4 2 | 5 6 7 |
+---+---+---+---+---+---+---+---+---+

6 | 8 5 9 | 7 6 1 | 4 2 3 |
+ + + + + + + + + +

5 | 4 2 6 | 8 5 3 | 7 9 1 |
+ + + + + + + + + +

4 | 7 1 3 | 9 2 4 | 8 5 6 |
+---+---+---+---+---+---+---+---+---+

3 | 9 6 1 | 5 3 7 | 2 8 4 |
+ + + + + + + + + +

2 | 2 8 7 | 4 1 9 | 6 3 5 |
+ + + + + + + + + +

1 | 3 4 5 | 2 8 6 | 1 7 9 |
+---+---+---+---+---+---+---+---+---+

a b c d e f g h i

21 Rosetta Code Tasks starting with S 921

Sum and product of an array

Compute the sum and product of an array of integers.

(let Data (1 2 3 4 5)
(cons

(apply + Data)
(apply * Data)))

Output:

(15 . 120)

922 21 Rosetta Code Tasks starting with S

Sum digits of an integer

This task takes a Natural Number in a given Base and returns the sum of it
digits:

110 sums to 1;

123410 sums to 10;

f e16 sums to 29;

f 0e16 sums to 29.

(de sumDigits (N Base)
(or

(=0 N)
(+ (\% N Base) (sumDigits (/ N Base) Base))))

Test:

: (sumDigits 1 10)
-> 1

: (sumDigits 1234 10)
-> 10

: (sumDigits (hex "fe") 16)
-> 29

: (sumDigits (hex "f0e") 16)
-> 29

21 Rosetta Code Tasks starting with S 923

Sum of a series

Compute the nth partial sum of a series.

For this task, use S(x) = 1/x2, from 1 to 1000. (This approximates the Riemann
zeta function. The Basel problem solved this: ζ (2) = π2/6.)

(scl 9) # Calculate with 9 digits precision

(let S 0
(for I 1000

(inc ’S (*/ 1.0 (* I I))))
(prinl (round S 6))) # Round result to 6 digits

1.643935

924 21 Rosetta Code Tasks starting with S

Sum of squares

Write a program to find the sum of squares of a numeric vector. The program
should work on a zero-length vector (with an answer of 0).

See also Mean.

: (sum ’((N) (* N N)) (3 1 4 1 5 9))
-> 133
: (sum ’((N) (* N N)) ())
-> 0

21 Rosetta Code Tasks starting with S 925

Symmetric difference

Given two sets A and B, where A contains:

· John

· Bob

· Mary

· Serena

and B contains:

· Jim

· Mary

· John

· Bob

compute

That is, enumerate the items that are in A or B but not both. This set is called
the symmetric difference of A and B.

In other words: (the set of items that are in at least one
of A or B minus the set of items that are in both A and B).

Optionally, give the individual differences (and) as well.

Notes

1. If your code uses lists of items to represent sets then ensure duplicate items
in lists are correctly handled. For example two lists representing sets of a
= ["John", "Serena", "Bob", "Mary", "Serena"] and b
= ["Jim", "Mary", "John", "Jim", "Bob"] should produce
the result of just two strings: ["Serena", "Jim"], in any order.

2. In the mathematical notation above A \ B gives the set of items in A that
are not in B; A ł B gives the set of items in both A and B, (their union);
and A B gives the set of items that are in both A and B (their intersection).

http://en.wikipedia.org/wiki/Symmetric_difference

926 21 Rosetta Code Tasks starting with S

(de symdiff (A B)
(uniq (conc (diff A B) (diff B A))))

Output:

(symdiff ’(John Serena Bob Mary Serena) ’(Jim Mary John Jim Bob))
-> (Serena Jim)

21 Rosetta Code Tasks starting with S 927

Synchronous concurrency

The goal of this task is to create two concurrent activities (”Threads” or
“Tasks”, not processes.) that share data synchronously. Your language may
provide syntax or libraries to perform concurrency. Different languages pro-
vide different implementations of concurrency, often with different names.
Some languages use the term threads, others use the term tasks, while others
use co-processes. This task should not be implemented using fork, spawn, or
the Linux/UNIX/Win32 pipe command, as communication should be between
threads, not processes.

One of the concurrent units will read from a file named “input.txt” and send
the contents of that file, one line at a time, to the other concurrent unit, which
will print the line it receives to standard output. The printing unit must count
the number of lines it prints. After the concurrent unit reading the file sends
its last line to the printing unit, the reading unit will request the number of
lines printed by the printing unit. The reading unit will then print the number
of lines printed by the printing unit.

This task requires two-way communication between the concurrent units. All
concurrent units must cleanly terminate at the end of the program.

928 21 Rosetta Code Tasks starting with S

PicoLisp has no threads, but synchronous background tasks and asynchronous
signal handlers, or coroutines.

Using background tasks and signals

The following two tasks communicate via UDP, so in fact they don’t need to run
within the same process and not even the same machine. "input.txt" would rather
be a device (like a named pipe or socket) than a plain file.

Reading task (synchronous)
(task (open "input.txt")

(let Fd @
(if (in Fd (line T)) # More lines?

(udp "localhost" 4444 @) # Yes: Send next line
(task (port T 4445) # Else install handler

(prinl (udp @) " lines") # to receive and print count
(task (close @)))

(udp "localhost" 4444 T) # Send ’T’ for "Done"
(task (close Fd))))) # Stop the task

Printing task (asynchronous)
(sigio (setq "Sock" (port T 4444))

(job ’((Cnt . 0))
(let? X (udp "Sock")

(if (=T X) # Done?
(prog

(udp "localhost" 4445 Cnt) # Yes: Send count
(sigio (close "Sock"))) # and stop the task

(println X) # Else print line to stdout
(inc ’Cnt))))) # and increment count

Using coroutines

Coroutines are available only in the 64-bit version.

(co ’unit1
(yield) # Allow ’unit2’ to start
(in "input.txt" # Read the file

(while (line T) # Send each line
(yield @ ’unit2))) # to ’unit2’

(prinl
(yield NIL ’unit2) # Send ’NIL’ for "Done", receive count
" lines"))

(co ’unit2
(let Cnt 0 # Init counter

(while (yield NIL ’unit1) # Receive line
(println @) # Print it
(inc ’Cnt)) # Increment count

(yield Cnt ’unit1))) # Send count to ’unit1’

21 Rosetta Code Tasks starting with S 929

System time

Output the system time (any units will do as long as they are noted) either by a
system command or one built into the language. The system time can be used
for debugging, network information, random number seeds, or something as
simple as program performance.

See Also

· Date format

· Retrieving system time (wiki)

(stamp)

Output:

-> "2010-02-19 15:14:06"

http://en.wikipedia.org/wiki/System_time#Retrieving_system_time

Chapter 22

Rosetta Code Tasks starting with T

Table creation

In this task, the goal is to create a database table to exemplify most commonly
used data types and options.

See also:

· Table Creation - Address

931

932 22 Rosetta Code Tasks starting with T

(scl 2)

(class +Account +Entity)
(rel id (+Key +Number))
(rel created (+Date))
(rel active (+Bool))
(rel username (+Key +String))
(rel balance (+Number) 2)
(rel age (+Number))
(rel notes (+Blob))

(pool "account.db") # Create database

(new! ’(+Account)
’id 12345
’username "John Doe"
’balance 77.22
’created (date 2009 5 13))

(new! ’(+Account)
’id 12346
’username "Jane Miller"
’active T
’created (date 2009 5 14)
’balance 123.75)

(let Fmt (-13 -10 -9 -11 10)
(tab Fmt "account_id" "created" "active" "username" "balance")
(for This (collect ’id ’+Account)

(tab Fmt
(: id)
(dat\$ (: created))
(if (: active) "Yes" "No")
(: username)
(money (: balance)))))

Output:

account_id created active username balance
12345 20090513 No John Doe 77.22
12346 20090514 Yes Jane Miller 123.75

22 Rosetta Code Tasks starting with T 933

Table creation/Postal addresses

In this task, the goal is to create a table to store addresses. You may assume
that all the addresses to be stored will be located in the USA. As such, you
will need (in addition to a field holding a unique identifier) a field holding the
street address, a field holding the city, a field holding the state code, and a field
holding the zipcode. Choose appropriate types for each field.

For non-database languages, show how you would open a connection to a
database (your choice of which) and create an address table in it. You should
follow the existing models here for how you would structure the table.

934 22 Rosetta Code Tasks starting with T

PicoLisp has built-in database functionality, in the form of (non-relational)
entity/relations built on top of persistent objects (so-called external symbols)

Define an "address" entity, and create the database:

(class +Adr +Entity)
(rel nm (+Sn +Idx +String)) # Name [Soundex index]
(rel str (+String)) # Street
(rel zip (+Ref +String)) # ZIP [Non-unique index]
(rel cit (+Fold +Idx +String)) # City [Folded substring index]
(rel st (+String)) # State
(rel tel (+Fold +Ref +String)) # Phone [Folded non-unique index]
(rel em (+Ref +String)) # EMail [Non-unique index]
(rel txt (+Blob)) # Memo
(rel jpg (+Blob)) # Photo

(pool "address.db") # Create database

Create a first entry, and show it:

(show
(new! ’(+Adr) # Create a record

’nm "FSF Inc."
’str "51 Franklin St"
’st "Boston, MA"
’zip "02110-1301"))

Output:

{2} (+Adr)
zip "02110-1301"
st "Boston, MA"
str "51 Franklin St"
nm "FSF Inc."

Interactive "select":

(select nm zip +Adr nm "FSF") # Select name, zip from Adr where name = FSF*
Output:
"FSF Inc." "02110-1301" {2}

22 Rosetta Code Tasks starting with T 935

Take notes on the command line

Take notes on the command line is part of Short Circuit’s Console Program
Basics selection.

Invoking NOTES without commandline arguments displays the current con-
tents of the local NOTES.TXT if it exists. If NOTES has arguments, the cur-
rent date and time are appended to the local NOTES.TXT followed by a new-
line. Then all the arguments, joined with spaces, prepended with a tab, and ap-
pended with a trailing newline, are written to NOTES.TXT. If NOTES.TXT
doesn’t already exist in the current directory then a new NOTES.TXT file
should be created.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@lib/misc.l")
(if (argv)

(out "+notes.txt" (prinl (stamp) "ˆJˆI" (glue " " @)))
(and (info "notes.txt") (in "notes.txt" (echo))))

(bye)

936 22 Rosetta Code Tasks starting with T

Terminal Control/Dimensions

[aka ’Determine the height and width of the terminal window’]

Determine the height and width of the terminal, and store this information into
variables for subsequent use.

(setq
Width (in ’(tput cols) (read))
Height (in ’(tput lines) (read)))

22 Rosetta Code Tasks starting with T 937

Terminal control/Coloured text

The task is to display a word in various colours on the terminal. The system
palette, or colours such as Red, Green, Blue, Magenta, Cyan, and Yellow can
be used.

Optionally demonstrate:

· How the system should determine if the terminal supports colour

· Setting of the background colour

· How to cause blinking or flashing (if supported by the terminal)

(unless (member (sys "TERM") ’("linux" "xterm" "rxvt"))
(quit "This application requires a colour terminal"))

Coloured text
(for X ’((1 . "Red") (4 . "Blue") (3 . "Yellow"))

(call ’tput "setaf" (car X))
(prinl (cdr X)))

Blinking
(out ’(tput "-S")

(prinl "setab 1ˆJsetaf 3ˆJblink"))
(prin "Flashing text")

(call ’tput ’sgr0) # reset
(prinl)

938 22 Rosetta Code Tasks starting with T

Terminal control/Cursor movement

The task is to demonstrate how to achieve movement of the terminal cursor:

· Demonstrate how to move the cursor one position to the left

· Demonstrate how to move the cursor one position to the right

· Demonstrate how to move the cursor up one line (without affecting its
horizontal position)

· Demonstrate how to move the cursor down one line (without affecting its
horizontal position)

· Demonstrate how to move the cursor to the beginning of the line

· Demonstrate how to move the cursor to the end of the line

· Demonstrate how to move the cursor to the top left corner of the screen

· Demonstrate how to move the cursor to the bottom right corner of the
screen

For the purpose of this task, it is not permitted to overwrite any characters
or attributes on any part of the screen (so outputting a space is not a suitable
solution to achieve a movement to the right).

(call ’tput "cub1") # one position to the left
(call ’tput "cuf1") # one position to the right
(call ’tput "cuu1") # up one line
(call ’tput "cud1") # down one line
(call ’tput "cr") # beginning of the line
(call ’tput "hpa" (sys "COLUMNS")) # end of the line
(call ’tput "home") # top left corner
(call ’tput "cup" (sys "LINES") (sys "COLUMNS")) # bottom right corner

22 Rosetta Code Tasks starting with T 939

Terminal control/Preserve screen

The task is to clear the screen, output something on the display, and then
restore the screen to the preserved state that it was in before the task was
carried out. There is no requirement to change the font or kerning in this task,
however character decorations and attributes are expected to be preserved. If
the implementer decides to change the font or kerning during the display of
the temporary screen, then these settings need to be restored prior to exit.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(call ’tput "smcup")
(prinl "something")
(wait 3000)
(call ’tput "rmcup")

(bye)

940 22 Rosetta Code Tasks starting with T

Terminal Control/Unicode output

The task is to check that the terminal supports Unicode output, before out-
putting a Unicode character. If the terminal supports Unicode, then the termi-
nal should output a Unicode delta (U+25b3). If the terminal does not support
Unicode, then an appropriate error should be raised.

(if (sub? "UTF-8" (or (sys "LC_ALL") (sys "LC_CTYPE") (sys "LANG")))
(prinl (char (hex "25b3")))
(quit "UTF-8 capable terminal required"))

22 Rosetta Code Tasks starting with T 941

Ternary logic

In logic, a three-valued logic (also trivalent, ternary, or trinary logic, some-
times abbreviated 3VL) is any of several many-valued logic systems in which
there are three truth values indicating true, false and some indeterminate third
value. This is contrasted with the more commonly known bivalent logics (such
as classical sentential or boolean logic) which provide only for true and false.
Conceptual form and basic ideas were initially created by ukasiewicz, Lewis
and Sulski. These were then re-formulated by Grigore Moisil in an axiomatic
algebraic form, and also extended to n-valued logics in 1945.

Example Ternary Logic Operators in Truth Tables:

True False

Maybe Maybe

False True

Table 22.1: not
a

a and b

True

Maybe

False

True

True

Maybe

False

Maybe

Maybe

Maybe

False

http://en.wikipedia.org/wiki/logic
http://en.wikipedia.org/wiki/many-valued_logic
http://en.wikipedia.org/wiki/truth_value
http://en.wikipedia.org/wiki/Principle_of_bivalence
http://en.wikipedia.org/wiki/boolean_logic
http://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
http://en.wikipedia.org/wiki/C._I._Lewis
http://en.wikipedia.org/wiki/Sulski
http://en.wikipedia.org/wiki/Grigore_Moisil

942 22 Rosetta Code Tasks starting with T

False

False

False

False

a or b

True

Maybe

False

True

True

True

True

Maybe

True

Maybe

Maybe

False

True

Maybe

False

if a then b

Ł

True

Maybe

False

True

True

Maybe

False

22 Rosetta Code Tasks starting with T 943

Maybe

True

Maybe

Maybe

False

True

True

True

a is equivalent to b

True

Maybe

False

True

True

Maybe

False

Maybe

Maybe

Maybe

Maybe

False

False

Maybe

True

Task:

· Define a new type that emulates ternary logic by storing data trits.

· Given all the binary logic operators of the original programming language,
reimplement these operators for the new Ternary logic type trit.

· Generate a sampling of results using trit variables.

944 22 Rosetta Code Tasks starting with T

· Kudos for actually thinking up a test case algorithm where ternary logic is
intrinsically useful, optimises the test case algorithm and is preferable to
binary logic.

Note: Setun () was a balanced ternary computer developed in 1958 at Moscow
State University. The device was built under the lead of Sergei Sobolev and
Nikolay Brusentsov. It was the only modern ternary computer, using three-
valued ternary logic

http://en.wikipedia.org/wiki/Kudos
http://en.wikipedia.org/wiki/Setun
http://en.wikipedia.org/wiki/balanced_ternary
http://en.wikipedia.org/wiki/Moscow_State_University
http://en.wikipedia.org/wiki/Moscow_State_University
http://en.wikipedia.org/wiki/Sergei_Sobolev
http://en.wikipedia.org/wiki/Nikolay_Brusentsov
http://en.wikipedia.org/wiki/ternary_computer
http://en.wikipedia.org/wiki/ternary_logic

22 Rosetta Code Tasks starting with T 945

In addition for the standard T (for "true") and NIL (for "false") we define 0
(zero, for "maybe").

(de 3not (A)
(or (=0 A) (not A)))

(de 3and (A B)
(cond

((=T A) B)
((=0 A) (and B 0))))

(de 3or (A B)
(cond

((=T A) T)
((=0 A) (or (=T B) 0))
(T B)))

(de 3impl (A B)
(cond

((=T A) B)
((=0 A) (or (=T B) 0))
(T T)))

(de 3equiv (A B)
(cond

((=T A) B)
((=0 A) 0)
(T (3not B))))

Test:

(for X ’(T 0 NIL)
(println ’not X ’-> (3not X)))

(for Fun ’((and . 3and) (or . 3or) (implies . 3impl) (equivalent . 3equiv))
(for X ’(T 0 NIL)

(for Y ’(T 0 NIL)
(println X (car Fun) Y ’-> ((cdr Fun) X Y)))))

946 22 Rosetta Code Tasks starting with T

Output:

not T -> NIL
not 0 -> 0
not NIL -> T
T and T -> T
T and 0 -> 0
T and NIL -> NIL
0 and T -> 0
0 and 0 -> 0
0 and NIL -> NIL
NIL and T -> NIL
NIL and 0 -> NIL
NIL and NIL -> NIL
T or T -> T
T or 0 -> T
T or NIL -> T
0 or T -> T
0 or 0 -> 0
0 or NIL -> 0
NIL or T -> T
NIL or 0 -> 0
NIL or NIL -> NIL
T implies T -> T
T implies 0 -> 0
T implies NIL -> NIL
0 implies T -> T
0 implies 0 -> 0
0 implies NIL -> 0
NIL implies T -> T
NIL implies 0 -> T
NIL implies NIL -> T
T equivalent T -> T
T equivalent 0 -> 0
T equivalent NIL -> NIL
0 equivalent T -> 0
0 equivalent 0 -> 0
0 equivalent NIL -> 0
NIL equivalent T -> NIL
NIL equivalent 0 -> 0
NIL equivalent NIL -> T

22 Rosetta Code Tasks starting with T 947

Test a function

Using a well known testing specific library/module/suite for your language,
write some tests for your language’s entry in Palindrome. If your language
does not have a testing specific library well known to the language’s commu-
nity then state this or omit the language.

The ’[http://software-lab.de/doc/refT.html#test test]’ function is
built into PicoLisp.

(de palindrome? (S)
(= (setq S (chop S)) (reverse S)))

(test T (palindrome? "racecar"))
(test NIL (palindrome? "ferrari"))

948 22 Rosetta Code Tasks starting with T

Text processing/1

Often data is produced by one program, in the wrong format for later use by
another program or person. In these situations another program can be written
to parse and transform the original data into a format useful to the other. The
term “Data Munging” is often used in programming circles for this task.

A request on the comp.lang.awk newsgroup lead to a typical data munging
task:

I have to analyse data files that have the following format:
Each row corresponds to 1 day and the field logic is: $1 is the date,
followed by 24 value/flag pairs, representing measurements at 01:00,
02:00 ... 24:00 of the respective day. In short:

<date> <val1> <flag1> <val2> <flag2> ... <val24> <flag24>

Some test data is available at:
... (nolonger available at original location)

I have to sum up the values (per day and only valid data, i.e. with
flag>0) in order to calculate the mean. That’s not too difficult.
However, I also need to know what the "maximum data gap" is, i.e. the
longest period with successive invalid measurements (i.e values with
flag<=0)

The data is free to download and use and is of this format:

1991-03-30 10.000 1
1991-03-31 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 20.000 1 20.000 1 20.000 1 35.000 1 50.000 1 60.000 1 40.000 1 30.000 1 30.000 1 30.000 1 25.000 1 20.000 1 20.000 1 20.000 1 20.000 1 20.000 1 35.000 1
1991-03-31 40.000 1 0.000 -2
1991-04-01 0.000 -2 13.000 1 16.000 1 21.000 1 24.000 1 22.000 1 20.000 1 18.000 1 29.000 1 44.000 1 50.000 1 43.000 1 38.000 1 27.000 1 27.000 1 24.000 1 23.000 1 18.000 1 12.000 1 13.000 1 14.000 1 15.000 1 13.000 1 10.000 1
1991-04-02 8.000 1 9.000 1 11.000 1 12.000 1 12.000 1 12.000 1 27.000 1 26.000 1 27.000 1 33.000 1 32.000 1 31.000 1 29.000 1 31.000 1 25.000 1 25.000 1 24.000 1 21.000 1 17.000 1 14.000 1 15.000 1 12.000 1 12.000 1 10.000 1
1991-04-03 10.000 1 9.000 1 10.000 1 10.000 1 9.000 1 10.000 1 15.000 1 24.000 1 28.000 1 24.000 1 18.000 1 14.000 1 12.000 1 13.000 1 14.000 1 15.000 1 14.000 1 15.000 1 13.000 1 13.000 1 13.000 1 12.000 1 10.000 1 10.000 1

Only a sample of the data showing its format is given above. The full example
file may be downloaded here.

Structure your program to show statistics for each line of the file, (similar
to the original Python, Perl, and AWK examples below), followed by sum-
mary statistics for the file. When showing example output just show a few
line statistics and the full end summary.

http://www.google.co.uk/search?q=%22data+munging%22
http://groups.google.co.uk/group/comp.lang.awk/msg/0ecba3a3fbf247d8?hl=en
http://www.eea.europa.eu/help/eea-help-centre/faqs/how-do-i-obtain-eea-reports
http://rosettacode.org/resources/readings.zip

22 Rosetta Code Tasks starting with T 949

Put the following into an executable file "readings":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(let (NoData 0 NoDataMax -1 NoDataMaxline "!" TotFile 0 NumFile 0)
(let InFiles

(glue ","
(mapcar

’((File)
(in File

(while (split (line) "ˆI")
(let (Len (length @) Date (car @) TotLine 0 NumLine 0)

(for (L (cdr @) L (cddr L))
(if (> 1 (format (cadr L)))

(inc ’NoData)
(when (gt0 NoData)

(when (= NoDataMax NoData)
(setq NoDataMaxline (pack NoDataMaxline ", " Date)))

(when (> NoData NoDataMax)
(setq NoDataMax NoData NoDataMaxline Date)))

(zero NoData)
(inc ’TotLine (format (car L) 3))
(inc ’NumLine)))

(inc ’TotFile TotLine)
(inc ’NumFile NumLine)
(tab (-7 -12 -7 3 -9 3 -11 11 -11 11)

"Line:" Date
"Reject:" (- (/ (dec Len) 2) NumLine)
" Accept:" NumLine
" Line_tot:" (format TotLine 3)
" Line_avg:"
(and (gt0 NumLine) (format (*/ TotLine @) 3))))))

File)
(argv)))

(prinl)
(prinl "File(s) = " InFiles)
(prinl "Total = " (format TotFile 3))
(prinl "Readings = " NumFile)
(prinl "Average = " (format (*/ TotFile NumFile) 3))
(prinl)
(prinl

"Maximum run(s) of " NoDataMax
" consecutive false readings ends at line starting with
date(s): " NoDataMaxline)))

(bye)

950 22 Rosetta Code Tasks starting with T

Then it can be called as

\$./readings readings.txt |tail
Line: 2004-12-29 Reject: 1 Accept: 23 Line_tot: 56.300 Line_avg: 2.448
Line: 2004-12-30 Reject: 1 Accept: 23 Line_tot: 65.300 Line_avg: 2.839
Line: 2004-12-31 Reject: 1 Accept: 23 Line_tot: 47.300 Line_avg: 2.057

File(s) = readings.txt
Total = 1358393.400
Readings = 129403
Average = 10.497

Maximum run(s) of 589 consecutive false readings ends at line starting
with date(s): 1993-03-05
\$

22 Rosetta Code Tasks starting with T 951

Text processing/2

The following data shows a few lines from the file readings.txt (as used in the
Data Munging task).

The data comes from a pollution monitoring station with twenty four instru-
ments monitoring twenty four aspects of pollution in the air. Periodically a
record is added to the file constituting a line of 49 white-space separated fields,
where white-space can be one or more space or tab characters.

The fields (from the left) are:

DATESTAMP [VALUEn FLAGn] * 24

i.e. a datestamp followed by twenty four repetitions of a floating point instru-
ment value and that instruments associated integer flag. Flag values are >=
1 if the instrument is working and < 1 if there is some problem with that
instrument, in which case that instrument’s value should be ignored.

A sample from the full data file readings.txt is:

1991-03-30 10.000 1
1991-03-31 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 10.000 1 20.000 1 20.000 1 20.000 1 35.000 1 50.000 1 60.000 1 40.000 1 30.000 1 30.000 1 30.000 1 25.000 1 20.000 1 20.000 1 20.000 1 20.000 1 20.000 1 35.000 1
1991-03-31 40.000 1 0.000 -2
1991-04-01 0.000 -2 13.000 1 16.000 1 21.000 1 24.000 1 22.000 1 20.000 1 18.000 1 29.000 1 44.000 1 50.000 1 43.000 1 38.000 1 27.000 1 27.000 1 24.000 1 23.000 1 18.000 1 12.000 1 13.000 1 14.000 1 15.000 1 13.000 1 10.000 1
1991-04-02 8.000 1 9.000 1 11.000 1 12.000 1 12.000 1 12.000 1 27.000 1 26.000 1 27.000 1 33.000 1 32.000 1 31.000 1 29.000 1 31.000 1 25.000 1 25.000 1 24.000 1 21.000 1 17.000 1 14.000 1 15.000 1 12.000 1 12.000 1 10.000 1
1991-04-03 10.000 1 9.000 1 10.000 1 10.000 1 9.000 1 10.000 1 15.000 1 24.000 1 28.000 1 24.000 1 18.000 1 14.000 1 12.000 1 13.000 1 14.000 1 15.000 1 14.000 1 15.000 1 13.000 1 13.000 1 13.000 1 12.000 1 10.000 1 10.000 1

The task:

1. Confirm the general field format of the file

2. Identify any DATESTAMPs that are duplicated.

3. What number of records have good readings for all instruments.

http://rosettacode.org/resources/readings.zip

952 22 Rosetta Code Tasks starting with T

Put the following into an executable file "checkReadings":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@lib/misc.l")

(in (opt)
(until (eof)

(let Lst (split (line) "ˆI")
(unless

(and
(= 49 (length Lst)) # Check total length
(\$dat (car Lst) "-") # Check for valid date
(not

(find # Check data format
’((L F)

(not
(if F # Alternating:

(format L 3) # Number
(>= 9 (format L) -9)))) # or flag

(cdr Lst)
’(T NIL .))))

(prinl "Bad line format: " (glue " " Lst))
(bye 1)))))

(bye)

Then it can be called as

\$./checkReadings readings.txt

22 Rosetta Code Tasks starting with T 953

Text processing/3

[aka ’Text processing/Max licenses in use’]

A company currently pays a fixed sum for the use of a particular licensed
software package. In determining if it has a good deal it decides to calculate
its maximum use of the software from its license management log file.

Assume the software’s licensing daemon faithfully records a checkout event
when a copy of the software starts and a checkin event when the software
finishes to its log file. An example of checkout and checkin events are:

License OUT @ 2008/10/03_23:51:05 for job 4974
...
License IN @ 2008/10/04_00:18:22 for job 4974

Save the 10,000 line log file from here into a local file then write a program to
scan the file extracting both the maximum licenses that were out at any time,
and the time(s) at which this occurs.

Put the following into an executable file "licenses":

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(zero Count MaxCount)

(in (opt)
(while (split (line) " ")

(case (pack (cadr (setq Line @)))
(IN

(dec ’Count))
(OUT

(let Time (cadddr Line)
(cond

((> (inc ’Count) MaxCount)
(setq MaxCount Count MaxTimes Time))

((= Count MaxCount)
(setq MaxTimes (pack MaxTimes " and " Time)))))))))

(prinl "The biggest number of licenses is " MaxCount " at " MaxTimes " !")
(bye)

Then it can be called as

\$./licenses mlijobs.txt
The biggest number of licenses is 99 at 2008/10/03_08:39:34 and 2008/10/03_08:40:40 !

http://rosettacode.org/resources/mlijobs.txt

954 22 Rosetta Code Tasks starting with T

Thiele’s interpolation formula

Thiele’s interpolation formula is an interpolation formula for a function f ()
of a single variable. It is expressed as a continued fraction:

represents the reciprocal difference, demonstrated here for reference:

Demonstrate Thiele’s interpolation function by:

1. Building a 32 row trig table of values of the trig functions sin, cos and tan.
e.g. for x from 0 by 0.05 to 1.55. . .

2. Using columns from this table define an inverse - using Thiele’s interpola-
tion - for each trig function;

3. Finally: demonstrate the following well known trigonometric identities:

· 6 sin-1 =

· 3 cos-1 =

· 4 tan-1 1 =

http://en.wikipedia.org/wiki/Thiele%27s_interpolation_formula
http://en.wikipedia.org/wiki/reciprocal_difference

22 Rosetta Code Tasks starting with T 955

(scl 17)
(load "@lib/math.l")

(setq

*X-Table (range 0.0 1.55 0.05)

*SinTable (mapcar sin *X-Table)

*CosTable (mapcar cos *X-Table)

*TanTable (mapcar tan *X-Table)

*TrigRows (length *X-Table))

(let N2 (>> 1 (* *TrigRows (dec *TrigRows)))
(setq

*InvSinTable (need N2)

*InvCosTable (need N2)

*InvTanTable (need N2)))

(de rho (Tbl Inv I N)
(cond

((lt0 N) 0)
((=0 N) (get *X-Table I))
(T

(let Idx (+ I (>> 1 (* (- *TrigRows 1 N) (- *TrigRows N))))
(or

(get Inv Idx)
(set (nth Inv Idx) # only happens if value not computed yet

(+
(rho Tbl Inv (inc I) (- N 2))
(*/

(- (get Tbl I) (get Tbl (+ I N)))
1.0
(-

(rho Tbl Inv I (dec N))
(rho Tbl Inv (inc I) (dec N)))))))))))

(de thiele (Tbl Inv X N)
(if (> N *TrigRows)

1.0
(+

(-
(rho Tbl Inv 1 (dec N))
(rho Tbl Inv 1 (- N 3)))

(*/
(- X (get Tbl N))
1.0
(thiele Tbl Inv X (inc N))))))

956 22 Rosetta Code Tasks starting with T

(de iSin (X)
(thiele *SinTable *InvSinTable X 1))

(de iCos (X)
(thiele *CosTable *InvCosTable X 1))

(de iTan (X)
(thiele *TanTable *InvTanTable 1.0 1))

Test:

(prinl (round (* 6 (iSin 0.5)) 15))
(prinl (round (* 3 (iCos 0.5)) 15))
(prinl (round (* 4 (iTan 1.0)) 15))

Output:

3.141592653589793
3.141592653589793
3.141592653589793

22 Rosetta Code Tasks starting with T 957

Three Dogs

[aka ’Case-sensitivity of identifiers’]

Three dogs (Are there three dogs or one dog?) is a code snippet used to il-
lustrate the lettercase sensitivity of the programming language. For a case-
sensitive language, the identifiers dog, Dog and DOG are all different and we
should get the output:

The three dogs are named Benjamin, Samba and Bernie.

For a language that is lettercase insensitive, we get the following output:

There is just one dog named Bernie.

Cf.

· Unicode variable names

(let (dog "Benjamin" Dog "Samba" DOG "Bernie")
(prinl "The three dogs are named " dog ", " Dog " and " DOG))

Output:

The three dogs are named Benjamin, Samba and Bernie

958 22 Rosetta Code Tasks starting with T

Tic-tac-toe

Play a game of tic-tac-toe. Ensure that legal moves are played and that a win-
ning position is notified.

This solution doesn’t bother about the game logic, but simply uses
the alpha-beta-pruning ’game’ function in the "simul" library.

(load "@lib/simul.l") # for ’game’ function

(de display ()
(for Y (3 2 1)

(prinl " +---+---+---+")
(prin " " Y)
(for X (1 2 3)

(prin " | " (or (get *Board X Y) " ")))
(prinl " |"))

(prinl " +---+---+---+")
(prinl " a b c"))

(de find3 (P)
(find

’((X Y DX DY)
(do 3

(NIL (= P (get *Board X Y)))
(inc ’X DX)
(inc ’Y DY)
T))

(1 1 1 1 2 3 1 1)
(1 2 3 1 1 1 1 3)
(1 1 1 0 0 0 1 1)
(0 0 0 1 1 1 1 -1)))

http://en.wikipedia.org/wiki/Tic-tac-toe

22 Rosetta Code Tasks starting with T 959

(de myMove ()
(when

(game NIL 8
’((Flg) # Moves

(unless (find3 (or (not Flg) 0))
(make

(for (X . L) *Board
(for (Y . P) L

(unless P
(link

(cons
(cons X Y (or Flg 0))
(list X Y)))))))))

’((Mov) # Move
(set (nth *Board (car Mov) (cadr Mov)) (cddr Mov)))

’((Flg) # Cost
(if (find3 (or Flg 0)) -100 0)))

(let Mov (caadr @)
(set (nth *Board (car Mov) (cadr Mov)) 0))

(display)))

(de yourMove (X Y)
(and

(sym? X)
(>= 3 (setq X (- (char X) 96)) 1)
(num? Y)
(>= 3 Y 1)
(not (get *Board X Y))
(set (nth *Board X Y) T)
(display)))

(de main ()
(setq *Board (make (do 3 (link (need 3)))))
(display))

(de go Args
(cond

((not (yourMove (car Args) (cadr Args)))
"Illegal move!")

((find3 T) "Congratulation, you won!")
((not (myMove)) "No moves")
((find3 0) "Sorry, you lost!")))

960 22 Rosetta Code Tasks starting with T

Output:

: (main)
+---+---+---+

3 | | | |
+---+---+---+

2 | | | |
+---+---+---+

1 | | | |
+---+---+---+
a b c

: (go a 1)
+---+---+---+

3 | | | |
+---+---+---+

2 | | | |
+---+---+---+

1 | T | | |
+---+---+---+
a b c

+---+---+---+
3 | | | |
+---+---+---+

2 | | 0 | |
+---+---+---+

1 | T | | |
+---+---+---+
a b c

22 Rosetta Code Tasks starting with T 961

Time a function

Write a program which uses a timer (with the least granularity available on
your system) to time how long a function takes to execute.

Whenever possible, use methods which measure only the processing time used
by the current process; instead of the difference in system time between start
and finish, which could include time used by other processes on the computer.

This task is intended as a subtask for Measure relative performance of sorting
algorithms implementations.

There is a built-in function ’[http://software-lab.de/doc/refB.html#bench bench]
for that. However, it measures wall-clock time, because for practical purposes
the real time needed by a task (including I/O and communication) is more meaning
There is another function, ’[http://software-lab.de/doc/refT.html#tick tick]’, w
also measures user time, and is used by the profiling tools.

: (bench (do 1000000 (* 3 4)))
0.080 sec
-> 12

962 22 Rosetta Code Tasks starting with T

Top rank per group

Find the top N salaries in each department, where N is provided as a parame-
ter.

Use this data as a formatted internal data structure (adapt it to your language-
native idioms, rather than parse at runtime), or identify your external data
source:

Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190

22 Rosetta Code Tasks starting with T 963

Employee Name, ID, Salary, Department
(de *Employees

("Tyler Bennett" E10297 32000 D101)
("John Rappl" E21437 47000 D050)
("George Woltman" E00127 53500 D101)
("Adam Smith" E63535 18000 D202)
("Claire Buckman" E39876 27800 D202)
("David McClellan" E04242 41500 D101)
("Rich Holcomb" E01234 49500 D202)
("Nathan Adams" E41298 21900 D050)
("Richard Potter" E43128 15900 D101)
("David Motsinger" E27002 19250 D202)
("Tim Sampair" E03033 27000 D101)
("Kim Arlich" E10001 57000 D190)
("Timothy Grove" E16398 29900 D190))

(de topEmployees (N)
(let Fmt (4 -16 -7 7)

(for Dept (by cadddr group *Employees)
(prinl "Department " (cadddr (car Dept)) ":")
(tab Fmt NIL "Name" "ID" "Salary")
(for (I . D) (flip (by caddr sort Dept))

(tab Fmt (pack I ". ") (car D) (cadr D) (caddr D))
(T (= I N)))

(prinl))))

(topEmployees 3)

Output:

Department D101:
Name ID Salary

1. George Woltman E00127 53500
2. David McClellan E04242 41500
3. Tyler Bennett E10297 32000

Department D050:
Name ID Salary

1. John Rappl E21437 47000
2. Nathan Adams E41298 21900

Department D202:
Name ID Salary

1. Rich Holcomb E01234 49500
2. Claire Buckman E39876 27800
3. David Motsinger E27002 19250

Department D190:
Name ID Salary

1. Kim Arlich E10001 57000
2. Timothy Grove E16398 29900

964 22 Rosetta Code Tasks starting with T

Topological sort

Given a mapping between items, and items they depend on, a topological sort
orders items so that no item precedes an item it depends upon.

The compiling of a library in the VHDL language has the constraint that a
library must be compiled after any library it depends on. A tool exists that
extracts library dependencies. The task is to write a function that will return
a valid compile order of VHDL libraries from their dependencies.

· Assume library names are single words.

· Items mentioned as only dependants, (sic), have no dependants of their
own, but their order of compiling must be given.

· Any self dependencies should be ignored.

· Any un-orderable dependencies should be flagged.

Use the following data as an example:

LIBRARY LIBRARY DEPENDENCIES
======= ====================
des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee
dw01 ieee dw01 dware gtech
dw02 ieee dw02 dware
dw03 std synopsys dware dw03 dw02 dw01 ieee gtech
dw04 dw04 ieee dw01 dware gtech
dw05 dw05 ieee dware
dw06 dw06 ieee dware
dw07 ieee dware
dware ieee dware
gtech ieee gtech
ramlib std ieee
std_cell_lib ieee std_cell_lib
synopsys

Note: the above data would be un-orderable if, for example, dw04 is added to
the list of dependencies of dw01.

C.f: Topological sort/Extracted top item.

http://en.wikipedia.org/wiki/Topological_sorting
http://en.wikipedia.org/wiki/VHDL

22 Rosetta Code Tasks starting with T 965

(de sortDependencies (Lst)
(setq Lst # Build a flat list

(uniq
(mapcan

’((L)
(put (car L) ’dep (cdr L)) # Store dependencies in ’dep’ properties
(copy L))

(mapcar uniq Lst)))) # without self-dependencies
(make

(while Lst
(ifn (find ’((This) (not (: dep))) Lst) # Found non-depending lib?

(quit "Can’t resolve dependencies" Lst)
(del (link @) ’Lst) # Yes: Store in result
(for This Lst # and remove from ’dep’s

(=: dep (delete @ (: dep))))))))

Output:

: (sortDependencies
(quote

(des-system-lib std synopsys std-cell-lib des-system-lib dw02 dw01 ramlib ieee)
(dw01 ieee dw01 dware gtech)
(dw02 ieee dw02 dware)
(dw03 std synopsys dware dw03 dw02 dw01 ieee gtech)
(dw04 dw04 ieee dw01 dware gtech)
(dw05 dw05 ieee dware)
(dw06 dw06 ieee dware)
(dw07 ieee dware)
(dware ieee dware)
(gtech ieee gtech)
(ramlib std ieee)
(std-cell-lib ieee std-cell-lib)
(synopsys)))

-> (std synopsys ieee std-cell-lib ramlib dware dw02 gtech dw01
des-system-lib dw03 dw04 dw05 dw06 dw07)

966 22 Rosetta Code Tasks starting with T

Towers of Hanoi

In this task, the goal is to solve the Towers of Hanoi problem with recursion.

(de move (N A B C) # Use: (move 3 ’left ’center ’right)
(unless (=0 N)

(move (dec N) A C B)
(println ’Move ’disk ’from A ’to B)
(move (dec N) C B A)))

http://en.wikipedia.org/wiki/Towers_of_Hanoi

22 Rosetta Code Tasks starting with T 967

Trabb PardoKnuth algorithm

The TPK algorithm is an early example of programming chrestomathy. It was
used in Donald Knuth and Luis Trabb Pardo’s Stanford tech report The Early
Development of Programming Languages. The report traces the early history
of work in developing computer languages in the 1940s and 1950s, giving
several translations of the algorithm.

From the wikipedia entry:

ask for 11 numbers to be read into a sequence S
reverse sequence S
for each item in sequence S

result := call a function to do an operation
if result overflows

alert user
else

print result

The task is to implement the algorithm:

1. Use the function f (x) = | x | 0.5 + 5x3

2. The overflow condition is an answer of greater than 400.

3. The ‘user alert’ should not stop processing of other items of the sequence.

4. Print a prompt before accepting eleven, textual, numeric inputs.

5. You may optionally print the item as well as its associated result, but the
results must be in reverse order of input.

6. The sequence S may be ‘implied’ and so not shown explicitly.

7. Print and show the program in action from a typical run here. (If the out-
put is graphical rather than text then either add a screendump or describe
textually what is displayed).

http://bitsavers.org/pdf/stanford/cs_techReports/STAN-CS-76-562_EarlyDevelPgmgLang_Aug76.pdf
http://bitsavers.org/pdf/stanford/cs_techReports/STAN-CS-76-562_EarlyDevelPgmgLang_Aug76.pdf
http://en.wikipedia.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm

968 22 Rosetta Code Tasks starting with T

(de f (X)
(+ (sqrt (abs X)) (* 5 X X X)))

(trace ’f)

(in NIL
(prin "Input 11 numbers: ")
(for X (reverse (make (do 11 (link (read)))))

(when (> (f X) 400)
(prinl "TOO LARGE"))))

Test:

Input 11 numbers: 1 2 3 4 5 6 7 8 9 10 11
f : 11
f = 6658

TOO LARGE
f : 10
f = 5003

TOO LARGE
f : 9
f = 3648

TOO LARGE
f : 8
f = 2562

TOO LARGE
f : 7
f = 1717

TOO LARGE
f : 6
f = 1082

TOO LARGE
f : 5
f = 627

TOO LARGE
f : 4
f = 322
f : 3
f = 136
f : 2
f = 41
f : 1
f = 6

22 Rosetta Code Tasks starting with T 969

Tree traversal

Implement a binary tree where each node carries an integer, and implement
preoder, inorder, postorder and level-order traversal. Use those traversals to
output the following tree:

1
/ \

/ \
/ \

2 3
/ \ /
4 5 6

/ / \
7 8 9

The correct output should look like this:

preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

This article has more information on traversing trees.

http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Tree_traversal

970 22 Rosetta Code Tasks starting with T

(de preorder (Node Fun)
(when Node

(Fun (car Node))
(preorder (cadr Node) Fun)
(preorder (caddr Node) Fun)))

(de inorder (Node Fun)
(when Node

(inorder (cadr Node) Fun)
(Fun (car Node))
(inorder (caddr Node) Fun)))

(de postorder (Node Fun)
(when Node

(postorder (cadr Node) Fun)
(postorder (caddr Node) Fun)
(Fun (car Node))))

(de level-order (Node Fun)
(for (Q (circ Node) Q)

(let N (fifo ’Q)
(Fun (car N))
(and (cadr N) (fifo ’Q @))
(and (caddr N) (fifo ’Q @)))))

(setq *Tree
(1

(2 (4 (7)) (5))
(3 (6 (8) (9)))))

(for Order ’(preorder inorder postorder level-order)
(prin (align -13 (pack Order ":")))
(Order *Tree printsp)
(prinl))

Output:

preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

22 Rosetta Code Tasks starting with T 971

Trigonometric functions

If your language has a library or built-in functions for trigonometry, show
examples of sine, cosine, tangent, and their inverses using the same angle
in radians and degrees. For the non-inverse functions, each radian/degree pair
should use arguments that evaluate to the same angle (that is, it’s not necessary
to use the same angle for all three regular functions as long as the two sine
calls use the same angle). For the inverse functions, use the same number
and convert its answer to radians and degrees. If your language does not have
trigonometric functions available or only has some available, write functions
to calculate the functions based on any known approximation or identity.

(load "@lib/math.l")

(de dtor (Deg)
(*/ Deg pi 180.0))

(de rtod (Rad)
(*/ Rad 180.0 pi))

(prinl
(format (sin (/ pi 4)) *Scl) " " (format (sin (dtor 45.0)) *Scl))

(prinl
(format (cos (/ pi 4)) *Scl) " " (format (cos (dtor 45.0)) *Scl))

(prinl
(format (tan (/ pi 4)) *Scl) " " (format (tan (dtor 45.0)) *Scl))

(prinl
(format (asin (sin (/ pi 4))) *Scl) " "
(format (rtod (asin (sin (dtor 45.0)))) *Scl))

(prinl
(format (acos (cos (/ pi 4))) *Scl) " "
(format (rtod (acos (cos (dtor 45.0)))) *Scl))

(prinl
(format (atan (tan (/ pi 4))) *Scl) " "
(format (rtod (atan (tan (dtor 45.0)))) *Scl))

Output:

0.707107 0.707107
0.707107 0.707107
1.000000 1.000000
0.785398 44.999986
0.785398 44.999986
0.785398 44.999986

http://en.wikipedia.org/wiki/List_of_trigonometric_identities

972 22 Rosetta Code Tasks starting with T

Truncatable primes

A truncatable prime is prime number that when you successively remove dig-
its from one end of the prime, you are left with a new prime number; for
example, the number 997 is called a left-truncatable prime as the numbers
997, 97, and 7 are all prime. The number 7393 is a right-truncatable prime as
the numbers 7393, 739, 73, and 7 formed by removing digits from its right are
also prime. No zeroes are allowed in truncatable primes.

The task is to find the largest left-truncatable and right-truncatable primes less
than one million.

C.f: Sieve of Eratosthenes; Truncatable Prime from Mathworld.

Category:Prime Numbers

(load "@lib/rsa.l") # Use the ’prime?’ function from RSA package

(de truncatablePrime? (N Fun)
(for (L (chop N) L (Fun L))

(T (= "0" (car L)))
(NIL (prime? (format L)))
T))

(let (Left 1000000 Right 1000000)
(until (truncatablePrime? (dec ’Left) cdr))
(until (truncatablePrime? (dec ’Right) ’((L) (cdr (rot L)))))
(cons Left Right))

Output:

-> (998443 . 739399)

http://mathworld.wolfram.com/TruncatablePrime.html

22 Rosetta Code Tasks starting with T 973

Truncate a file

Truncate a file to a specific length. This should be implemented as a routine
that takes two parameters: the filename and the required file length (in bytes).

Truncation can be achieved using system or library calls intended for such
a task, if such methods exist, or by creating a temporary file of a reduced
size and renaming it, after first deleting the original file, if no other method is
available. The file may contain non human readable binary data in an unspeci-
fied format, so the routine should be “binary safe”, leaving the contents of the
untruncated part of the file unchanged.

If the specified filename does not exist, or the provided length is not less than
the current file length, then the routine should raise an appropriate error condi-
tion. On some systems, the provided file truncation facilities might not change
the file or may extend the file, if the specified length is greater than the current
length of the file. This task permits the use of such facilities. However, such
behaviour should be noted, or optionally a warning message relating to an non
change or increase in file size may be implemented.

On the 64-bit version, we can call the native runtime library:

(de truncate (File Len)
(native "@" "truncate" ’I File Len))

Otherwise (on all versions), we call the external truncate command:

(de truncate (File Len)
(call "truncate" "-s" Len File))

974 22 Rosetta Code Tasks starting with T

Truth table

A truth table is a display of the inputs to, and the output of a Boolean equation
organised as a table where each row gives one combination of input values
and the corresponding value of the equation.

Task

1. Input a Boolean equation from the user as a string then calculate and print
a formatted truth table for the given equation.
(One can assume that the user input is correct).

2. Print and show output for Boolean equations of two and three input vari-
ables, but any program should not be limited to that many variables in the
equation.

3. Either reverse-polish or infix notation expressions are allowed.

Cf.

· Boolean values

· Ternary logic

Ref.

· Wolfram mathworld entry on truth tables.

· Some examples from Google.

http://en.wikipedia.org/wiki/Truth_table
http://mathworld.wolfram.com/TruthTable.html
http://www.google.co.uk/search?q=truth+table&hl=en&client=firefox-a&hs=Om7&rls=org.mozilla:en-GB:official&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=C0uuTtjuH4Wt8gOF4dmYCw&ved=0CDUQsAQ&biw=941&bih=931&sei=%20Jk-uTuKKD4Sg8QOFkPGcCw

22 Rosetta Code Tasks starting with T 975

(de truthTable (Expr)
(let Vars

(uniq
(make

(setq Expr
(recur (Expr) # Convert infix to prefix notation

(cond
((atom Expr) (link Expr))
((== ’not (car Expr))

(list ’not (recurse (cadr Expr))))
(T

(list
(cadr Expr)
(recurse (car Expr))
(recurse (caddr Expr)))))))))

(for V Vars
(prin (align -7 V)))

(prinl)
(bind (mapcar cons Vars)

(do (** 2 (length Vars))
(for "V" Vars

(space (if (print (val "V")) 6 4)))
(println (eval Expr))
(find ’(("V") (set "V" (not (val "V")))) Vars)))))

976 22 Rosetta Code Tasks starting with T

Test:

: (truthTable (str "A and (B or C)"))
A B C
NIL NIL NIL NIL
T NIL NIL NIL
NIL T NIL NIL
T T NIL T
NIL NIL T NIL
T NIL T T
NIL T T NIL
T T T T

: (truthTable (str "not (Foo and (Bar or Mumble))"))
Foo Bar Mumble
NIL NIL NIL T
T NIL NIL T
NIL T NIL T
T T NIL NIL
NIL NIL T T
T NIL T NIL
NIL T T T
T T T NIL

: (truthTable (str "(A xor B) and (B or C)"))
A B C
NIL NIL NIL NIL
T NIL NIL NIL
NIL T NIL T
T T NIL NIL
NIL NIL T NIL
T NIL T T
NIL T T T
T T T NIL

: (truthTable (str "(A xor B) and ((not B) or C)"))
A B C
NIL NIL NIL NIL
T NIL NIL T
NIL T NIL NIL
T T NIL NIL
NIL NIL T NIL
T NIL T T
NIL T T T
T T T NIL

Chapter 23

Rosetta Code Tasks starting with U

URL decoding

This task (the reverse of URL encoding) is to provide a function or mechanism
to convert a url-encoded string into its original unencoded form.

Example

The encoded string ”http%3A%2F%2Ffoo%20bar%2F” should be reverted
to the unencoded form ”http://foo bar/”.

: (ht:Pack (chop "http\%3A\%2F\%2Ffoo\%20bar\%2F"))
-> "http://foo bar/"

977

978 23 Rosetta Code Tasks starting with U

URL encoding

The task is to provide a function or mechanism to convert a provided string
into URL encoding representation.

In URL encoding, special characters, control characters and extended charac-
ters are converted into a percent symbol followed by a two digit hexadecimal
code, So a space character encodes into %20 within the string.

For the purposes of this task, every character except 0-9, A-Z and a-z requires
conversion, so the following characters all require conversion by default:

· ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F
(127 decimal).

· ASCII symbols (Character ranges 32-47 decimal (20-2F hex))

· ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))

· ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))

· ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))

· Extended characters with character codes of 128 decimal (80 hex) and
above.

Example

The string ”http://foo bar/” would be encoded as
”http%3A%2F%2Ffoo%20bar%2F”.

Variations

· Lowercase escapes are legal, as in
”http%3a%2f%2ffoo%20bar%2f”.

· Some standards give different rules: RFC 3986, Uniform Resource Iden-
tifier (URI): Generic Syntax, section 2.3, says that “-. ˜” should not be
encoded. HTML 5, section 4.10.22.5 URL-encoded form data, says to pre-
serve “-. *”, and to encode space ” ” to “+”. The options below provide for
utilization of an exception string, enabling preservation (non encoding) of
particular characters to meet specific standards.

Options

It is permissible to use an exception string (containing a set of symbols that
do not need to be converted). However, this is an optional feature and is not a
requirement of this task.

See also

URL decoding

http://www.whatwg.org/specs/web-apps/current-work/multipage/association-of-controls-and-forms.html#url-encoded-form-data

23 Rosetta Code Tasks starting with U 979

(de urlEncodeTooMuch (Str)
(pack

(mapcar
’((C)

(if (or (>= "9" C "0") (>= "Z" (uppc C) "A"))
C
(list ’\% (hex (char C)))))

(chop Str))))

Test:

: (urlEncodeTooMuch "http://foo bar/")
-> "http\%3A\%2F\%2Ffoo\%20bar\%2F"

980 23 Rosetta Code Tasks starting with U

Unbias a random generator

Given a weighted one bit generator of random numbers where the probability
of a one occuring, P1, is not the same as P0, the probability of a zero occuring,
the probability of the occurrence of a one followed by a zero is P1 P0. This is
the same as the probability of a zero followed by a one: P0 P1.

Task Details

· Use your language’s random number generator to create a function —
method — subroutine — . . . randN that returns a one or a zero, but with
one occurring, on average, 1 out of N times, where N is an integer from the
range 3 to 6 inclusive.

· Create a function unbiased that uses only randN as its source of random-
ness to become an unbiased generator of random ones and zeroes.

· For N over its range, generate and show counts of the outputs of randN and
unbiased(randN).

The actual unbiasing should be done by generating two numbers at a time
from randN and only returning a 1 or 0 if they are different. As long as you
always return the first number or always return the second number, the prob-
abilities discussed above should take over the biased probability of randN.

23 Rosetta Code Tasks starting with U 981

(de randN (N)
(if (= 1 (rand 1 N)) 1 0))

(de unbiased (N)
(use (A B)

(while
(=

(setq A (randN N))
(setq B (randN N))))

A))

(for N (range 3 6)
(tab (2 1 7 2 7 2)

N ":"
(format

(let S 0 (do 10000 (inc ’S (randN N))))
2)

"\%"
(format

(let S 0 (do 10000 (inc ’S (unbiased N))))
2)

"\%"))

Output:

3: 33.21 \% 50.48 \%
4: 25.06 \% 49.79 \%
5: 20.04 \% 49.75 \%
6: 16.32 \% 49.02 \%

982 23 Rosetta Code Tasks starting with U

Undefined values

For languages which have an explicit notion of an undefined value, identify
and exercise those language’s mechanisms for identifying and manipulating a
variable’s value’s status as being undefined

An internal symbol is initialized to NIL. Depending on the context,
this is interpreted as "undefined". When called as a function, an
error is issued:

: (myfoo 3 4)
!? (myfoo 3 4)
myfoo -- Undefined
?

The function ’default’ can be used to initialize a variable if and
only if its current value is NIL:

: MyVar
-> NIL

: (default MyVar 7)
-> 7

: MyVar
-> 7

: (default MyVar 8)
-> 7

: MyVar
-> 7

23 Rosetta Code Tasks starting with U 983

Unicode strings

As the world gets smaller each day, internationalization becomes more and
more important. For handling multiple languages, Unicode is your best friend.
It is a very capable tool, but also quite complex compared to older single- and
double-byte character encodings. How well prepared is your programming
language for Unicode? Discuss and demonstrate its unicode awareness and
capabilities. Some suggested topics:

· How easy is it to present Unicode strings in source code? Can Unicode
literals be written directly, or be part of identifiers/keywords/etc?

· How well can the language communicate with the rest of the world? Is it
good at input/output with Unicode?

· Is it convenient to manipulate Unicode strings in the language?

· How broad/deep does the language support Unicode? What encodings (e.g.
UTF-8, UTF-16, etc) can be used? Normalization?

Note This task is a bit unusual in that it encourages general discussion rather
than clever coding.

See also:

· Unicode variable names

· Terminal control/Display an extended character

PicoLisp can directly handle _only_ Unicode (UTF-8) strings. So the problem is
rather how to handle non-Unicode strings: They must be pre- or post-processed by
external tools, typically with pipes during I/O. For example, to read a line
from a file in 8859 encoding:

(in ’(iconv "-f" "ISO-8859-15" "file.txt") (line))

984 23 Rosetta Code Tasks starting with U

Unicode variable names

1. Describe, and give a pointer to documentation on your languages use of
characters beyond those of the ASCII character set in the naming of vari-
ables.

2. Show how to:

· Set a variable with a name including the ‘’, (delta character), to 1

· Increment it

· Print its value.

Cf.

· Case-sensitivity of identifiers

Variables are usually
[http://software-lab.de/doc/ref.html#internal-io Internal Symbols],
and their names may contain any UTF-8 character except null-bytes.
White space, and 11 special characters (see the reference) must be
escaped with a backslash.
[http://software-lab.de/doc/ref.html#transient-io Transient Symbols]
are often used as variables too, they follow the syntax of strings
in other languages.

: (setq 1)
-> 1
:
-> 1
: (inc ’)
-> 2
:
-> 2

23 Rosetta Code Tasks starting with U 985

Update a configuration file

We have a configuration file as follows:

This is a configuration file in standard configuration file format
#
Lines begininning with a hash or a semicolon are ignored by the application
program. Blank lines are also ignored by the application program.

The first word on each non comment line is the configuration option.
Remaining words or numbers on the line are configuration parameter
data fields.

Note that configuration option names are not case sensitive. However,
configuration parameter data is case sensitive and the lettercase must
be preserved.

This is a favourite fruit
FAVOURITEFRUIT banana

This is a boolean that should be set
NEEDSPEELING

This boolean is commented out
; SEEDSREMOVED

How many bananas we have
NUMBEROFBANANAS 48

The task is to manipulate the configuration file as follows:

· Disable the needspeeling option (using a semicolon prefix)

· Enable the seedsremoved option by removing the semicolon and any lead-
ing whitespace

· Change the numberofbananas parameter to 1024

· Enable (or create if it does not exist in the file) a parameter for numberofs-
trawberries with a value of 62000

Note that configuration option names are not case sensitive. This means that
changes should be effected, regardless of the case.

Options should always be disabled by prefixing them with a semicolon.

986 23 Rosetta Code Tasks starting with U

Lines beginning with hash symbols should not be manipulated and left un-
changed in the revised file.

If a configuration option does not exist within the file (in either enabled or
disabled form), it should be added during this update. Duplicate configuration
option names in the file should be removed, leaving just the first entry.

For the purpose of this task, the revised file should contain appropriate entries,
whether enabled or not for needspeeling,seedsremoved,numberofbananas and
numberofstrawberries.)

The update should rewrite configuration option names in capital letters. How-
ever lines beginning with hashes and any parameter data must not be altered
(eg the banana for favourite fruit must not become capitalized). The update
process should also replace double semicolon prefixes with just a single semi-
colon (unless it is uncommenting the option, in which case it should remove
all leading semicolons).

Any lines beginning with a semicolon or groups of semicolons, but no follow-
ing option should be removed, as should any leading or trailing whitespace on
the lines. Whitespace between the option and paramters should consist only
of a single space, and any non ascii extended characters, tabs characters, or
control codes (other than end of line markers), should also be removed.

See also:

· Read a configuration file

23 Rosetta Code Tasks starting with U 987

(let Data # Read all data
(in "config"

(make
(until (eof)

(link (trim (split (line) " "))))))
(setq Data # Fix comments

(mapcar
’((L)

(while (head ’(";" ";") (car L))
(pop L))

(if (= ’(";") (car L))
L
(cons NIL L)))

Data))
(let (Need NIL Seed NIL NBan NIL NStr NIL Favo NIL)

(map
’((L)

(let D (mapcar uppc (cadar L))
(cond

((= ’‘(chop "NEEDSPEELING") D)
(if Need

(set L)
(on Need)
(unless (caar L)

(set (car L) ’(";")))))
((= ’‘(chop "SEEDSREMOVED") D)

(if Seed
(set L)
(on Seed)
(when (caar L)

(set (car L)))))
((= ’‘(chop "NUMBEROFBANANAS") D)

(if NBan
(set L)
(on NBan)
(set (cddar L) 1024)))

((= ’‘(chop "NUMBEROFSTRAWBERRIES") D)
(if NStr

(set L)
(on NStr)))

((= ’‘(chop "FAVOURITEFRUIT") D)
(if Favo

(set L)
(on Favo))))))

Data)

988 23 Rosetta Code Tasks starting with U

(unless Need
(conc Data (cons (list NIL "NEEDSPEELING"))))

(unless Seed
(conc Data (cons (list NIL "SEEDSREMOVED"))))

(unless NBan
(conc Data (cons (list NIL "NUMBEROFBANANAS" 1024))))

(unless NStr
(conc Data (cons (list NIL "NUMBEROFSTRAWBERRIES" 62000)))))

(out "config"
(for L Data

(prinl (glue " " (if (car L) L (cdr L)))))))

23 Rosetta Code Tasks starting with U 989

User input/Graphical

In this task, the goal is to input a string and the integer 75000, from graphical
user interface.

See also: User input/Text

(and
(call ’sh "-c"

(pack
"dialog \

--inputbox ’Input a string’ 8 60 \
--inputbox ’Input a number’ 8 20 \
2>"

(tmp "dlg")))
(split (in (tmp "dlg") (line)) "ˆI")
(cons (pack (car @)) (format (cadr @))))

Output:

-> ("Hello world" . 12345)

990 23 Rosetta Code Tasks starting with U

User input/Text

User input/Text is part of Short Circuit’s Console Program Basics selection.

In this task, the goal is to input a string and the integer 75000, from the text
console.

See also: User input/Graphical

(in NIL # Guarantee reading from standard input
(let (Str (read) Num (read))

(prinl "The string is: \"" Str "\"")
(prinl "The number is: " Num)))

Chapter 24

Rosetta Code Tasks starting with V

Van der Corput sequence

When counting integers in binary, if you put a (binary) point to the right of the
count then the column immediately to the left denotes a digit with a multiplier
of 20; the next column to the lefts digit has a multiplier of 21 and so on.

So in the following table:

0.
1.
10.
11.
...

The binary number ”10” is

You can have binary digits to the right of the “point” just as in the decimal
number system too. in this case, the digit in the place immediately to the right
of the point has a weight of 2 1, or 1 / 2. The weight for the second column to
the right of the point is 2 2 or 1 / 4. And so on.

991

992 24 Rosetta Code Tasks starting with V

If you take the integer binary count of the first table, and reflect the digits
about the binary point, you end up with the van der Corput sequence of
numbers in base 2.

.0

.1

.01

.11

...

The third member of the sequence: binary 0.01 is therefore

or 1 / 4.

Members of the sequence lie within the interval . Points within
the sequence tend to be evenly distributed which is a useful trait to have for
Monte Carlo simulations. This sequence is also a superset of the numbers
representable by the “fraction” field of an old IEEE floating point standard.
In that standard, the “fraction” field represented the fractional part of a binary
number beginning with “1.” e.g. 1.101001101.

Fig. 24.1: Distribution of 2500 points each:
Van der Corput (top) vs pseudorandom

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/IEEE_754-1985

24 Rosetta Code Tasks starting with V 993

Hint

A hint at a way to generate members of the sequence is to modify a routine
used to change the base of an integer:

>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits

>>> base10change(11, 2)
[1, 0, 1, 1]

the above showing that 11 in decimal is

Reflected this would become .1101 or

Task Description

· Create a function/method/routine that given n, generates the n’th term of
the van der Corput sequence in base 2.

· Use the function to compute and display the first ten members of the se-
quence. (The first member of the sequence is for n=0).

· As a stretch goal/extra credit, compute and show members of the sequence
for bases other than 2.

See also

· The Basic Low Discrepancy Sequences

· Non-decimal radices/Convert

· Van der Corput sequence

http://www.puc-rio.br/marco.ind/quasi_mc.html#low_discrep
http://en.wikipedia.org/wiki/Van_der_Corput_sequence

994 24 Rosetta Code Tasks starting with V

(scl 6)

(de vdc (N B)
(default B 2)
(let (R 0 A 1.0)

(until (=0 N)
(inc ’R (* (setq A (/ A B)) (\% N B)))
(setq N (/ N B)))

R))

(for B (2 3 4)
(prinl "Base: " B)
(for N (range 0 9)

(prinl N ": " (round (vdc N B) 4))))

Output:

Base: 2
0: 0.0000
1: 0.5000
2: 0.2500
3: 0.7500
4: 0.1250
5: 0.6250
6: 0.3750
7: 0.8750
8: 0.0625
9: 0.5625
Base: 3
0: 0.0000
1: 0.3333
2: 0.6667
3: 0.1111
4: 0.4444
5: 0.7778
6: 0.2222
7: 0.5556
8: 0.8889
9: 0.0370
Base: 4
0: 0.0000
1: 0.2500
2: 0.5000
3: 0.7500
4: 0.0625
5: 0.3125
6: 0.5625
7: 0.8125
8: 0.1250
9: 0.3750

24 Rosetta Code Tasks starting with V 995

Variable size/Get

Demonstrate how to get the size of a variable.

See also: Host introspection

In PicoLisp, all variables have the same size (a single cell). Therefore it
makes more sense to inspect the size of data structures. This can be done with
the ’[http://software-lab.de/doc/refS.html#size size]’ and
’[http://software-lab.de/doc/refL.html#length length]’ functions.

996 24 Rosetta Code Tasks starting with V

Variable size/Set

Demonstrate how to specify the minimum size of a variable or a data type.

In PicoLisp, all variables have the same size (a single cell). But it is
possible to create a data structure of a given minimal size with the
’[http://software-lab.de/doc/refN.html#need need]’ function.

24 Rosetta Code Tasks starting with V 997

Variable-length quantity

Implement some operations on variable-length quantities, at least including
conversions from a normal number in the language to the binary represen-
tation of the variable-length quantity for that number, and vice versa. Any
variants are acceptable.

Task : With above operations,

· convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff
(2097151 in decimal) into sequences of octets (an eight-bit byte);

· display these sequences of octets;

· convert these sequences of octets back to numbers, and check that they are
equal to original numbers.

(de numToVlq (Num)
(let Res (cons (\& Num 127))

(while (gt0 (setq Num (>> 7 Num)))
(push ’Res (| 128 (\& Num 127))))

Res))

(de vlqToNum (Vlq)
(let Res 0

(for N Vlq
(setq Res (| (>> -7 Res) (\& N 127))))))

(for Num (0 15 16 127 128 255 2097151 2097152)
(let Vlq (numToVlq Num)

(tab (12 12 12) Num (glue ":" (mapcar hex Vlq)) (vlqToNum Vlq))))

Output:

0 0 0
15 F 15
16 10 16
127 7F 127
128 81:0 128
255 81:7F 255

2097151 FF:FF:7F 2097151
2097152 81:80:80:0 2097152

http://en.wikipedia.org/wiki/Variable-length_quantity

998 24 Rosetta Code Tasks starting with V

Variables

Demonstrate the language’s methods of variable declaration, initialization, as-
signment, datatypes, scope, referencing, and other variable related facilities.

You can control the local bindings of symbols with functions like
’[http://software-lab.de/doc/refU.html#use use]’ or
’[http://software-lab.de/doc/refL.html#let let]’:

(use (A B C)
(setq A 1 B 2 C 3)
...)

This is equivalent to

(let (A 1 B 2 C 3)
...)

The parentheses can be omitted if there is only a single variable

(use A
(setq A ..)
...)

(let A 1
...)

Other functions that handle local bindings are

’[http://software-lab.de/doc/refL.html#let? let?]’,
’[http://software-lab.de/doc/refB.html#bind bind]’,
’[http://software-lab.de/doc/refJ.html#job job]’,
’[http://software-lab.de/doc/refW.html#with with]’ or
’[http://software-lab.de/doc/refF.html#for for]’.

24 Rosetta Code Tasks starting with V 999

Variadic function

Create a function which takes in a variable number of arguments and prints
each one on its own line. Also show, if possible in your language, how to call
the function on a list of arguments constructed at runtime.

Functions of this type are also known as Variadic Functions.

Related: Call a function

The ’@’ operator causes a function to accept a variable number of arguments.
These can be accesed with the
’[http://software-lab.de/doc/refA.html#args args]’,
’[http://software-lab.de/doc/refN.html#next next]’,
’[http://software-lab.de/doc/refA.html#arg arg]’ and
’[http://software-lab.de/doc/refR.html#rest rest]’ functions.

(de varargs @
(while (args)

(println (next))))

The ’@’ operator may be used in combination with normal parameters:

(de varargs (Arg1 Arg2 . @)
(println Arg1)
(println Arg2)
(while (args)

(println (next))))

It is called like any other function

(varargs ’a 123 ’(d e f) "hello")

also by possibly applying it to a ready-made list

(apply varargs ’(a 123 (d e f) "hello"))

Output in all cases:
a
123
(d e f)
"hello"

http://en.wikipedia.org/wiki/Variadic_function

1000 24 Rosetta Code Tasks starting with V

Vector products

Define a vector having three dimensions as being represented by an ordered
collection of three numbers: (X, Y, Z). If you imagine a graph with the x and
y axis being at right angles to each other and having a third, z axis coming out
of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the
region, and a vector from the origin to the point.

Given vectors A = (a1, a2, a3); B = (b1, b2, b3); and C =
(c1, c2, c3); then the following common vector products are defined:

· The dot product

A B = a1b1 + a2b2 + a3b3; a scalar quantity

· The cross product

A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1); a vector
quantity

· The scalar triple product

A (B x C); a scalar quantity

· The vector triple product

A x (B x C); a vector quantity

Task description

Given the three vectors: a = (3, 4, 5); b = (4, 3, 5); c = (-5,
-12, -13):

1. Create a named function/subroutine/method to compute the dot product of
two vectors.

2. Create a function to compute the cross product of two vectors.

3. Optionally create a function to compute the scalar triple product of three
vectors.

4. Optionally create a function to compute the vector triple product of three
vectors.

5. Compute and display: a b

6. Compute and display: a x b

7. Compute and display: a b x c, the scaler triple product.

8. Compute and display: a x b x c, the vector triple product.

24 Rosetta Code Tasks starting with V 1001

References

· Dot product on RC.

· A starting page to the Wolfram Mathworld information on vector multipli-
cation.

· Wikipedias dot product, cross product and triple product entries.

C.f.

· Quaternion type

(de dotProduct (A B)
(sum * A B))

(de crossProduct (A B)
(list

(- (* (cadr A) (caddr B)) (* (caddr A) (cadr B)))
(- (* (caddr A) (car B)) (* (car A) (caddr B)))
(- (* (car A) (cadr B)) (* (cadr A) (car B)))))

(de scalarTriple (A B C)
(dotProduct A (crossProduct B C)))

(de vectorTriple (A B C)
(crossProduct A (crossProduct B C)))

Test:

(setq
A (3 4 5)
B (4 3 5)
C (-5 -12 -13))

: (dotProduct A B)
-> 49

: (crossProduct A B)
-> (5 5 -7)

: (scalarTriple A B C)
-> 6

: (vectorTriple A B C)
-> (-267 204 -3)

http://mathworld.wolfram.com/VectorMultiplication.html
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Triple_product

1002 24 Rosetta Code Tasks starting with V

Verify distribution uniformity/Naive

This task is an adjunct to Seven-dice from Five-dice.

Create a function to check that the random integers returned from a small-
integer generator function have uniform distribution.

The function should take as arguments:

· The function (or object) producing random integers.

· The number of times to call the integer generator.

· A ‘delta’ value of some sort that indicates how close to a flat distribution
is close enough.

The function should produce:

· Some indication of the distribution achieved.

· An ‘error’ if the distribution is not flat enough.

Show the distribution checker working when the produced distribution is flat
enough and when it is not. (Use a generator from Seven-dice from Five-dice).

See also:

· Verify distribution uniformity/Chi-squared test

24 Rosetta Code Tasks starting with V 1003

The following function takes a count, and allowed deviation in per mill
(one-tenth of a percent), and a ’prg’ code body (i.e. an arbitrary number of
executable expressions).

(de checkDistribution (Cnt Pm . Prg)
(let Res NIL

(do Cnt (accu ’Res (run Prg 1) 1))
(let

(N (/ Cnt (length Res))
Min (*/ N (- 1000 Pm) 1000)
Max (*/ N (+ 1000 Pm) 1000))

(for R Res
(prinl (cdr R) " " (if (>= Max (cdr R) Min) "Good" "Bad"))))))

Output:

: (checkDistribution 100000 5 (rand 1 7))
14299 Good
14394 Bad
14147 Bad
14418 Bad
14159 Bad
14271 Good
14312 Good

1004 24 Rosetta Code Tasks starting with V

Vigenre Cipher

Implement a Vigenre cypher, both encryption and decryption. The program
should handle keys and text of unequal length, and should capitalize every-
thing and discard non-alphabetic characters. (If your program handles non-
alphabetic characters in another way, make a note of it.)

See also:

· Vigenre Cipher/Cryptanalysis

(de vigenereKey (Str)
(extract

’((C)
(when (>= "Z" (uppc C) "A")

(- (char (uppc C)) 65)))
(chop Str)))

(de vigenereEncrypt (Str Key)
(pack

(mapcar
’((C K)

(char (+ 65 (\% (+ C K) 26))))
(vigenereKey Str)
(apply circ (vigenereKey Key)))))

(de vigenereDecrypt (Str Key)
(pack

(mapcar
’((C K)

(char (+ 65 (\% (+ 26 (- C K)) 26))))
(vigenereKey Str)
(apply circ (vigenereKey Key)))))

Test:

: (vigenereEncrypt
"Beware the Jabberwock, my son! The jaws that bite, the claws that catch!"
"VIGENERECIPHER")

-> "WMCEEIKLGRPIFVMEUGXQPWQVIOIAVEYXUEKFKBTALVXTGAFXYEVKPAGY"

: (vigenereDecrypt @ "VIGENERECIPHER")
-> "BEWARETHEJABBERWOCKMYSONTHEJAWSTHATBITETHECLAWSTHATCATCH"

http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Chapter 25

Rosetta Code Tasks starting with W

Walk a directory/Non-recursively

Walk a given directory and print the names of files matching a given pattern.

Note: This task is for non-recursive methods. These tasks should read a sin-
gle directory, not an entire directory tree. For code examples that read entire
directory trees, see Walk Directory Tree

(for F (dir "@src/") # Iterate directory
(when (match ’‘(chop "s@.c") (chop F)) # Matches ’s*.c’?

(println F))) # Yes: Print it

Output:

"start.c"
"ssl.c"
"subr.c"
"sym.c"
...

1005

1006 25 Rosetta Code Tasks starting with W

Walk a directory/Recursively

Walk a given directory tree and print files matching a given pattern.

Note: This task is for recursive methods. These tasks should read an entire
directory tree, not a single directory. For code examples that read a single
directory, see Walk a directory/Non-recursively.

(let Dir "."
(recur (Dir)

(for F (dir Dir)
(let Path (pack Dir "/" F)

(cond
((=T (car (info Path))) # Is a subdirectory?

(recurse Path)) # Yes: Recurse
((match ’‘(chop "s@.l") (chop F)) # Matches ’s*.l’?

(println Path))))))) # Yes: Print it

Output:

"./src64/sym.l"
"./src64/subr.l"
...

25 Rosetta Code Tasks starting with W 1007

Web scraping

Create a program that downloads the time from this URL: http://tycho.usno.navy.mil/cgi-
bin/timer.pl and then prints the current UTC time by extracting just the UTC
time from the web page’s HTML.

If possible, only use libraries that come at no extra monetary cost with the pro-
gramming language and that are widely available and popular such as CPAN
for Perl or Boost for C++.

(load "@lib/http.l")

(client "tycho.usno.navy.mil" 80 "cgi-bin/timer.pl"
(when (from "
")

(pack (trim (till "U")))))

Output:

-> "Feb. 19, 18:11:37"

http://tycho.usno.navy.mil/cgi-bin/timer.pl
http://tycho.usno.navy.mil/cgi-bin/timer.pl
http://www.cpan.org/

1008 25 Rosetta Code Tasks starting with W

Window creation

Display a GUI window. The window need not have any contents, but should
respond to requests to be closed.

(load "@lib/openGl.l")

(glutInit)
(glutCreateWindow "Goodbye, World!")
(keyboardFunc ’(() (bye)))
(glutMainLoop)

25 Rosetta Code Tasks starting with W 1009

Window creation/X11

Create a simple X11 application, using an X11 protocol library such as Xlib
or XCB, that draws a box and “Hello World” in a window. Implementations
of this task should avoid using a toolkit as much as possible.

1010 25 Rosetta Code Tasks starting with W

The following script works in the 32-bit version, using inlined C code

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@lib/misc.l" "@lib/gcc.l")

(gcc "x11" ’("-lX11") ’simpleWin)

#include <X11/Xlib.h>

any simpleWin(any ex) {
any x = cdr(ex);
int dx, dy;
Display *disp;
int scrn;
Window win;
XEvent ev;

x = cdr(ex), dx = (int)evCnt(ex,x);
x = cdr(x), dy = (int)evCnt(ex,x);
x = evSym(cdr(x));
if (disp = XOpenDisplay(NULL)) {

char msg[bufSize(x)];

bufString(x, msg);
scrn = DefaultScreen(disp);
win = XCreateSimpleWindow(disp, RootWindow(disp,scrn), 0, 0, dx, dy,

1, BlackPixel(disp,scrn), WhitePixel(disp,scrn));
XSelectInput(disp, win, ExposureMask | KeyPressMask | ButtonPressMask);
XMapWindow(disp, win);
for (;;) {

XNextEvent(disp, \&ev);
switch (ev.type) {
case Expose:

XDrawRectangle(disp, win, DefaultGC(disp, scrn), 10, 10, dx-20, dy-20);
XDrawString(disp, win, DefaultGC(disp, scrn), 30, 40, msg, strlen(msg));
break;

case KeyPress:
case ButtonPress:

XCloseDisplay(disp);
return Nil;

}
}

}
return mkStr("Can’t open Display");

}
/**/

(simpleWin 300 200 "Hello World")
(bye)

25 Rosetta Code Tasks starting with W 1011

Window management

Treat windows or at least window identities as first class objects.

· Store window identities in variables, compare them for equality.

· Provide examples of performing some of the following:

· hide, show, close, minimize, maximize, move, and resize a window.

The window of interest may or may not have been created by your program.

http://en.wikipedia.org/wiki/First-class_object

1012 25 Rosetta Code Tasks starting with W

The following works on ErsatzLisp, the Java version of PicoLisp.

\$ ersatz/pil +
: (setq

JFrame "javax.swing.JFrame"
MAXIMIZED_BOTH (java (public JFrame ’MAXIMIZED_BOTH))
ICONIFIED (java (public JFrame ’ICONIFIED))
Win (java JFrame T "Window"))

-> \$ JFrame

Compare for equality
: (== Win Win)
-> T

Set window visible
(java Win ’setLocation 100 100)
(java Win ’setSize 400 300)
(java Win ’setVisible T)

Hide window
(java Win ’hide)

Show again
(java Win ’setVisible T)

Move window
(java Win ’setLocation 200 200)

Iconify window
(java Win ’setExtendedState

(| (java (java Win ’getExtendedState)) ICONIFIED))

De-conify window
(java Win ’setExtendedState

(\& (java (java Win ’getExtendedState)) (x| (hex "FFFFFFFF") ICONIFIED)))

Maximize window
(java Win ’setExtendedState

(| (java (java Win ’getExtendedState)) MAXIMIZED_BOTH))

Close window
(java Win ’dispose)

25 Rosetta Code Tasks starting with W 1013

Wireworld

Wireworld is a cellular automaton with some similarities to Conway’s Game
of Life. It is capable of doing sophisticated computations (e.g., calculating
primeness!) with appropriate programs, and is much simpler to program for.

A wireworld arena consists of a cartesian grid of cells, each of which can
be in one of four states. All cell transitions happen simultaneously. The cell
transition rules are this:

Input State Output State Condition

empty empty

electron head electron tail

electron tail conductor

conductor electron head if 1 or 2 cells in the neighborhood of the cell
are in the state “electron head”

conductor conductor otherwise

To implement this task, create a program that reads a wireworld program from
a file and displays an animation of the processing. Here is a sample description
file (using ”H” for an electron head, ”t” for a tail, ”.” for a conductor and a
space for empty) you may wish to test with, which demonstrates two cycle-3
generators and an inhibit gate:

tH.........
. .

...
. .
Ht..

While text-only implementations of this task are possible, mapping cells to
pixels is advisable if you wish to be able to display large designs. The logic is
not significantly more complex.

http://en.wikipedia.org/wiki/Wireworld
http://en.wikipedia.org/wiki/Moore_neighborhood

1014 25 Rosetta Code Tasks starting with W

This example uses ’grid’ from "lib/simul.l", which maintains a two-dimensional
structure.

(load "@lib/simul.l")

(let
(Data (in "wire.data" (make (while (line) (link @))))

Grid (grid (length (car Data)) (length Data)))
(mapc

’((G D) (mapc put G ’(val .) D))
Grid
(apply mapcar (flip Data) list))

(loop
(disp Grid T

’((This) (pack " " (: val) " ")))
(wait 1000)
(for Col Grid

(for This Col
(case (=: next (: val))

("H" (=: next "t"))
("t" (=: next "."))
("."

(when
(>=

2
(cnt # Count neighbors

’((Dir) (= "H" (get (Dir This) ’val)))
(quote

west east south north
((X) (south (west X)))
((X) (north (west X)))
((X) (south (east X)))
((X) (north (east X)))))

1)
(=: next "H"))))))

(for Col Grid # Update
(for This Col

(=: val (: next))))
(prinl)))

25 Rosetta Code Tasks starting with W 1015

Output:

+---+---+---+---+---+---+---+---+---+---+---+
5 | t | H | . | . | . | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
4 | . | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | . | . | . | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
2 | . | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
1 | H | t | . | . | | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
a b c d e f g h i j k

+---+---+---+---+---+---+---+---+---+---+---+
5 | . | t | H | . | . | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
4 | H | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | . | . | . | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
2 | H | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
1 | t | . | . | . | | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
a b c d e f g h i j k

+---+---+---+---+---+---+---+---+---+---+---+
5 | H | . | t | H | . | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
4 | t | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
3 | | | | . | . | . | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
2 | t | | | | . | | | | | | |

+---+---+---+---+---+---+---+---+---+---+---+
1 | . | H | . | . | | . | . | . | . | . | . |

+---+---+---+---+---+---+---+---+---+---+---+
a b c d e f g h i j k

1016 25 Rosetta Code Tasks starting with W

Word wrap

Even today, with proportional fonts and complex layouts, there are still cases
where you need to wrap text at a specified column. The basic task is to wrap a
paragraph of text in a simple way in your language. If there is a way to do this
that is built-in, trivial, or provided in a standard library, show that. Otherwise
implement the minimum length greedy algorithm from Wikipedia.

Show your routine working on a sample of text at two different wrap columns.

Extra credit! Wrap text using a more sophisticated algorithm such as the
Knuth and Plass TeX algorithm. If your language provides this, you get easy
extra credit, but you must reference documentation indicating that the algo-
rithm is something better than a simple minimimum length algorithm.

If you have both basic and extra credit solutions, show an example where the
two algorithms give different results.

’[http://software-lab.de/doc/refW.html#wrap wrap]’ is a built-in.

: (prinl (wrap 12 (chop "The quick brown fox jumps over the lazy dog")))
The quick
brown fox
jumps over
the lazy dog
-> "The quickˆJbrown foxˆJjumps overˆJthe lazy dog"

http://en.wikipedia.org/wiki/Word_wrap#Minimum_length

25 Rosetta Code Tasks starting with W 1017

Write float arrays to a text file

Write two equal-sized numerical arrays ‘x’ and ‘y’ to a two-column text file
named ‘filename’.

The first column of the file contains values from an ‘x’-array with a given
‘xprecision’, the second – values from ‘y’-array with ‘yprecision’.

For example, considering:

x = {1, 2, 3, 1e11};
y = {1, 1.4142135623730951, 1.7320508075688772, 316227.76601683791};

/* sqrt(x) */
xprecision = 3;
yprecision = 5;

The file is:

1 1
2 1.4142
3 1.7321
1e+011 3.1623e+005

This task is intended as a subtask for Measure relative performance of sorting
algorithms implementations.

1018 25 Rosetta Code Tasks starting with W

An exponential format like "1e11" is not supported

(setq *Xprecision 3 *Yprecision 5)

(scl 7)
(mapc

’((X Y)
(prinl

(round X *Xprecision)
" "
(round Y *Yprecision)))

(1.0 2.0 3.0)
(1.0 1.414213562 1.732050807))

Output:

1.000 1.00000
2.000 1.41421
3.000 1.73205

25 Rosetta Code Tasks starting with W 1019

Write to Windows event log

Write script status to the Windows Event Log

PicoLisp doesn’t run on Windows. In case of Linux, the equivalent of the event
log is the syslog. It can be written with
’[http://software-lab.de/doc/refN.html#native native]’ C functions, or simply
with the ’logger’ utility:

: (call ’logger "This is a test")
-> T

: (call ’logger "This" ’is "another" ’test)
-> T

Chapter 26

Rosetta Code Tasks starting with X

XML/DOM serialization

Create a simple DOM and having it serialize to:

<?xml version="1.0"?>
<root>

<element>
Some text here

</element>
</root>

(load "@lib/xm.l")

(xml? T)
(xml ’(root NIL (element NIL "Some text here")))

Output:

<?xml version="1.0" encoding="utf-8"?>
<root>

<element>Some text here</element>
</root>

1021

1022 26 Rosetta Code Tasks starting with X

XML/Input

Given the following XML fragment, extract the list of student names using
whatever means desired. If the only viable method is to use XPath, refer the
reader to the task XML and XPath.

<Students>
<Student Name="April" Gender="F" DateOfBirth="1989-01-02" />
<Student Name="Bob" Gender="M" DateOfBirth="1990-03-04" />
<Student Name="Chad" Gender="M" DateOfBirth="1991-05-06" />
<Student Name="Dave" Gender="M" DateOfBirth="1992-07-08">

<Pet Type="dog" Name="Rover" />
</Student>
<Student DateOfBirth="1993-09-10" Gender="F" Name="Émily" />

</Students>

Expected Output

April
Bob
Chad
Dave
mily

(load "@lib/xm.l")

(mapcar
’((L) (attr L ’Name))
(body (in "file.xml" (xml))))

Output:

-> ("April" "Bob" "Chad" "Dave" "mily")

26 Rosetta Code Tasks starting with X 1023

XML/Output

Create a function that takes a list of character names and a list of corre-
sponding remarks and returns an XML document of <Character> el-
ements each with a name attributes and each enclosing its remarks. All
<Character> elements are to be enclosed in turn, in an outer <CharacterRemarks>
element.

As an example, calling the function with the three names of:

April
Tam O’Shanter
Emily

And three remarks of:

Bubbly: I’m > Tam and <= Emily
Burns: "When chapman billies leave the street ..."
Short & shrift

Should produce the XML (but not necessarily with the indentation):

<CharacterRemarks>
<Character name="April">

Bubbly: I’m > Tam and <= Emily
</Character>
<Character name="Tam O’Shanter">

Burns:"When chapman billies leave the street ..."
</Character>
<Character name="Emily">

Short & shrift
</Character>

</CharacterRemarks>

The document may include an <?xml?> declaration and document type dec-
laration, but these are optional. If attempting this task by direct string manip-
ulation, the implementation must include code to perform entity substitution
for the characters that have entities defined in the XML 1.0 specification.

Note: the example is chosen to show correct escaping of XML strings. Note
too that although the task is written to take two lists of corresponding data, a
single mapping/hash/dictionary of names to remarks is also acceptable.

1024 26 Rosetta Code Tasks starting with X

Note to editors: Program output with escaped characters will be viewed as
the character on the page so you need to ‘escape-the-escapes’ to make the RC
entry display what would be shown in a plain text viewer (See this). Alter-
nately, output can be placed in <lang xml></lang> tags without any special
treatment.

(load "@lib/xm.l")

(de characterRemarks (Names Remarks)
(xml

(cons
’CharacterRemarks
NIL
(mapcar

’((Name Remark)
(list ’Character (list (cons ’name Name)) Remark))

Names
Remarks))))

(characterRemarks
’("April" "Tam O’Shanter" "Emily")
(quote

"I’m > Tam and <= Emily"
"Burns: \"When chapman billies leave the street ..."
"Short \& shrift"))

Output:

<CharacterRemarks>
<Character name="April">I’m > Tam and \<= Emily</Character>
<Character name="Tam O’Shanter">Burns: \"
When chapman billies leave the street ...</Character>
<Character name="Emily">Short \& shrift</Character>

</CharacterRemarks>

26 Rosetta Code Tasks starting with X 1025

XML/XPath

Perform the following three XPath queries on the XML Document below:

· Retrieve the first “item” element

· Perform an action on each “price” element (print it out)

· Get an array of all the “name” elements

XML Document:

<inventory title="OmniCorp Store #45x10ˆ3">
<section name="health">

<item upc="123456789" stock="12">
<name>Invisibility Cream</name>
<price>14.50</price>
<description>Makes you invisible</description>

</item>
<item upc="445322344" stock="18">

<name>Levitation Salve</name>
<price>23.99</price>
<description>Levitate yourself for up to 3 hours per application
</description>

</item>
</section>
<section name="food">

<item upc="485672034" stock="653">
<name>Blork and Freen Instameal</name>
<price>4.95</price>
<description>A tasty meal in a tablet; just add water</description>

</item>
<item upc="132957764" stock="44">

<name>Grob winglets</name>
<price>3.56</price>
<description>Tender winglets of Grob. Just add water</description>

</item>
</section>

</inventory>

1026 26 Rosetta Code Tasks starting with X

(load "@lib/xm.l")

(let Sections (body (in "file.xml" (xml)))
(pretty (car (body (car Sections))))
(prinl)
(for S Sections

(for L (body S)
(prinl (car (body L ’price)))))

(make
(for S Sections

(for L (body S)
(link (car (body L ’name)))))))

Output:

(item
((upc . "123456789") (stock . "12"))
(name NIL "Invisibility Cream")
(price NIL "14.50")
(description NIL "Makes you invisible"))

14.50
23.99
4.95
3.56
-> ("Invisibility Cream" "Levitation Salve"

"Blork and Freen Instameal" "Grob winglets")

26 Rosetta Code Tasks starting with X 1027

Xiaolin Wu’s line algorithm

Implement the Xiaolin Wu’s line algorithm as described in Wikipedia. This
algorithm draw antialiased lines. See Bresenham’s line algorithm for aliased
lines.

(scl 2)

(de plot (Img X Y C)
(set (nth Img (*/ Y 1.0) (*/ X 1.0)) (- 100 C)))

(de ipart (X)
(* 1.0 (/ X 1.0)))

(de iround (X)
(ipart (+ X 0.5)))

(de fpart (X)
(\% X 1.0))

(de rfpart (X)
(- 1.0 (fpart X)))

http://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm

1028 26 Rosetta Code Tasks starting with X

(de xiaolin (Img X1 Y1 X2 Y2)
(let (DX (- X2 X1) DY (- Y2 Y1))

(use (Grad Xend Yend Xgap Xpxl1 Ypxl1 Xpxl2 Ypxl2 Intery)
(when (> (abs DY) (abs DX))

(xchg ’X1 ’Y1 ’X2 ’Y2))
(when (> X1 X2)

(xchg ’X1 ’X2 ’Y1 ’Y2))
(setq

Grad (*/ DY 1.0 DX)
Xend (iround X1)
Yend (+ Y1 (*/ Grad (- Xend X1) 1.0))
Xgap (rfpart (+ X1 0.5))
Xpxl1 Xend
Ypxl1 (ipart Yend))

(plot Img Xpxl1 Ypxl1 (*/ (rfpart Yend) Xgap 1.0))
(plot Img Xpxl1 (+ 1.0 Ypxl1) (*/ (fpart Yend) Xgap 1.0))
(setq

Intery (+ Yend Grad)
Xend (iround X2)
Yend (+ Y2 (*/ Grad (- Xend X2) 1.0))
Xgap (fpart (+ X2 0.5))
Xpxl2 Xend
Ypxl2 (ipart Yend))

(plot Img Xpxl2 Ypxl2 (*/ (rfpart Yend) Xgap 1.0))
(plot Img Xpxl2 (+ 1.0 Ypxl2) (*/ (fpart Yend) Xgap 1.0))
(for (X (+ Xpxl1 1.0) (>= (- Xpxl2 1.0) X) (+ X 1.0))

(plot Img X (ipart Intery) (rfpart Intery))
(plot Img X (+ 1.0 (ipart Intery)) (fpart Intery))
(inc ’Intery Grad)))))

(let Img (make (do 90 (link (need 120 99)))) # Create image 120 x 90
(xiaolin Img 10.0 10.0 110.0 80.0) # Draw lines
(xiaolin Img 10.0 10.0 110.0 45.0)
(xiaolin Img 10.0 80.0 110.0 45.0)
(xiaolin Img 10.0 80.0 110.0 10.0)
(out "img.pgm" # Write to bitmap file

(prinl "P2")
(prinl 120 " " 90)
(prinl 100)
(for Y Img (apply printsp Y))))

Chapter 27

Rosetta Code Tasks starting with Y

Y combinator

In strict functional programming and the lambda calculus, functions (lambda
expressions) don’t have state and are only allowed to refer to arguments of
enclosing functions. This rules out the usual definition of a recursive function
wherein a function is associated with the state of a variable and this variable’s
state is used in the body of the function.

The Y combinator is itself a stateless function that, when applied to another
stateless function, returns a recursive version of the function. The Y combina-
tor is the simplest of the class of such functions, called fixed-point combina-
tors.

The task is to define the stateless Y combinator and use it to compute factorials
and Fibonacci numbers from other stateless functions or lambda expressions.

Cf

· Jim Weirich: Adventures in Functional Programming

1029

http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/lambda_calculus
http://mvanier.livejournal.com/2897.html
http://en.wikipedia.org/wiki/Fixed-point_combinator
http://en.wikipedia.org/wiki/Fixed-point_combinator
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Fibonacci_number
http://vimeo.com/45140590

1030 27 Rosetta Code Tasks starting with Y

(de Y (F)
(let X (curry (F) (Y) (F (curry (Y) @ (pass (Y Y)))))

(X X)))

Factorial
(de fact (F)

(curry (F) (N)
(if (=0 N)

1
(* N (F (dec N))))))

: ((Y fact) 6)
-> 720

Fibonacci
(de fibo (F)

(curry (F) (N)
(if (> 2 N)

1
(+ (F (dec N)) (F (- N 2))))))

: ((Y fibo) 22)
-> 28657

Ackermann
(de ack (F)

(curry (F) (X Y)
(cond

((=0 X) (inc Y))
((=0 Y) (F (dec X) 1))
(T (F (dec X) (F X (dec Y)))))))

: ((Y ack) 3 4)
-> 125

27 Rosetta Code Tasks starting with Y 1031

Yahoo! Search

Create a class for searching Yahoo! results. It must implement a Next Page
method, and read URL, Title and Content from results.

(load "@lib/http.l")

(de yahoo (Query Page)
(default Page 1)
(client "search.yahoo.com" 80

(pack
"search?p=" (ht:Fmt Query)
"\&b=" (inc (* 10 (dec Page))))

(make
(while (from "<a class=\"yschttl spt\" href=\"")

(link
(make

(link (till "\"" T)) # Url
(from "")
(link (till "<" T)) # Title
(from "class=\"abstr\"")
(from ">")
(link # Content

(pack
(make

(loop
(link (till "<" T))
(T (eof))
(T (= "</div" (till ">" T)))
(char)))))))))))

Output:

: (more (yahoo "test"))
("http://www.test.com/" "Test" "Offers practice online tests for many ...
("http://www.test.com/aboutus.htm" "Test" "Test.com has a successful ...
("http://en.wikipedia.org/wiki/Test" "Test" "YUI Test is a testing ...
("http://en.wikipedia.org/wiki/F-test" "test " "test n. A procedure for ...
...

1032 27 Rosetta Code Tasks starting with Y

Yin and yang

Create a function that given a variable representing size, generates a Yin and
yang also known as a Taijitu symbol scaled to that size.

Generate and display the symbol generated for two different (small) sizes.

(de circle (X Y C R)
(>=

(* R R)
(+

(* (setq X (/ X 2)) X)
(* (dec ’Y C) Y))))

(de yinYang (R)
(for Y (range (- R) R)

(for X (range (- 0 R R) (+ R R))
(prin

(cond
((circle X Y (- (/ R 2)) (/ R 6))

"#")
((circle X Y (/ R 2) (/ R 6))

".")
((circle X Y (- (/ R 2)) (/ R 2))

".")
((circle X Y (/ R 2) (/ R 2))

"#")
((circle X Y 0 R)

(if (lt0 X) "." "#"))
(T " "))))

(prinl)))

http://en.wikipedia.org/wiki/File:Yin_and_Yang.svg
http://en.wikipedia.org/wiki/File:Yin_and_Yang.svg
http://en.wikipedia.org/wiki/Taijitu

27 Rosetta Code Tasks starting with Y 1033

Test:

: (yinYang 18)
...

.....................##
.............................######

.................................######
.......................................########

...########
..........................###................##########

........................###########............############

........................###########............############
........................###############............############

............................###########............################

............................###########............################

................................###................################
...##################
...####################
...######################
...########################
...##########################

......................................###################################
..........................###
........................###
......................###
....................###
..................###

................################...################################

................############...........############################

................############...........############################
............############...............########################

............############...........########################

............############...........########################
..........################...##########################

........###
........#######################################

......#################################
......#############################

..#####################
###

Chapter 28

Rosetta Code Tasks starting with Z

Zebra puzzle

The Zebra puzzle, a.k.a. Einstein’s Riddle, is a logic puzzle which is to be
solved programmatically. It has several variants, one of them this:

1. There are five houses.

2. The English man lives in the red house.

3. The Swede has a dog.

4. The Dane drinks tea.

5. The green house is immediately to the left of the white house.

6. They drink coffee in the green house.

7. The man who smokes Pall Mall has birds.

8. In the yellow house they smoke Dunhill.

9. In the middle house they drink milk.

10. The Norwegian lives in the first house.

11. The man who smokes Blend lives in the house next to the house with cats.

12. In a house next to the house where they have a horse, they smoke Dunhill.

13. The man who smokes Blue Master drinks beer.

14. The German smokes Prince.

15. The Norwegian lives next to the blue house.

16. They drink water in a house next to the house where they smoke Blend.

1035

http://en.wikipedia.org/wiki/Zebra_puzzle

1036 28 Rosetta Code Tasks starting with Z

The question is, who owns the zebra?

Additionally, list the solution for all the houses. Optionally, show the solution
is unique.

cf. Dinesman’s multiple-dwelling problem

(be match (@House @Person @Drink @Pet @Cigarettes)
(permute (red blue green yellow white) @House)
(left-of @House white @House green)

(permute (Norwegian English Swede German Dane) @Person)
(has @Person English @House red)
(equal @Person (Norwegian . @))
(next-to @Person Norwegian @House blue)

(permute (tea coffee milk beer water) @Drink)
(has @Drink tea @Person Dane)
(has @Drink coffee @House green)
(equal @Drink (@ @ milk . @))

(permute (dog birds cats horse zebra) @Pet)
(has @Pet dog @Person Swede)

(permute (Pall-Mall Dunhill Blend Blue-Master Prince) @Cigarettes)
(has @Cigarettes Pall-Mall @Pet birds)
(has @Cigarettes Dunhill @House yellow)
(next-to @Cigarettes Blend @Pet cats)
(next-to @Cigarettes Dunhill @Pet horse)
(has @Cigarettes Blue-Master @Drink beer)
(has @Cigarettes Prince @Person German)

(next-to @Drink water @Cigarettes Blend))

28 Rosetta Code Tasks starting with Z 1037

(be has ((@A . @X) @A (@B . @Y) @B))
(be has ((@ . @X) @A (@ . @Y) @B)

(has @X @A @Y @B))

(be right-of ((@A . @X) @A (@ @B . @Y) @B))
(be right-of ((@ . @X) @A (@ . @Y) @B)

(right-of @X @A @Y @B))

(be left-of ((@ @A . @X) @A (@B . @Y) @B))
(be left-of ((@ . @X) @A (@ . @Y) @B)

(left-of @X @A @Y @B))

(be next-to (@X @A @Y @B) (right-of @X @A @Y @B))
(be next-to (@X @A @Y @B) (left-of @X @A @Y @B))

Test:

(pilog ’((match @House @Person @Drink @Pet @Cigarettes))
(let Fmt (-8 -11 -8 -7 -11)

(tab Fmt "HOUSE" "PERSON" "DRINKS" "HAS" "SMOKES")
(mapc ’(@ (pass tab Fmt))

@House @Person @Drink @Pet @Cigarettes)))

Output:

HOUSE PERSON DRINKS HAS SMOKES
yellow Norwegian water cats Dunhill
blue Dane tea horse Blend
red English milk birds Pall-Mall
green German coffee zebra Prince
white Swede beer dog Blue-Master

1038 28 Rosetta Code Tasks starting with Z

Zig-zag matrix

Produce a zig-zag array. A zig-zag array is a square arrangement of the first
N2 integers, where the numbers increase sequentially as you zig-zag along
the anti-diagonals of the array. For a graphical representation, see JPG zigzag
(JPG uses such arrays to encode images).

For example, given 5, produce this array:

0 1 5 6 14
2 4 7 13 15
3 8 12 16 21
9 11 17 20 22

10 18 19 23 24

http://en.wikipedia.org/wiki/Image:JPEG_ZigZag.svg

28 Rosetta Code Tasks starting with Z 1039

This example uses ’grid’ from "lib/simul.l", which maintains a two-dimensional
structure and is normally used for simulations and board games.

(load "@lib/simul.l")

(de zigzag (N)
(prog1 (grid N N)

(let (D ’(north west south east .) E ’(north east .) This ’a1)
(for Val (* N N)

(=: val Val)
(setq This

(or
((cadr D) ((car D) This))
(prog

(setq D (cddr D))
((pop ’E) This))

((pop ’E) This)))))))

(mapc
’((L)

(for This L (prin (align 3 (: val))))
(prinl))

(zigzag 5))

Output:

1 2 6 7 15
3 5 8 14 16
4 9 13 17 22
10 12 18 21 23
11 19 20 24 25

Part III

Function Reference

1042

Complete reference for all build-in PicoLisp functions with links to related
functions and examples of use.

Chapter 29

Symbols starting with A

*Adr

A global variable holding the IP address of last recently accepted client. See
also listen and accept.

: *Adr
-> "127.0.0.1"

(adr ’var) -> num

(adr ’num) -> var

Converts, in the first form, a variable var (a symbol or a cell) into num (ac-
tually an encoded pointer). A symbol will result in a negative number, and a
cell in a positive number. The second form converts a pointer back into the
original var.

: (setq X (box 7))
-> $53063416137450
: (adr X)
-> -2961853431592
: (adr @)
-> $53063416137450
: (val @)
-> 7

1043

1044 29 Symbols starting with A

*Allow

A global variable holding allowed access patterns. If its value is non-NIL, it
should contain a list where the CAR is an idx tree of allowed items, and the
CDR a list of prefix strings. See also allow, allowed and pre?.

: (allowed ("app/") # Initialize
"!start" "!stop" "lib.css" "!psh")

-> NIL
: (allow "!myFoo") # additional item
-> "!myFoo"
: (allow "myDir/" T) # additional prefix
-> "myDir/"

: *Allow
-> (("!start" ("!psh" ("!myFoo")) "!stop" NIL "lib.css") "app/" "myDir/")

: (idx *Allow) # items
-> ("!myFoo" "!psh" "!start" "!stop" "lib.css")
: (cdr *Allow) # prefixes
-> ("app/" "myDir/")

+Alt

Prefix class specifying an alternative class for a +relation. This allows
indexes or other side effects to be maintained in a class different from the
current one. See also Database.

(class +EuOrd +Ord) # EU-specific order subclass
(rel nr (+Alt +Key +Number) +XyOrd) # Maintain the key in the +XyOrd index

+Any

Class for unspecified relations, a subclass of +relation. Objects of that
class accept and maintain any type of Lisp data. Used often when there is no
other suitable relation class available. See also Database.

29 Symbols starting with A 1045

In the following example +Any is used simply for the reason that there is no
direct way to specify dotted pairs:

(rel loc (+Any)) # Locale, e.g. ("DE" . "de")

+Aux

Prefix class maintaining auxiliary keys for +relations, in addition to +Ref
or +Idx indexes. Expects a list of auxiliary attributes of the same object, and
combines all keys in that order into a single index key. See also +UB, aux and
Database.

(rel nr (+Ref +Number)) # Normal, non-unique index
(rel nm (+Aux +Ref +String) (nr txt)) # Combined name/number/text index
(rel txt (+Aux +Sn +Idx +String) (nr)) # Text/number plus tolerant text index

(abort ’cnt . prg) -> any

Aborts the execution of prg if it takes longer than cnt seconds, and returns
NIL. Otherwise, the result of prg is returned. alarm is used internally, so
care must be taken not to interfer with other calls to alarm.

: (abort 20 (in Sock (rd))) # Wait maximally 20 seconds for socket data

(abs ’num) -> num

Returns the absolute value of the num argument.

: (abs -7)
-> 7
: (abs 7)
-> 7

1046 29 Symbols starting with A

(accept ’cnt) -> cnt | NIL

Accepts a connection on descriptor cnt (as received by port), and returns
the new socket descriptor cnt. The global variable *Adr is set to the IP
address of the client. See also listen, connect and *Adr.

: (setq *Socket
(accept (port 6789))) # Accept connection at port 6789

-> 4

(accu ’var ’any ’num)

Accumulates num into a sum, using the key any in an association list stored
in var. See also assoc.

: (off Sum)
-> NIL
: (accu ’Sum ’a 1)
-> (a . 1)
: (accu ’Sum ’a 5)
-> 6
: (accu ’Sum 22 100)
-> (22 . 100)
: Sum
-> ((22 . 100) (a . 6))

(acquire ’sym) -> flg

Tries to acquire the mutex represented by the file sym, by obtaining an exclu-
sive lock on that file with ctl, and then trying to write the PID of the current
process into that file. It fails if the file already holds the PID of some other
existing process. See also release, *Pid and rc.

: (acquire "sema1")
-> 28255

29 Symbols starting with A 1047

(alarm ’cnt . prg) -> cnt

Sets an alarm timer scheduling prg to be executed after cnt seconds, and
returns the number of seconds remaining until any previously scheduled alarm
was due to be delivered. Calling (alarm 0) will cancel an alarm. See also
abort, sigio, *Hup and *Sig[12].

: (prinl (tim$ (time) T)) (alarm 10 (prinl (tim$ (time) T)))
16:36:14
-> 0
: 16:36:24

: (alarm 10 (bye 0))
-> 0
$

(align ’cnt ’any) -> sym

(align ’lst ’any ..) -> sym

Returns a transient symbol with all any arguments packed in an aligned for-
mat. In the first form, any will be left-aligned if cnt ist negative, otherwise
right-aligned. In the second form, all any arguments are packed according to
the numbers in lst. See also tab, center and wrap.

: (align 4 "a")
-> " a"
: (align -4 12)
-> "12 "
: (align (4 4 4) "a" 12 "b")
-> " a 12 b"

(all [’T | ’0]) -> lst

Returns a new list of all internal symbols in the system (if called without ar-
guments, or with NIL). Otherwise (if the argument is T), all current transient
symbols are returned. Else all current external symbols are returned.

1048 29 Symbols starting with A

: (all) # All internal symbols
-> (inc> leaf nil inc! accept ...

Find all symbols starting with an underscore character
: (filter ’((X) (= "_" (car (chop X)))) (all))
-> (_put _nacs _oct _lintq _lst _map _iter _dbg2 _getLine _led ...

(allow ’sym [’flg]) -> sym

Maintains an index structure of allowed access patterns in the global variable
*Allow. If the value of *Allow is non-NIL, sym is added to the idx tree
in the CAR of *Allow (if flg is NIL), or to the list of prefix strings (if flg
is non-NIL). See also allowed.

: *Allow
-> (("!start" ("!psh") "!stop" NIL "lib.css") "app/")
: (allow "!myFoo") # additionally allowed item
-> "!myFoo"
: (allow "myDir/" T) # additionally allowed prefix
-> "myDir/"

(allowed lst [sym ..])

Creates an index structure of allowed access patterns in the global variable
*Allow. lst should consist of prefix strings (to be checked at runtime with
pre?), and the sym arguments should specify the initially allowed items. See
also allow.

: (allowed ("app/") # allowed prefixes
"!start" "!stop" "lib.css" "!psh") # allowed items

-> NIL

29 Symbols starting with A 1049

(and ’any ..) -> any

Logical AND. The expressions any are evaluated from left to right. If NIL is
encountered, NIL is returned immediately. Else the result of the last expres-
sion is returned.

: (and (= 3 3) (read))
abc # User input
-> abc
: (and (= 3 4) (read))
-> NIL

(any ’sym) -> any

Parses any from the name of sym. This is the reverse operation of sym. See
also str.

: (any "(a b # CommentˆJc d)")
-> (a b c d)
: (any "\"A String\"")
-> "A String"

(append ’lst ..) -> lst

Appends all argument lists. See also conc, insert, delete and remove.

: (append ’(a b c) (1 2 3))
-> (a b c 1 2 3)
: (append (1) (2) (3) 4)
-> (1 2 3 . 4)

append/3

Pilog predicate that succeeds if appending the first two list arguments is equal
to the third argument. See also append and member/2.

1050 29 Symbols starting with A

: (? (append @X @Y (a b c)))
@X=NIL @Y=(a b c)
@X=(a) @Y=(b c)
@X=(a b) @Y=(c)
@X=(a b c) @Y=NIL
-> NIL

(apply ’fun ’lst [’any ..]) -> any

Applies fun to lst. If additional any arguments are given, they are ap-
plied as leading elements of lst. (apply ’fun ’lst ’any1 ’any2)
is equivalent to (apply ’fun (cons ’any1 ’any2 ’lst)).

: (apply + (1 2 3))
-> 6
: (apply * (5 6) 3 4)
-> 360
: (apply ’((X Y Z) (* X (+ Y Z))) (3 4 5))
-> 27
: (apply println (3 4) 1 2)
1 2 3 4
-> 4

(arg [’cnt]) -> any

Can only be used inside functions with a variable number of arguments (with
@). If cnt is not given, the value that was returned from the last call to next)
is returned. Otherwise, the cnt’th remaining argument is returned. See also
args, next, rest and pass.

29 Symbols starting with A 1051

: (de foo @ (println (next) (arg))) # Print argument twice
-> foo
: (foo 123)
123 123
-> 123
: (de foo @

(println (arg 1) (arg 2))
(println (next))
(println (arg 1) (arg 2)))

-> foo
: (foo ’a ’b ’c)
a b
a
b c
-> c

(args) -> flg

Can only be used inside functions with a variable number of arguments (with
@). Returns T when there are more arguments to be fetched from the internal
list. See also next, arg, rest and pass.

: (de foo @ (println (args))) # Test for arguments
-> foo
: (foo) # No arguments
NIL
-> NIL
: (foo NIL) # One argument
T
-> T
: (foo 123) # One argument
T
-> T

(argv [var ..] [. sym]) -> lst|sym

If called without arguments, argv returns a list of strings containing all re-
maining command line arguments. Otherwise, the var/sym arguments are
subsequently bound to the command line arguments. A hyphen “-” can be

1052 29 Symbols starting with A

used to inhibit the automatic loading further arguments. See also cmd, Invo-
cation and opt.

$ pil -"println ’OK" - abc 123 +
OK
: (argv)
-> ("abc" "123")
: (argv A B)
-> "123"
: A
-> "abc"
: B
-> "123"
: (argv . Lst)
-> ("abc" "123")
: Lst
-> ("abc" "123")

(as ’any1 . any2) -> any2 | NIL

Returns any2 unevaluated when any1 evaluates to non-NIL. Otherwise NIL
is returned. (as Flg A B C) is equivalent to (and Flg ’(A B C)).
See also quote.

: (as (= 3 3) A B C)
-> (A B C)

(asoq ’any ’lst) -> lst

Searches an association list. Returns the first element from lst with any as
its CAR, or NIL if no match is found. == is used for comparison (pointer
equality). See also assoc, delq, memq, mmeq and Comparing.

: (asoq 999 ’((999 1 2 3) (b . 7) ("ok" "Hello")))
-> NIL
: (asoq ’b ’((999 1 2 3) (b . 7) ("ok" "Hello")))
-> (b . 7)

29 Symbols starting with A 1053

(assert exe ..) -> prg | NIL

When in debug mode (*Dbg is non-NIL), assert returns a prg list which
tests all exe conditions, and issues an error via quit if one of the results
evaluates to NIL. Otherwise, NIL is returned. Used typically in combination
with the ˜ tilde read-macro to insert the test code only when in debug
mode. See also test.

Start in debug mode
$ pil +
: (de foo (N)

˜(assert (>= 90 N 10))
(bar N))

-> foo
: (pp ’foo) # Pretty-print ’foo’
(de foo (N)

(unless (>= 90 N 10) # Assertion code exists
(quit "’assert’ failed" ’(>= 90 N 10)))

(bar N))
-> foo
: (foo 7) # Try it
(>= 90 N 10) -- Assertion failed
?

Start in non-debug mode
$ pil
: (de foo (N)

˜(assert (>= 90 N 10))
(bar N))

-> foo
: (pp ’foo) # Pretty-print ’foo’
(de foo (N)

(bar N)) # Assertion code does not exist
-> foo

(asserta ’lst) -> lst

Inserts a new Pilog fact or rule before all other rules. See also be, clause,
assertz and retract.

1054 29 Symbols starting with A

: (be a (2)) # Define two facts
-> a
: (be a (3))
-> a

: (asserta ’(a (1))) # Insert new fact in front
-> (((1)) ((2)) ((3)))

: (? (a @N)) # Query
@N=1
@N=2
@N=3

-> NIL

asserta/1

Pilog predicate that inserts a new fact or rule before all other rules. See also
asserta, assertz/1 and retract/1.

: (? (asserta (a (2))))
-> T
: (? (asserta (a (1))))
-> T
: (rules ’a)
1 (be a (1))
2 (be a (2))
-> a

(assertz ’lst) -> lst

Appends a new Pilog fact or rule behind all other rules. See also be, clause,
asserta and retract.

29 Symbols starting with A 1055

: (be a (1)) # Define two facts
-> a
: (be a (2))
-> a

: (assertz ’(a (3))) # Append new fact at the end
-> (((1)) ((2)) ((3)))

: (? (a @N)) # Query
@N=1
@N=2
@N=3
-> NIL

assertz/1

Pilog predicate that appends a new fact or rule behind all other rules. See also
assertz, asserta/1 and retract/1.

: (? (assertz (a (1))))
-> T
: (? (assertz (a (2))))
-> T
: (rules ’a)
1 (be a (1))
2 (be a (2))
-> a

(assoc ’any ’lst) -> lst

Searches an association list. Returns the first element from lst with its CAR
equal to any, or NIL if no match is found. See also asoq.

: (assoc "b" ’((999 1 2 3) ("b" . 7) ("ok" "Hello")))
-> ("b" . 7)
: (assoc 999 ’((999 1 2 3) ("b" . 7) ("ok" "Hello")))
-> (999 1 2 3)
: (assoc ’u ’((999 1 2 3) ("b" . 7) ("ok" "Hello")))
-> NIL

1056 29 Symbols starting with A

(at ’(cnt1 . cnt2|NIL) . prg) -> any

Increments cnt1 (destructively), and returns NIL when it is less than cnt2.
Otherwise, cnt1 is reset to zero and prg is executed. Returns the result of
prg. If cnt2 is NIL, nothing is done, and NIL is returned immediately.

: (do 11 (prin ".") (at (0 . 3) (prin "!")))
...!...!...!..-> NIL

(atom ’any) -> flg

Returns T when the argument any is an atom (a number or a symbol). See
also pair.

: (atom 123)
-> T
: (atom ’a)
-> T
: (atom NIL)
-> T
: (atom (123))
-> NIL

(aux ’var ’cls [’hook] ’any ..) -> sym

Returns a database object of class cls, where the value for var corresponds
to any and the following arguments. var, cls and hook should specify a
tree for cls or one of its superclasses, for a relation with auxiliary keys.
For multi-key accesses, aux is simlar to - but faster than - db, because it can
use a single tree access. See also db, collect, fetch, init, step and
+Aux.

29 Symbols starting with A 1057

(class +PS +Entity)
(rel par (+Dep +Joint) (sup) ps (+Part)) # Part
(rel sup (+Aux +Ref +Link) (par) NIL (+Supp)) # Supplier
...

(aux ’sup ’+PS # Access PS object
(db ’nr ’+Supp 1234)
(db ’nr ’+Part 5678))

Chapter 30

Symbols starting with B

*Blob

A global variable holding the pathname of the database blob directory. See
also blob.

: *Blob
-> "blob/app/"

*Bye

A global variable holding a (possibly empty) prg body, to be executed just
before the termination of the PicoLisp interpreter. See also bye and tmp.

: (push1 ’*Bye ’(call ’rm "myfile.tmp")) # Remove a temporary file
-> (call ’rm "myfile.tmp")

+Bag

Class for a list of arbitrary relations, a subclass of +relation. Objects of
that class maintain a list of heterogeneous relations. Typically used in combi-
nation with the +List prefix class, to maintain small two-dimensional tables
within oubjects. See also Database.

1059

1060 30 Symbols starting with B

(rel pos (+List +Bag) # Positions
((+Ref +Link) NIL (+Item)) # Item
((+Number) 2) # Price
((+Number)) # Quantity
((+String)) # Memo text
((+Number) 2)) # Total amount

+Blob

Class for blob relations, a subclass of +relation. Objects of that class
maintain blobs, as stubs in database objects pointing to actual files for arbi-
trary (often binary) data. The files themselves reside below the path specified
by the *Blob variable. See also Database.

(rel jpg (+Blob)) # Picture

+Bool

Class for boolean relations, a subclass of +relation. Objects of that class
expect either T or NIL as value (though, as always, only non-NIL will be
physically stored in objects). See also Database.

(rel ok (+Ref +Bool)) # Indexed flag

(balance ’var ’lst [’flg])

Builds a balanced binary idx tree in var, from the sorted list in lst. Nor-
mally (if random or, in the worst case, ordered data) are inserted with idx,
the tree will not be balanced. But if lst is properly sorted, its contents will be
inserted in an optimally balanced way. If flg is non-NIL, the index tree will
be augmented instead of being overwritten. See also Comparing and sort.

30 Symbols starting with B 1061

Normal idx insert
: (off I)
-> NIL
: (for X (1 4 2 5 3 6 7 9 8) (idx ’I X T))
-> NIL
: (depth I)
-> 7

Balanced insert
: (balance ’I (sort (1 4 2 5 3 6 7 9 8)))
-> NIL
: (depth I)
-> 4

Augment
: (balance ’I (sort (10 40 20 50 30 60 70 90 80)) T)
-> NIL
: (idx ’I)
-> (1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90)

(basename ’any) -> sym

Returns the filename part of a path name any. See also dirname and path.

: (basename "a/b/c/d")
-> "d"

(be sym . any) -> sym

Declares a Pilog fact or rule for the sym argument, by concatenating the any
argument to the T property of sym. See also clause, asserta, assertz,
retract, goal and prove.

1062 30 Symbols starting with B

: (be likes (John Mary))
-> likes
: (be likes (John @X) (likes @X wine) (likes @X food))
-> likes
: (get ’likes T)
-> (((John Mary)) ((John @X) (likes @X wine) (likes @X food)))
: (? (likes John @X))
@X=Mary

-> NIL

(beep) -> any

Send the bell character to the console. See also prin and char.

: (beep)
-> "ˆG"

(bench . prg) -> any

Benchmarks prg, by printing the time it took to execute, and returns the re-
sult. See also usec.

: (bench (wait 2000))
1.996 sec
-> NIL

(bin ’num [’num]) -> sym

(bin ’sym) -> num

Converts a number num to a binary string, or a binary string sym to a number.
In the first case, if the second argument is given, the result is separated by
spaces into groups of such many digits. See also oct, hex, fmt64, hax and
format.

30 Symbols starting with B 1063

: (bin 73)
-> "1001001"
: (bin "1001001")
-> 73
: (bin 1234567 4)
-> "100 1011 0101 1010 0001 11"

(bind ’sym|lst . prg) -> any

Binds value(s) to symbol(s). The first argument must evaluate to a symbol, or
a list of symbols or symbol-value pairs. The values of these symbols are saved
(and the symbols bound to the values in the case of pairs), prg is executed,
then the symbols are restored to their original values. During execution of
prg, the values of the symbols can be temporarily modified. The return value
is the result of prg. See also let, job and use.

: (setq X 123) # X is 123
-> 123
: (bind ’X (setq X "Hello") (println X)) # Set X to "Hello", print it
"Hello"
-> "Hello"
: (bind ’((X . 3) (Y . 4)) (println X Y) (* X Y))
3 4
-> 12
: X
-> 123 # X is restored to 123

(bit? ’num ..) -> num | NIL

Returns the first num argument when all bits which are 1 in the first argument
are also 1 in all following arguments, otherwise NIL. When one of those
arguments evaluates to NIL, it is returned immediately. See also &, | and
x|.

1064 30 Symbols starting with B

: (bit? 7 15 255)
-> 7
: (bit? 1 3)
-> 1
: (bit? 1 2)
-> NIL

(blob ’obj ’sym) -> sym

Returns the blob file name for var in obj. See also *Blob, blob! and
pack.

: (show (db ’nr ’+Item 1))
{3-1} (+Item)

jpg
pr 29900
inv 100
sup {2-1}
nm "Main Part"
nr 1

-> {3-1}
: (blob ’{3-1} ’jpg)
-> "blob/app/3/-/1.jpg"

(blob! ’obj ’sym ’file)

Stores the contents of file in a blob. See also put!>.

(blob! *ID ’jpg "picture.jpg")

(bool ’any) -> flg

Returns T when the argument any is non-NIL. This function is only needed
when T is strictly required for a “true” condition (Usually, any non-NIL value
is considered to be “true”). See also flg?.

30 Symbols starting with B 1065

: (and 3 4)
-> 4
: (bool (and 3 4))
-> T

bool/3

Pilog predicate that succeeds if the first argument has the same truth value as
the result of applying the get algorithm to the following arguments. Typi-
cally used as filter predicate in select/3 database queries. See also bool,
isa/2, same/3, range/3, head/3, fold/3, part/3 and tolr/3.

: (? @OK NIL # Find orders where the ’ok’ flag is not set
(db nr +Ord @Ord)
(bool @OK @Ord ok))

@OK=NIL @Ord={3-7}
-> NIL

(box ’any) -> sym

Creates and returns a new anonymous symbol. The initial value is set to the
any argument. See also new and box?.

: (show (box ’(A B C)))
$134425627 (A B C)
-> $134425627

(box? ’any) -> sym | NIL

Returns the argument any when it is an anonymous symbol, otherwise NIL.
See also box, str? and ext?.

1066 30 Symbols starting with B

: (box? (new))
-> $134563468
: (box? 123)
-> NIL
: (box? ’a)
-> NIL
: (box? NIL)
-> NIL

(by ’fun1 ’fun2 ’lst ..) -> lst

Applies fun1 to each element of lst. When additional lst arguments
are given, their elements are also passed to fun1. Each result of fun1 is
CONSed with its corresponding argument form the original lst, and col-
lected into a list which is passed to fun2. For the list returned from fun2,
the CAR elements returned by fun1 are (destructively) removed from each
element.

: (let (A 1 B 2 C 3) (by val sort ’(C A B)))
-> (A B C)
: (by ’((N) (bit? 1 N)) group (3 11 6 2 9 5 4 10 12 7 8 1))
-> ((3 11 9 5 7 1) (6 2 4 10 12 8))

(bye ’cnt—NIL)

Executes all pending finally expressions, closes all open files, executes the
VAL of the global variable *Bye (should be a prg), flushes standard output,
and then exits the PicoLisp interpreter. The process return value is cnt, or 0
if the argument is missing or NIL.

: (setq *Bye ’((println ’OK) (println ’bye)))
-> ((println ’OK) (println ’bye))
: (bye)
OK
bye
$

Chapter 31

Symbols starting with C

*Class

A global variable holding the current class. See also OO Concepts, class,
extend, dm and var and rel.

: (class +Test)
-> +Test
: *Class
-> +Test

(cache ’var ’sym . prg) -> any

Speeds up some calculations, by holding previously calculated results in an
idx tree structure. Such an optimization is sometimes called “memoization”.
sym must be a transient symbol representing a unique key for the argument(s)
to the calculation. See also hash.

1067

1068 31 Symbols starting with C

: (de fibonacci (N)
(cache ’(NIL) (pack (char (hash N)) N)

(if (> 2 N)
1
(+

(fibonacci (dec N))
(fibonacci (- N 2))))))

-> fibonacci
: (fibonacci 22)
-> 28657
: (fibonacci 10000)
-> 5443837311356528133873426099375038013538 ... # (2090 digits)

(call ’any ..) -> flg

Calls an external system command. The any arguments specify the command
and its arguments. Returns T if the command was executed successfully.

: (when (call ’test "-r" "file.l") # Test if file exists and is readable
(load "file.l") # Load it
(call ’rm "file.l")) # Remove it

call/1

Pilog predicate that succeeds if the argument term can be proven.

31 Symbols starting with C 1069

: (be mapcar (@ NIL NIL))
-> mapcar
: (be mapcar (@P (@X . @L) (@Y . @M))

(call @P @X @Y) # Call the given predicate
(mapcar @P @L @M))

-> mapcar
: (? (mapcar change (you are a computer) @Z))
-> NIL
: (? (mapcar change (you are a computer) @Z) T)
-> NIL
: (? (mapcar permute ((a b c) (d e f)) @X))
@X=((a b c) (d e f))
@X=((a b c) (d f e))
@X=((a b c) (e d f))
...
@X=((a c b) (d e f))
@X=((a c b) (d f e))
@X=((a c b) (e d f))
...

(can ’msg) -> lst

Returns a list of all classes that accept the message msg. See also OO
Concepts, class, dep, what and who.

: (can ’zap>)
-> ((zap> . +relation) (zap> . +Blob) (zap> . +Entity))
: (more @ pp)
(dm (zap> . +relation) (Obj Val))

(dm (zap> . +Blob) (Obj Val)
(and

Val
(call ’rm "-f" (blob Obj (: var)))))

(dm (zap> . +Entity) NIL
(for X (getl This)

(let V (or (atom X) (pop ’X))
(and (meta This X) (zap> @ This V)))))

-> NIL

1070 31 Symbols starting with C

(car ’var) -> any

List access: Returns the value of var if it is a symbol, or the first element if
it is a list. See also cdr and c..r.

: (car (1 2 3 4 5 6))
-> 1

(c[ad]*ar ’var) -> any

(c[ad]*dr ’lst) -> any

List access shortcuts. Combinations of the car and cdr functions, with up
to four letters ‘a’ and ‘d’.

: (cdar ’((1 . 2) . 3))
-> 2

(case ’any (any1 . prg1) (any2 . prg2)
..) -> any

Multi-way branch: any is evaluated and compared to the CAR elements
anyN of each clause. If one of them is a list, any is in turn compared to
all elements of that list. T is a catch-all for any value. If a comparison suc-
ceeds, prgN is executed, and the result returned. Otherwise NIL is returned.
See also state.

: (case (char 66) ("A" (+ 1 2 3)) (("B" "C") "Bambi") ("D" (* 1 2 3)))
-> "Bambi"

(catch ’any . prg) -> any

Sets up the environment for a non-local jump which may be caused by throw
or by a runtime error. If any is an atom, it is used by throw as a jump
label (with T being a catch-all for any label), and a throw called during the

31 Symbols starting with C 1071

execution of prg will immediately return the thrown value. Otherwise, any
should be a list of strings, to catch any error whose message contains one of
these strings, and this will immediately return the matching string. If neither
throw nor an error occurs, the result of prg is returned. See also finally,
quit and Error Handling.

: (catch ’OK (println 1) (throw ’OK 999) (println 2))
1
-> 999
: (catch ’("No such file") (in "doesntExist" (foo)))
-> "No such file"

(cd ’any) -> sym

Changes the current directory to any. The old directory is returned on suc-
cess, otherwise NIL. See also dir and pwd.

: (when (cd "lib")
(println (sum lines (dir)))
(cd @))

10955

(cdr ’lst) -> any

List access: Returns all but the first element of lst. See also car and c..r.

: (cdr (1 2 3 4 5 6))
-> (2 3 4 5 6)

(center ’cnt|lst ’any ..) -> sym

Returns a transient symbol with all any arguments packed in a centered
format. Trailing blanks are omitted. See also align, tab
and wrap.

1072 31 Symbols starting with C

: (center 4 12)
-> " 12"
: (center 4 "a")
-> " a"
: (center 7 "a")
-> " a"
: (center (3 3 3) "a" "b" "c")
-> " a b c"

(chain ’lst ..) -> lst

Concatenates (destructively) one or several new list elements lst to the end
of the list in the current make environment. This operation is efficient also for
long lists, because a pointer to the last element of the result list is maintained.
chain returns the last linked argument. See also link, yoke and made.

: (make (chain (list 1 2 3) NIL (cons 4)) (chain (list 5 6)))
-> (1 2 3 4 5 6)

(char) -> sym

(char ’cnt) -> sym

(char T) -> sym

(char ’sym) -> cnt

When called without arguments, the next character from the current input
stream is returned as a single-character transient symbol, or NIL upon end
of file. When called with a number cnt, a character with the corresponding
unicode value is returned. As a special case, T is accepted to produce a byte
value greater than any first byte in a UTF–8 character (used as a top value in
comparisons). Otherwise, when called with a symbol sym, the numeric uni-
code value of the first character of the name of that symbol is returned. See
also peek, skip, key, line, till and eof.

31 Symbols starting with C 1073

: (char) # Read character from console
A # (typed ’A’ and a space/return)
-> "A"
: (char 100) # Convert unicode to symbol
-> "d"
: (char "d") # Convert symbol to unicode
-> 100

: (char T) # Special case
-> # (not printable)

: (char 0)
-> NIL
: (char NIL)
-> 0

(chdir ’any . prg) -> any

Changes the current directory to any with cd during the execution of prg.
Then the previous directory will be restored and the result of prg returned.
See also dir and pwd.

: (pwd)
-> "/usr/abu/pico"
: (chdir "src" (pwd))
-> "/usr/abu/pico/src"
: (pwd)
-> "/usr/abu/pico"

(chkTree ’sym [’fun]) -> num

Checks a database tree node (and recursively all sub-nodes) for consistency.
Returns the total number of nodes checked. Optionally, fun is called with the
key and value of each node, and should return NIL for failure. See also tree
and root.

1074 31 Symbols starting with C

: (show *DB ’+Item)
{C} NIL

sup (7 . {7-3})
nr (7 . {7-1}) # 7 nodes in the ’nr’ tree, base node is {7-1}
pr (7 . {7-4})
nm (77 . {7-6})

-> {C}
: (chkTree ’{7-1}) # Check that node
-> 7

(chop ’any) -> lst

Returns any as a list of single-character strings. If any is NIL or a symbol
with no name, NIL is returned. A list argument is returned unchanged.

: (chop ’car)
-> ("c" "a" "r")
: (chop "Hello")
-> ("H" "e" "l" "l" "o")

(circ ’any ..) -> lst

Produces a circular list of all any arguments by consing them to a list and
then connecting the CDR of the last cell to the first cell. See also circ? and
list.

: (circ ’a ’b ’c)
-> (a b c .)

(circ? ’any) -> any

Returs the circular (sub)list if any is a circular list, else NIL. See also circ.

31 Symbols starting with C 1075

: (circ? ’a)
-> NIL
: (circ? (1 2 3))
-> NIL
: (circ? (1 . (2 3 .)))
-> (2 3 .)

(class sym . typ) -> obj

Defines sym as a class with the superclass(es) typ. As a side effect, the global
variable *Class is set to obj. See also extend, dm, var, rel, type, isa
and object.

: (class +A +B +C +D)
-> +A
: +A
-> (+B +C +D)
: (dm foo> (X) (bar X))
-> foo>
: +A
-> ((foo> (X) (bar X)) +B +C +D)

(clause ’(sym . any)) -> sym

Declares a Pilog fact or rule for the sym argument, by concatenating the any
argument to the T property of sym. See also be.

: (clause ’(likes (John Mary)))
-> likes
: (clause ’(likes (John @X) (likes @X wine) (likes @X food)))
-> likes
: (? (likes @X @Y))
@X=John @Y=Mary
-> NIL

1076 31 Symbols starting with C

clause/2

Pilog predicate that succeeds if the first argument is a predicate which has the
second argument defined as a clause.

: (? (clause append ((NIL @X @X))))
-> T

: (? (clause append @C))
@C=((NIL @X @X))
@C=(((@A . @X) @Y (@A . @Z)) (append @X @Y @Z))

-> NIL

(clip ’lst) -> lst

Returns a copy of lst with all whitespace characters or NIL elements re-
moved from both sides. See also trim.

: (clip ’(NIL 1 NIL 2 NIL))
-> (1 NIL 2)
: (clip ’(" " a " " b " "))
-> (a " " b)

(close ’cnt) -> cnt | NIL

Closes a file descriptor cnt, and returns it when successful. Should not be
called inside an out body for that descriptor. See also open, poll, listen
and connect.

: (close 2) # Close standard error
-> 2

31 Symbols starting with C 1077

(cmd [’any]) -> sym

When called without an argument, the name of the command that invoked the
picolisp interpreter is returned. Otherwise, the command name is set to any.
Setting the name may not work on some operating systems. Note that the new
name must not be longer than the original one. See also argv, file and
Invocation.

$ pil +
: (cmd)
-> "/usr/bin/picolisp"
: (cmd "!/bin/picolust")
-> "!/bin/picolust"
: (cmd)
-> "!/bin/picolust"

(cnt ’fun ’lst ..) -> cnt

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns the count of non-NIL
values returned from fun.

: (cnt cdr ’((1 . T) (2) (3 4) (5)))
-> 2

(collect ’var ’cls [’hook] [’any|beg [’end
[var ..]]])

Returns a list of all database objects of class cls, where the values for the
var arguments correspond to the any arguments, or where the values for the
var arguments are in the range beg .. end. var, cls and hook should
specify a tree for cls or one of its superclasses. If additional var argu-
ments are given, the final values for the result list are obtained by applying the
get algorithm. See also db, aux, fetch, init and step.

1078 31 Symbols starting with C

: (collect ’nr ’+Item)
-> ({3-1} {3-2} {3-3} {3-4} {3-5} {3-6} {3-8})
: (collect ’nr ’+Item 3 6 ’nr)
-> (3 4 5 6)
: (collect ’nr ’+Item 3 6 ’nm)
-> ("Auxiliary Construction" "Enhancement Additive"

"Metal Fittings" "Gadget Appliance")
: (collect ’nm ’+Item "Main Part")
-> ({3-1})

(commit [’any] [exe1] [exe2]) -> T

Closes a transaction, by writing all new or modified external symbols to, and
removing all deleted external symbols from the database. When any is given,
it is implicitly sent (with all modified objects) via the tell mechanism to
all family members. If exe1 or exe2 are given, they are executed as pre-
or post-expressions while the database is locked and protected. See also
rollback.

: (pool "db")
-> T
: (put ’{1} ’str "Hello")
-> "Hello"
: (commit)
-> T

(con ’lst ’any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the
CDR of lst. See also conc.

: (setq C (1 . a))
-> (1 . a)
: (con C ’(b c d))
-> (b c d)
: C
-> (1 b c d)

31 Symbols starting with C 1079

(conc ’lst ..) -> lst

Concatenates all argument lists (destructively). See also append and con.

: (setq A (1 2 3) B ’(a b c))
-> (a b c)
: (conc A B) # Concatenate lists in ’A’ and ’B’
-> (1 2 3 a b c)
: A
-> (1 2 3 a b c) # Side effect: List in ’A’ is modified!

(cond (’any1 . prg1) (’any2 . prg2) ..)
-> any

Multi-way conditional: If any of the anyN conditions evaluates to non-NIL,
prgN is executed and the result returned. Otherwise (all conditions evaluate
to NIL), NIL is returned. See also nond, if, if2 and when.

: (cond
((= 3 4) (println 1))
((= 3 3) (println 2))
(T (println 3)))

2
-> 2

(connect ’any1 ’any2) -> cnt | NIL

Tries to establish a TCP/IP connection to a server listening at host any1,
port any2. any1 may be either a hostname or a standard internet address
in numbers-and-dots/colons notation (IPv4/IPv6). any2 may be either a port
number or a service name. Returns a socket descriptor cnt, or NIL if the
connection cannot be established. See also listen and udp.

: (connect "localhost" 4444)
-> 3
: (connect "some.host.org" "http")
-> 4

1080 31 Symbols starting with C

(cons ’any [’any ..]) -> lst

Constructs a new list cell with the first argument in the CAR and the second
argument in the CDR. If more than two arguments are given, a corresponding
chain of cells is built. (cons ’a ’b ’c ’d) is equivalent to (cons ’a
(cons ’b (cons ’c ’d))). See also list.

: (cons 1 2)
-> (1 . 2)
: (cons ’a ’(b c d))
-> (a b c d)
: (cons ’(a b) ’(c d))
-> ((a b) c d)
: (cons ’a ’b ’c ’d)
-> (a b c . d)

(copy ’any) -> any

Copies the argument any. For lists, the top level cells are copied, while atoms
are returned unchanged.

: (=T (copy T)) # Atoms are not copied
-> T
: (setq L (1 2 3))
-> (1 2 3)
: (== L L)
-> T
: (== L (copy L)) # The copy is not identical to the original
-> NIL
: (= L (copy L)) # But the copy is equal to the original
-> T

(co ’sym [. prg]) -> any

(64-bit version only) Starts, resumes or stops a coroutine with the tag given
by sym. If prg is not given, a coroutine with that tag will be stopped. Oth-
erwise, if a coroutine running with that tag is found (pointer equality is used
for comparison), its execution is resumed. Else a new coroutine with that tag

31 Symbols starting with C 1081

is initialized and started. prg will be executed until it either terminates nor-
mally, or until yield is called. In the latter case co returns, or transfers
control to some other, already running, coroutine. Trying to start more than
64 coroutines will result in a stack overflow error. Also, a coroutine cannot
resume itself directly or indirectly. See also stack, catch and throw.

: (de pythag (N) # A generator function
(if (=T N)

(co ’rt) # Stop
(co ’rt

(for X N
(for Y (range X N)

(for Z (range Y N)
(when (= (+ (* X X) (* Y Y)) (* Z Z))

(yield (list X Y Z)))))))))

: (pythag 20)
-> (3 4 5)
: (pythag 20)
-> (5 12 13)
: (pythag 20)
-> (6 8 10)

(count ’tree) -> num

Returns the number of nodes in a database tree. See also tree and root.

: (count (tree ’nr ’+Item))
-> 7

(ctl ’sym . prg) -> any

Waits until a write (exclusive) lock (or a read (shared) lock if the first character
of sym is “+”) can be set on the file sym, then executes prg and releases
the lock. If the files does not exist, it will be created. When sym is NIL, a
shared lock is tried on the current innermost I/O channel, and when it is T, an
exclusive lock is tried instead. See also in, out, err and pipe.

1082 31 Symbols starting with C

$ echo 9 >count # Write ’9’ to file "count"
$ pil +
: (ctl ".ctl" # Exclusive control, using ".ctl"

(in "count"
(let Cnt (read) # Read ’9’

(out "count"
(println (dec Cnt)))))) # Write ’8’

-> 8
:
$ cat count # Check "count"
8

(ctty ’sym|pid) -> flg

When called with a symbolic argument, ctty changes the current TTY de-
vice to sym. Otherwise, the local console is prepared for serving the PicoLisp
process with the process ID pid. See also raw.

: (ctty "/dev/tty")
-> T

(curry lst . fun) -> fun

Builds a new function from the list of symbols or symbol-value pairs lst and
the functional expression fun. Each member in lst that is a pat? symbol
is substituted inside fun by its value. All other symbols in lst are collected
into a job environment.

31 Symbols starting with C 1083

: (de multiplier (@X)
(curry (@X) (N) (* @X N)))

-> multiplier
: (multiplier 7)
-> ((N) (* 7 N))
: ((multiplier 7) 3))
-> 21

: (def ’fiboCounter
(curry ((N1 . 0) (N2 . 1)) (Cnt)

(do Cnt
(println

(prog1
(+ N1 N2)
(setq N1 N2 N2 @))))))

-> fiboCounter
: (pp ’fiboCounter)
(de fiboCounter (Cnt)

(job ’((N2 . 1) (N1 . 0))
(do Cnt

(println
(prog1 (+ N1 N2) (setq N1 N2 N2 @))))))

-> fiboCounter
: (fiboCounter 5)
1
2
3
5
8
-> 8
: (fiboCounter 5)
13
21
34
55
89
-> 89

(cut ’cnt ’var) -> lst

Pops the first cnt elements (CAR) from the stack in var. See also pop and
del.

1084 31 Symbols starting with C

: (setq S ’(1 2 3 4 5 6 7 8))
-> (1 2 3 4 5 6 7 8)
: (cut 3 ’S)
-> (1 2 3)
: S
-> (4 5 6 7 8)

Chapter 32

Symbols starting with D

*DB

A global constant holding the external symbol {1}, the database root. All
transient symbols in a database can be reached from that root. Except during
debugging, any explicit literal access to symbols in the database should be
avoided, because otherwise a memory leak might occur (The garbage collec-
tor temporarily sets *DB to NIL and restores its value after collection, thus
disposing of all external symbols not currently used in the program).

: (show *DB)
{1} NIL

+City {P}
+Person {3}

-> {1}
: (show ’{P})
{P} NIL

nm (566 . {AhDx})
-> {P}
: (show ’{3})
{3} NIL

tel (681376 . {Agyl})
nm (1461322 . {2gu7})

-> {3}

1085

1086 32 Symbols starting with D

*Dbg

A boolean variable indicating “debug mode”. It can be conveniently switched
on with a trailing + command line argument (see Invocation). When non-NIL,
the $ (tracing) and ! (breakpoint) functions are enabled, and the current line
number and file name will be stored in symbol properties by de, def and dm.
See also debug, trace and lint.

: (de foo (A B) (* A B))
-> foo
: (trace ’foo)
-> foo
: (foo 3 4)
foo : 3 4
foo = 12
-> 12
: (let *Dbg NIL (foo 3 4))
-> 12

*Dbs

A global variable holding a list of numbers (block size scale factors, as needed
by pool). It is typically set by dbs and dbs+.

: *Dbs
-> (1 2 1 0 2 3 3 3)

+Date

Class for calender dates (as calculated by date), a subclass of +Number.
See also Database.

(rel dat (+Ref +Date)) # Indexed date

32 Symbols starting with D 1087

+Dep

Prefix class for maintaining depenencies between +relations. Expects a
list of (symbolic) attributes that depend on this relation. Whenever this rela-
tions is cleared (receives a value of NIL), the dependent relations will also be
cleared, triggering all required side-effects. See also Database.

In the following example, the index entry for the item pointing to the position
(and, therefore, to the order) is cleared in case the order is deleted, or this
position is deleted from the order:

(class +Pos +Entity) # Position class
(rel ord (+Dep +Joint) # Order of that position

(itm) # ’itm’ specifies the dependency
pos (+Ord)) # Arguments to ’+Joint’

(rel itm (+Ref +Link) NIL (+Item)) # Item depends on the order

(d) -> T

Inserts ! breakpoints into all subexpressions of the current breakpoint. Typi-
cally used when single-stepping a function or method with debug. See also
u and unbug.

! (d) # Debug subexpression(s) at breakpoint
-> T

(daemon ’sym . prg) -> fun

(daemon ’(sym . cls) . prg) -> fun

(daemon ’(sym sym2 [. cls]) . prg) -> fun

Inserts prg in the beginning of the function (first form), the method body
of sym in cls (second form) or in the class obtained by geting sym2
from *Class (or cls if given) (third form). Built-in functions (C-function
pointer) are automatically converted to Lisp expressions. See also expr,
patch and redef.

1088 32 Symbols starting with D

: (de hello () (prinl "Hello world!"))
-> hello

: (daemon ’hello (prinl "# This is the hello world program"))
-> (NIL (prinl "# This is the hello world program") (prinl "Hello world!"))
: (hello)
This is the hello world program
Hello world!
-> "Hello world!"

: (daemon ’* (msg ’Multiplying))
-> (@ (msg ’Multiplying) (pass $134532148))
: *
-> (@ (msg ’Multiplying) (pass $134532148))
: (* 1 2 3)
Multiplying
-> 6

(dat$ ’dat [’sym]) -> sym

Formats a date dat in ISO format, with an optional delimiter character sym.
See also dat, tim, datStr and datSym.

: (dat$ (date))
-> "20070601"
: (dat$ (date) "-")
-> "2007-06-01"

(datStr ’dat [’flg]) -> sym

Formats a date according to the current locale. If flg is non-NIL, the
year will be formatted modulo 100. See also dat$, datSym, strDat,
expDat, expTel and day.

32 Symbols starting with D 1089

: (datStr (date))
-> "2007-06-01"
: (locale "DE" "de")
-> NIL
: (datStr (date))
-> "01.06.2007"
: (datStr (date) T)
-> "01.06.07"

(datSym ’dat) -> sym

Formats a date dat in in symbolic format (DDmmmYY). See also dat$
and datStr.

: (datSym (date))
-> "01jun07"

(date [’T]) -> dat

(date ’dat) -> (y m d)

(date ’y ’m ’d) -> dat | NIL

(date ’(y m d)) -> dat | NIL

Calculates a (gregorian) calendar date. It is represented as a day number, start-
ing first of March of the year 0 AD. When called without arguments, the cur-
rent date is returned. When called with a T argument, the current Coordinated
Universal Time (UTC) is returned. When called with a single number dat,
it is taken as a date and a list with the corresponding year, month and day is
returned. When called with three numbers (or a list of three numbers) for the
year, month and day, the corresponding date is returned (or NIL if they do
not represent a legal date). See also time, stamp, dat, dat, datSym,
datStr, strDat, expDat, day, week and ultimo.

1090 32 Symbols starting with D

: (date) # Today
-> 730589
: (date 2000 6 12) # 12-06-2000
-> 730589
: (date 2000 22 5) # Illegal date
-> NIL
: (date (date)) # Today’s year, month and day
-> (2000 6 12)
: (- (date) (date 2000 1 1)) # Number of days since first of January
-> 163

(day ’dat [’lst]) -> sym

Returns the name of the day for a given date dat, in the language of the
current locale. If lst is given, it should be a list of alternative weekday
names. See also week, datStr and strDat.

: (day (date))
-> "Friday"
: (locale "DE" "de")
-> NIL
: (day (date))
-> "Freitag"
: (day (date) ’("Mo" "Tu" "We" "Th" "Fr" "Sa" "Su"))
-> "Fr"

(db ’var ’cls [’hook] ’any [’var ’any
..]) -> sym | NIL

Returns a database object of class cls, where the values for the var argu-
ments correspond to the any arguments. If a matching object cannot be found,
NIL is returned. var, cls and hook should specify a tree for cls or one
of its superclasses. See also aux, collect, request, fetch, init and
step.

: (db ’nr ’+Item 1)
-> {3-1}
: (db ’nm ’+Item "Main Part")
-> {3-1}

32 Symbols starting with D 1091

db/3

db/4

db/5

Pilog database predicate that returns objects matching the given key/value
(and optional hook) relation. The relation should be of type +index. For the
key pattern applies:

· a symbol (string) returns all entries which start with that string

· other atoms (numbers, external symbols) match as they are

· cons pairs constitute a range, returning objects

· in increasing order if the CDR is greater than the CAR

· in decreasing order otherwise

· other lists are matched for +Aux key combinations

The optional hook can be supplied as the third argument. See also select/3
and remote/2.

: (? (db nr +Item @Item)) # No value given
@Item={3-1}
@Item={3-2}
@Item={3-3}
@Item={3-4}
@Item={3-5}
@Item={3-6}

-> NIL

: (? (db nr +Item 2 @Item)) # Get item no. 2
@Item={3-2}

-> NIL

: (? (db nm +Item Spare @Item) (show @Item)) # Search for "Spare.."
{3-2} (+Item)

pr 1250
inv 100
sup {2-2}
nm "Spare Part"
nr 2

@Item={3-2}
-> NIL

1092 32 Symbols starting with D

(db: cls ..) -> num

Returns the database file number for objects of the type given by the cls
argument(s). Needed, for example, for the creation of new objects. See also
dbs.

: (db: +Item)
-> 3

(dbSync) -> flg

Starts a database transaction, by trying to obtain a lock on the database root
object *DB, and then calling sync to synchronize with possible changes from
other processes. When all desired modifications to external symbols are done,
(commit ’upd) should be called. See also Database.

(let? Obj (rd) # Get object?
(dbSync) # Yes: Start transaction
(put> Obj ’nm (rd)) # Update
(put> Obj ’nr (rd))
(put> Obj ’val (rd))
(commit ’upd)) # Close transaction

(dbck [’cnt] ’flg) -> any

Performs a low-level integrity check of the current (or cnt’th) database file,
and returns NIL (or the number of blocks and symbols if flg is non-NIL) if
everything seems correct. Otherwise, a string indicating an error is returned.
As a side effect, possibly unused blocks (as there might be when a rollback
is done before commiting newly allocated (new) external symbols) are ap-
pended to the free list.

: (pool "db")
-> T
: (dbck)
-> NIL

32 Symbols starting with D 1093

(dbs . lst)

Initializes the global variable *Dbs. Each element in lst has a number in its
CAR (the block size scale factor of a database file, to be stored in *Dbs). The
CDR elements are either classes (so that objects of that class are later stored in
the corresponding file), or lists with a class in the CARs and a list of relations
in the CDRs (so that index trees for these relations go into that file). See also
dbs+ and pool.

(dbs
(1 +Role +User +Sal) # (1 . 128)
(2 +CuSu) # (2 . 256)
(1 +Item +Ord) # (3 . 128)
(0 +Pos) # (4 . 64)
(2 (+Role nm) (+User nm) (+Sal nm)) # (5 . 256)
(4 (+CuSu nr plz tel mob)) # (6 . 1024)
(4 (+CuSu nm)) # (7 . 1024)
(4 (+CuSu ort)) # (8 . 1024)
(4 (+Item nr sup pr)) # (9 . 1024)
(4 (+Item nm)) # (10 . 1024)
(4 (+Ord nr dat cus)) # (11 . 1024)
(4 (+Pos itm))) # (12 . 1024)

: *Dbs
-> (1 2 1 0 2 4 4 4 4 4 4 4)
: (get ’+Item ’Dbf)
-> (3 . 128)
: (get ’+Item ’nr ’dbf)
-> (9 . 1024)

(dbs+ ’num . lst)

Extends the list of database sizes stored in *Dbs. num is the initial offset into
the list. See also dbs.

(dbs+ 9
(1 +NewCls) # (9 . 128)
(3 (+NewCls nr nm))) # (10 . 512)

1094 32 Symbols starting with D

(de sym . any) -> sym

Assigns a definition to the sym argument, by setting its VAL to the any ar-
gument. If the symbol has already another value, a “redefined” message is
issued. When the value of the global variable *Dbg is non-NIL, the current
line number and file name (if any) are stored in the *Dbg property of sym.
de is the standard way to define a function. See also def, dm and undef.

: (de foo (X Y) (* X (+ X Y))) # Define a function
-> foo
: (foo 3 4)
-> 21

: (de *Var . 123) # Define a variable value
: *Var
-> 123

(debug ’sym) -> T

(debug ’sym ’cls) -> T

(debug ’(sym . cls)) -> T

Inserts a ! breakpoint function call at the beginning and all top-level expres-
sions of the function or method body of sym, to allow a stepwise execution.
Typing (d) at a breakpoint will also debug the current subexpression, and
(e) will evaluate the current subexpression. The current subexpression is
stored in the global variable ˆ. See also unbug, *Dbg, trace and lint.

32 Symbols starting with D 1095

: (de tst (N) # Define tst
(println (+ 3 N)))

-> tst
: (debug ’tst) # Set breakpoints
-> T
: (pp ’tst)
(de tst (N)

(! println (+ 3 N))) # Breakpoint ’!’
-> tst
: (tst 7) # Execute
(println (+ 3 N)) # Stopped at beginning of ’tst’
! (d) # Debug subexpression
-> T
! # Continue
(+ 3 N) # Stopped in subexpression
! N # Inspect variable ’N’
-> 7
! # Continue
10 # Output of print statement
-> 10 # Done
: (unbug ’tst)
-> T
: (pp ’tst) # Restore to original
(de tst (N)

(println (+ 3 N)))
-> tst

(dec ’num) -> num

(dec ’var [’num]) -> num

The first form returns the value of num decremented by 1. The second form
decrements the VAL of var by 1, or by num. If the first argument is NIL, it
is returned immediately. (dec ’num) is equivalent to (- ’num 1) and
(dec ’var) is equivalent to (set ’var (- var 1)). See also inc
and -.

1096 32 Symbols starting with D

: (dec -1)
-> -2
: (dec 7)
-> 6
: (setq N 7)
-> 7
: (dec ’N)
-> 6
: (dec ’N 3)
-> 3

(def ’sym ’any) -> sym

(def ’sym1 ’sym2 ’any) -> sym1

The first form assigns a definition to the first sym argument, by setting its
VAL’s to any. The second form defines a property value any for the first
argument’s sym2 key. If any of these values existed and was changed in the
process, a “redefined” message is issued. When the value of the global variable
*Dbg is non-NIL, the current line number and file name (if any) are stored in
the *Dbg property of sym. See also de and dm.

: (def ’b ’((X Y) (* X (+ X Y))))
-> b
: (def ’b 999)
b redefined
-> b

(default var ’any ..) -> any

Stores new values any in the var arguments only if their current values are
NIL. Otherwise, their values are left unchanged. In any case, the last var’s
value is returned. default is used typically in functions to initialize optional
arguments.

32 Symbols starting with D 1097

: (de foo (A B) # Function with two optional arguments
(default A 1 B 2) # The default values are 1 and 2
(list A B))

-> foo
: (foo 333 444) # Called with two arguments
-> (333 444)
: (foo 333) # Called with one arguments
-> (333 2)
: (foo) # Called without arguments
-> (1 2)

(del ’any ’var) -> lst

Deletes any from the list in the value of var, and returns the remaining
list. (del ’any ’var) is equivalent to (set ’var (delete ’any
var)). See also delete, cut and pop.

: (setq S ’((a b c) (d e f)))
-> ((a b c) (d e f))
: (del ’(d e f) ’S)
-> ((a b c))
: (del ’b S)
-> (a c)

(delete ’any ’lst) -> lst

Deletes any from lst. If any is contained more than once in lst, only the
first occurrence is deleted. See also delq, remove and insert.

: (delete 2 (1 2 3))
-> (1 3)
: (delete (3 4) ’((1 2) (3 4) (5 6) (3 4)))
-> ((1 2) (5 6) (3 4))

1098 32 Symbols starting with D

delete/3

Pilog predicate that succeeds if deleting the first argument from the list in
the second argument is equal to the third argument. See also delete and
member/2.

: (? (delete b (a b c) @X))
@X=(a c)
-> NIL

(delq ’any ’lst) -> lst

Deletes any from lst. If any is contained more than once in lst, only the
first occurrence is deleted. == is used for comparison (pointer equality). See
also delete, asoq, memq, mmeq and Comparing.

: (delq ’b ’(a b c))
-> (a c)
: (delq (2) (1 (2) 3))
-> (1 (2) 3)

(dep ’cls) -> cls

Displays the “dependencies” of cls, i.e. the tree of superclasses and the tree
of subclasses. See also OO Concepts, class and can.

: (dep ’+Number) # Dependencies of ’+Number’
+relation # Single superclass is ’+relation’

+Number
+Date # Subclasses are ’+Date’ and ’+Time’
+Time

-> +Number

32 Symbols starting with D 1099

(depth ’lst) -> (cnt1 . cnt2)

Returns the maximal (cnt1) and the average (cnt2) “depth” of a tree struc-
ture as maintained by idx. See also length and size.

: (off X) # Clear variable
-> NIL
: (for N (1 2 3 4 5 6 7) (idx ’X N T)) # Build a degenerated tree
-> NIL
: X
-> (1 NIL 2 NIL 3 NIL 4 NIL 5 NIL 6 NIL 7) # Only right branches
: (depth X)
-> (7 . 4) # Depth is 7, average 4

(diff ’lst ’lst) -> lst

Returns the difference of the lst arguments. See also sect.

: (diff (1 2 3 4 5) (2 4))
-> (1 3 5)
: (diff (1 2 3) (1 2 3))
-> NIL

different/2

Pilog predicate that succeeds if the two arguments are different. See also
equal/2.

: (? (different 3 4))
-> T

1100 32 Symbols starting with D

(dir [’any] [’flg]) -> lst

Returns a list of all filenames in the directory any. Names starting with a dot
‘.’ are ignored, unless flg is non-NIL. See also cd and info.

: (filter ’((F) (tail ’(. c) (chop F))) (dir "src/"))
-> ("main.c" "subr.c" "gc.c" "io.c" "big.c" "sym.c" "tab.c" "flow.c" ..

(dirname ’any) -> sym

Returns the directory part of a path name any. See also basename and
path.

: (dirname "a/b/c/d")
-> "a/b/c/"

(dm sym . fun|cls2) -> sym

(dm (sym . cls) . fun|cls2) -> sym

(dm (sym sym2 [. cls]) . fun|cls2) -> sym

Defines a method for the message sym in the current class, implicitly given
by the value of the global variable *Class, or - in the second form - for the
explicitly given class cls. In the third form, the class object is obtained by
geting sym2 from *Class (or cls if given). If the method for that class
existed and was changed in the process, a “redefined” message is issued. If -
instead of a method fun

· a symbol specifying another class cls2 is given, the method from

that class is used (explicit inheritance). When the value of the global variable
*Dbg is non-NIL, the current line number and file name (if any) are stored in
the *Dbg property of sym. See also OO Concepts, de, undef, class, rel,
var, method, send and try.

32 Symbols starting with D 1101

: (dm start> ()
(super)
(mapc ’start> (: fields))
(mapc ’start> (: arrays)))

: (dm foo> . +OtherClass) # Explicitly inherit ’foo>’ from ’+OtherClass’

(do ’flg|num [’any | (NIL ’any . prg)
| (T ’any . prg) ..]) -> any

Counted loop with multiple conditional exits: The body is executed at most
num times (or never (if the first argument is NIL), or an infinite number of
times (if the first argument is T)). If a clause has NIL or T as its CAR, the
clause’s second element is evaluated as a condition and - if the result is NIL
or non-NIL, respectively - the prg is executed and the result returned. Other-
wise (if count drops to zero), the result of the last expression is returned. See
also loop and for.

: (do 4 (printsp ’OK))
OK OK OK OK -> OK
: (do 4 (printsp ’OK) (T (= 3 3) (printsp ’done)))
OK done -> done

(doc [’sym1] [’sym2])

Opens a browser, and tries to display the reference documentation for sym1.
sym2may be the name of a browser. If not given, the value of the environment
variable BROWSER, or the w3m browser is tried. If sym1 is NIL, the PicoLisp
Reference manual is opened. See also Function Reference and vi.

: (doc ’+) # Function reference
-> T
: (doc ’+relation) # Class reference
-> T
: (doc) # Reference manual
-> T
: (doc ’vi "firefox") # Use alternative browser
-> T

Chapter 33

Symbols starting with E

*Err

A global variable holding a (possibly empty) prg body, which will be exe-
cuted during error processing. See also Error Handling, *Msg and ˆ.

: (de *Err (prinl "Fatal error!"))
-> ((prinl "Fatal error!"))
: (/ 3 0)
!? (/ 3 0)
Div/0
Fatal error!
$

*Ext

A global variable holding a sorted list of cons pairs. The CAR of each pair
specifies an external symbol offset (suitable for ext), and the CDR should
be a function taking a single external symbol as an argument. This function
should return a list, with the value for that symbol in its CAR, and the property
list (in the format used by getl and putl) in its CDR. The symbol will be set
to this value and property list upon access. Typically this function will access
the corresponding symbol in a remote database process. See also qsym and
external symbols.

1103

1104 33 Symbols starting with E

On the local machine
: (setq *Ext # Define extension functions

(mapcar
’((@Host @Ext)

(cons @Ext
(curry (@Host @Ext (Sock)) (Obj)

(when (or Sock (setq Sock (connect @Host 4040)))
(ext @Ext

(out Sock (pr (cons ’qsym Obj)))
(prog1 (in Sock (rd))

(unless @
(close Sock)
(off Sock))))))))

’("10.10.12.1" "10.10.12.2" "10.10.12.3" "10.10.12.4")
(20 40 60 80)))

On the remote machines
(de go ()

...
(task (port 4040) # Set up background query server

(let? Sock (accept @) # Accept a connection
(unless (fork) # In child process

(in Sock
(while (rd) # Handle requests

(sync)
(out Sock

(pr (eval @)))))
(bye)) # Exit child process

(close Sock)))
(forked) # Close task in children
...

+Entity

Base class of all database objects. See also +relation and Database.

Messages to entity objects include

33 Symbols starting with E 1105

zap> () # Clean up relational structures, for removal from the DB
url> (Tab) # Call the GUI on that object (in optional Tab)
upd> (X Old) # Callback method when object is created/modified/deleted
has> (Var Val) # Check if value is present
put> (Var Val) # Put a new value
put!> (Var Val) # Put a new value, single transaction
del> (Var Val) # Delete value (also partial)
del!> (Var Val) # Delete value (also partial), single transaction
inc> (Var Val) # Increment numeric value
inc!> (Var Val) # Increment numeric value, single transaction
dec> (Var Val) # Decrement numeric value
dec!> (Var Val) # Decrement numeric value, single transaction
mis> (Var Val) # Return error message if value or type mismatch
lose1> (Var) # Delete relational structures for a single attribute
lose> (Lst) # Delete relational structures (excluding ’Lst’)
lose!> () # Delete relational structures, single transaction
keep1> (Var) # Restore relational structures for single attribute
keep> (Lst) # Restore relational structures (excluding ’Lst’)
keep?> (Lst) # Test for restauration (excluding ’Lst’)
keep!> () # Restore relational structures, single transaction
set> (Val) # Set the value (type, i.e. class list)
set!> (Val) # Set the value, single transaction
clone> () # Object copy
clone!> () # Object copy, single transaction

(e . prg) -> any

Used in a breakpoint. Evaluates prg in the execution environment, or the
currently executed expression if prg is not given. See also debug, !, ˆ and
*Dbg.

: (! + 3 4)
(+ 3 4)
! (e)
-> 7

1106 33 Symbols starting with E

(echo [’cnt [’cnt]] | [’sym ..]) -> sym

Reads the current input channel, and writes to the current output channel. If
cnt is given, only that many bytes are actually echoed. In case of two cnt
arguments, the first one specifies the number of bytes to skip in the input
stream. Otherwise, if one or more sym arguments are given, the echo process
stops as soon as one of the symbol’s names is encountered in the input stream.
In this case the name will be read and returned, but not written. Returns non-
NIL if the operation was successfully completed. See also from.

: (in "x.l" (echo)) # Display file on console
..

: (out "x2.l" (in "x.l" (echo))) # Copy file "x.l" to "x2.l"

(edit ’sym ..) -> NIL

Edits the value and property list of the argument symbol(s) by calling the
vim editor on a temporary file with these data. When closing the editor, the
modified data are read and stored into the symbol(s). During the edit session,
individual symbols are separated by the pattern (********). These sepa-
rators should not be modified. When moving the cursor to the beginning of a
symbol (no matter if internal, transient or external), and hitting ‘K’, that sym-
bol is added to the currently edited symbols. Hitting ‘Q’ will go back one step
and return to the previously edited list of symbols.

edit is especially useful for browsing through the database (with ‘K’ and
‘Q’), inspecting external symbols, but care must be taken when modifying any
data as then the entity/relation mechanisms are circumvented, and commit
has to be called manually if the changes should be persistent.

Another typical use case is inserting or removing ! breakpoints at arbitrary
code locations, or doing other temporary changes to the code for debugging
purposes.

See also update, show and vi.

33 Symbols starting with E 1107

: (edit (db ’nr ’+Item 1)) # Edit a database symbol
’vim’ shows this
{3-1} (+Item)

nr 1
inv 100
pr 29900
sup {2-1} # (+CuSu)
nm "Main Part"

(********)
Hitting ’K’ on the ’{’ of ’{2-1}
{2-1} (+CuSu)

nr 1
plz "3425"
mob "37 176 86303"
tel "37 4967 6846-0"
fax "37 4967 68462"
nm "Active Parts Inc."
nm2 "East Division"
ort "Freetown"
str "Wildcat Lane"
em "info@api.tld"

(********)

{3-1} (+Item)
nr 1
inv 100
pr 29900
sup {2-1} # (+CuSu)
nm "Main Part"

(********)
Entering ’:q’ in vim
-> NIL

(env [’lst] | [’sym ’val] ..) -> lst

Return a list of symbol-value pairs of all dynamically bound symbols if called
without arguments, or of the symbols or symbol-value pairs in lst, or the
explicitly given sym-val arguments. See also bind and job.

1108 33 Symbols starting with E

: (env)
-> NIL
: (let (A 1 B 2) (env))
-> ((A . 1) (B . 2))
: (let (A 1 B 2) (env ’(A B)))
-> ((B . 2) (A . 1))
: (let (A 1 B 2) (env ’X 7 ’(A B (C . 3)) ’Y 8))
-> ((Y . 8) (C . 3) (B . 2) (A . 1) (X . 7))

(eof [’flg]) -> flg

Returns the end-of-file status of the current input channel. If flg is non-NIL,
the channel’s status is forced to end-of-file, so that the next call to eof will
return T, and calls to char, peek, line, from, till, read or skip will
return NIL. Note that eof cannot be used with the binary rd function. See
also eol.

: (in "file" (until (eof) (println (line T))))
...

(eol) -> flg

Returns the end-of-line status of the current input channel. See also eof.

: (make (until (prog (link (read)) (eol)))) # Read line into a list
a b c (d e f) 123
-> (a b c (d e f) 123)

equal/2

Pilog predicate that succeeds if the two arguments are equal. See also =,
different/2 and member/2.

33 Symbols starting with E 1109

: (? (equal 3 4))
-> NIL
: (? (equal @N 7))
@N=7
-> NIL

(err ’sym . prg) -> any

Redirects the standard error stream to sym during the execution of prg. The
current standard error stream will be saved and restored appropriately. If the
argument is NIL, the current output stream will be used. Otherwise, sym is
taken as a file name (opened in “append” mode if the first character is “+”),
where standard error is to be written to. See also in, out and ctl.

: (err "/dev/null" # Suppress error messages
(call ’ls ’noSuchFile))

-> NIL

(errno) -> cnt

(64-bit version only) Returns the value of the standard I/O ‘errno’ variable.
See also native.

: (in "foo") # Produce an error
!? (in "foo")
"foo" -- Open error: No such file or directory
? (errno)
-> 2 # Returned ’ENOENT’

(eval ’any [’cnt [’lst]]) -> any

Evaluates any. Note that because of the standard argument evaluation, any
is actually evaluated twice. If a binding environment offset cnt is given, the
second evaluation takes place in the corresponding environment, and an op-
tional lst of excluded symbols can be supplied. See also run and up.

1110 33 Symbols starting with E

: (eval (list ’+ 1 2 3))
-> 6
: (setq X ’Y Y 7)
-> 7
: X
-> Y
: Y
-> 7
: (eval X)
-> 7

(expDat ’sym) -> dat

Expands a date string according to the current locale (delimiter, and order
of year, month and day). Accepts abbreviated input, without delimiter and
with only the day, or the day and month, or the day, month and year of current
century. See also datStr, day, expTel.

33 Symbols starting with E 1111

: (date)
-> 733133
: (date (date))
-> (2007 5 31)
: (expDat "31")
-> 733133
: (expDat "315")
-> 733133
: (expDat "3105")
-> 733133
: (expDat "31057")
-> 733133
: (expDat "310507")
-> 733133
: (expDat "2007-05-31")
-> 733133
: (expDat "7-5-31")
-> 733133

: (locale "DE" "de")
-> NIL
: (expDat "31.5")
-> 733133
: (expDat "31.5.7")
-> 733133

(expTel ’sym) -> sym

Expands a telephone number string. Multiple spaces or hyphens are coalesced.
A leading + or 00 is removed, a leading 0 is replaced with the current country
code. Otherwise, NIL is returned. See also telStr, expDat and locale.

: (expTel "+49 1234 5678-0")
-> "49 1234 5678-0"
: (expTel "0049 1234 5678-0")
-> "49 1234 5678-0"
: (expTel "01234 5678-0")
-> NIL
: (locale "DE" "de")
-> NIL
: (expTel "01234 5678-0")
-> "49 1234 5678-0"

1112 33 Symbols starting with E

(expr ’sym) -> fun

Converts a C-function (“subr”) to a Lisp-function. Useful only for normal
functions (i.e. functions that evaluate all arguments). See also subr.

: car
-> 67313448
: (expr ’car)
-> (@ (pass $385260187))
: (car (1 2 3))
-> 1

(ext ’cnt . prg) -> any

During the execution of prg, all external symbols processed by rd,
pr or udp are modified by an offset cnt suitable for mapping via the *Ext
mechanism. All external symbol’s file numbers are decremented by cnt dur-
ing output, and incremented by cnt during input.

: (out ’a (ext 5 (pr ’({6-2} ({8-9} . a) ({7-7} . b)))))
-> ({6-2} ({8-9} . a) ({7-7} . b))

: (in ’a (rd))
-> ({2} ({3-9} . a) ({2-7} . b))

: (in ’a (ext 5 (rd)))
-> ({6-2} ({8-9} . a) ({7-7} . b))

(ext? ’any) -> sym | NIL

Returns the argument any when it is an existing external symbol, otherwise
NIL. See also sym?, box?, str?, extern and lieu.

33 Symbols starting with E 1113

: (ext? *DB)
-> {1}
: (ext? ’abc)
-> NIL
: (ext? "abc")
-> NIL
: (ext? 123)
-> NIL

(extend cls) -> cls

Extends the class cls, by storing it in the global variable *Class. As a
consequence, all following method, relation and class variable definitions are
applied to that class. See also OO Concepts, class, dm, var, rel, type
and isa.

(extern ’sym) -> sym | NIL

Creates or finds an external symbol. If a symbol with the name sym is already
extern, it is returned. Otherwise, a new external symbol is returned. NIL is
returned if sym does not exist in the database. See also intern and ext?.

: (extern "A1b")
-> {A1b}
: (extern "{A1b}")
-> {A1b}

(extra [’any ..]) -> any

Can only be used inside methods. Sends the current message to the current ob-
ject This, this time starting the search for a method at the remaining branches
of the inheritance tree of the class where the current method was found. See
also OO Concepts, super, method, meth, send and try.

(dm key> (C) # ’key>’ method of the ’+Uppc’ class
(uppc (extra C))) # Convert ’key>’ of extra classes to upper case

1114 33 Symbols starting with E

(extract ’fun ’lst ..) -> lst

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns a list of all non-NIL val-
ues returned by fun. (extract ’fun ’lst) is equivalent to (mapcar
’fun (filter ’fun ’lst)) or, for non-NIL results, to (mapcan
’((X) (and (fun X) (cons @))) ’lst). See also filter, find,
pick and mapcan.

: (setq A NIL B 1 C NIL D 2 E NIL F 3)
-> 3
: (filter val ’(A B C D E F))
-> (B D F)
: (extract val ’(A B C D E F))
-> (1 2 3)

Chapter 34

Symbols starting with F

*Fork

A global variable holding a (possibly empty) prg body, to be executed after
a call to fork in the child process.

: (push ’*Fork ’(off *Tmp)) # Clear ’*Tmp’ in child process
-> (off *Tmp)

+Fold

Prefix class for maintaining folded indexes to +String relations. Typi-
cally used in combination with the +Ref or +Idx prefix classes. See also
Database.

(rel nm (+Fold +Idx +String)) # Item Description
...
(rel tel (+Fold +Ref +String)) # Phone number

(fail) -> lst

Constructs an empty Pilog query, i.e. a query that will aways fail. See also
goal.

1115

1116 34 Symbols starting with F

(dm clr> () # Clear query chart in search dialogs
(query> This (fail)))

fail/0

Pilog predicate that always fails. See also true/0.

: (? (fail))
-> NIL

(fetch ’tree ’any) -> any

Fetches a value for the key any from a database tree. See also tree and
store.

: (fetch (tree ’nr ’+Item) 2)
-> {3-2}

(fifo ’var [’any ..]) -> any

Implements a first-in-first-out structure using a circular list. When called with
any arguments, they will be concatenated to end of the structure. Otherwise,
the first element is removed from the structure and returned. See also queue,
push, pop, rot and circ.

34 Symbols starting with F 1117

: (fifo ’X 1)
-> 1
: (fifo ’X 2 3)
-> 3
: X
-> (3 1 2 .)
: (fifo ’X)
-> 1
: (fifo ’X)
-> 2
: X
-> (3 .)

(file) -> (sym1 sym2 . num) | NIL

Returns for the current input channel the path name sym1, the file name
sym2, and the current line number num. If the current input channel is not
a file, NIL is returned. See also info, in and load.

: (load (pack (car (file)) "localFile.l")) # Load a file in same directory

(fill ’any [’sym|lst]) -> any

Fills a pattern any, by substituting sym, or all symbols in lst, or - if no
second argument is given - each pattern symbol in any (see pat?), with its
current value. @ itself is not considered a pattern symbol here. In any case,
expressions following the symbol ˆ should evaluate to lists which are then
(destructively) spliced into the result. See also match.

1118 34 Symbols starting with F

: (setq @X 1234 @Y (1 2 3 4))
-> (1 2 3 4)
: (fill ’@X)
-> 1234
: (fill ’(a b (c @X) ((@Y . d) e)))
-> (a b (c 1234) (((1 2 3 4) . d) e))
: (let X 2 (fill (1 X 3) ’X))
-> (1 2 3)

: (fill (1 ˆ (list ’a ’b ’c) 9))
-> (1 a b c 9)

: (match ’(This is @X) ’(This is a pen))
-> T
: (fill ’(Got ˆ @X))
-> (Got a pen)

(filter ’fun ’lst ..) -> lst

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns a list of all elements
of lst where fun returned non-NIL. See also fish, find, pick and
extract.

: (filter num? (1 A 2 (B) 3 CDE))
-> (1 2 3)

(fin ’any) -> num|sym

Returns any if it is an atom, otherwise the CDR of its last cell. See also last
and tail.

34 Symbols starting with F 1119

: (fin ’a)
-> a
: (fin ’(a . b))
-> b
: (fin ’(a b . c))
-> c
: (fin ’(a b c))
-> NIL

(finally exe . prg) -> any

prg is executed, then exe is evaluated, and the result of prg is returned.
exe will also be evaluated if prg does not terminate normally due to a run-
time error or a call to throw. See also bye, catch, quit and Error
Handling.

: (finally (prinl "Done!")
(println 123)
(quit)
(println 456))

123
Done!
: (catch ’A

(finally (prinl "Done!")
(println 1)
(throw ’A 123)
(println 2)))

1
Done!
-> 123

(find ’fun ’lst ..) -> any

Applies fun to successive elements of lst until non-NIL is returned. Re-
turns that element, or NIL if fun did not return non-NIL for any element
of lst. When additional lst arguments are given, their elements are also
passed to fun. See also seek, pick and filter.

1120 34 Symbols starting with F

: (find pair (1 A 2 (B) 3 CDE))
-> (B)
: (find ’((A B) (> A B)) (1 2 3 4 5 6) (6 5 4 3 2 1))
-> 4
: (find > (1 2 3 4 5 6) (6 5 4 3 2 1)) # shorter
-> 4

(fish ’fun ’any) -> lst

Applies fun to each element - and recursively to all sublists - of any. Returns
a list of all items where fun returned non-NIL. See also filter.

: (fish gt0 ’(a -2 (1 b (-3 c 2)) 3 d -1))
-> (1 2 3)
: (fish sym? ’(a -2 (1 b (-3 c 2)) 3 d -1))
-> (a b c d)

(flg? ’any) -> flg

Returns T when the argument any is either NIL or T. See also bool. (flg?
X) is equivalent to (or (not X) (=T X)).

: (flg? (= 3 3))
-> T
: (flg? (= 3 4))
-> T
: (flg? (+ 3 4))
-> NIL

(flip ’lst [’cnt]) -> lst

Returns lst (destructively) reversed. Without the optional cnt argument,
the whole list is flipped, otherwise only the first cnt elements. See also
reverse and rot.

34 Symbols starting with F 1121

: (flip (1 2 3 4)) # Flip all four elements
-> (4 3 2 1)
: (flip (1 2 3 4 5 6) 3) # Flip only the first three elements
-> (3 2 1 4 5 6)

(flush) -> flg

Flushes the current output stream by writing all buffered data. A call to
flush for standard output is done automatically before a call to key. Re-
turns T when successful. See also rewind.

: (flush)
-> T

(fmt64 ’num) -> sym

(fmt64 ’sym) -> num

Converts a number num to a string in base–64 notation, or a base–64 formatted
string to a number. The digits are represented with the characters 0 - 9, :, ;,
A - Z and a - z. This format is used internally for the names of external
symbols in the 32-bit version. See also hax, hex, bin and oct.

: (fmt64 9)
-> "9"
: (fmt64 10)
-> ":"
: (fmt64 11)
-> ";"
: (fmt64 12)
-> "A"
: (fmt64 "100")
-> 4096

1122 34 Symbols starting with F

(fold ’any [’cnt]) -> sym

Folding to a canonical form: If any is not a symbol, NIL is returned. Other-
wise, a new transient symbol with all digits and all letters of any, converted
to lower case, is returned. If the cnt argument is given, the result is truncated
to that length (or not truncated if cnt is zero). Otherwise cnt defaults to 24.
See also lowc.

: (fold " 1A 2-b/3")
-> "1a2b3"
: (fold " 1A 2-B/3" 3)
-> "1a2"

fold/3

Pilog predicate that succeeds if the first argument, after folding it to a canon-
ical form, is a /prefix/ of the folded string representation of the result of ap-
plying the get algorithm to the following arguments. Typically used as filter
predicate in select/3 database queries. See also pre?, isa/2, same/3,
bool/3, range/3, head/3, part/3 and tolr/3.

: (?
@Nr (1 . 5)
@Nm "main"
(select (@Item)

((nr +Item @Nr) (nm +Item @Nm))
(range @Nr @Item nr)
(fold @Nm @Item nm)))

@Nr=(1 . 5) @Nm="main" @Item={3-1}
-> NIL

(for sym ’num [’any | (NIL ’any . prg)
| (T ’any . prg) ..]) -> any

(for sym|(sym2 . sym) ’lst [’any | (NIL ’any . prg) |
(T ’any . prg) ..]) -> any

34 Symbols starting with F 1123

(for (sym|(sym2 . sym) ’any1 ’any2 [. prg]) [’any | (NIL
’any . prg) | (T ’any . prg) ..]) -> any

Conditional loop with local variable(s) and multiple conditional exits: In the
first form, the value of sym is saved, sym is bound to 1, and the body is
executed with increasing values up to (and including) num. In the second
form, the value of sym is saved, sym is subsequently bound to the elements
of lst, and the body is executed each time. In the third form, the value of
sym is saved, and sym is bound to any1. If sym2 is given, it is treated as
a counter variable, first bound to 1 and then incremented for each execution
of the body. While the condition any2 evaluates to non-NIL, the body is
repeatedly executed and, if prg is given, sym is re-bound to the result of its
evaluation. If a clause has NIL or T as its CAR, the clause’s second element
is evaluated as a condition and - if the result is NIL or non-NIL, respectively
- the prg is executed and the result returned. If the body is never executed,
NIL is returned. See also do and loop.

: (for (N 1 (>= 8 N) (inc N)) (printsp N))
1 2 3 4 5 6 7 8 -> 8
: (for (L (1 2 3 4 5 6 7 8) L) (printsp (pop ’L)))
1 2 3 4 5 6 7 8 -> 8
: (for X (1 a 2 b) (printsp X))
1 a 2 b -> b
: (for ((I . L) ’(a b c d e f) L (cddr L)) (println I L))
1 (a b c d e f)
2 (c d e f)
3 (e f)
-> (e f)
: (for (I . X) ’(a b c d e f) (println I X))
1 a
2 b
3 c
4 d
5 e
6 f
-> f

(fork) -> pid | NIL

Forks a child process. Returns NIL in the child, and the child’s process ID
pid in the parent. In the child, the VAL of the global variable *Fork (should
be a prg) is executed. See also pipe and tell.

1124 34 Symbols starting with F

: (unless (fork) (do 5 (println ’OK) (wait 1000)) (bye))
-> NIL
OK # Child’s output
: OK
OK
OK
OK

(forked)

Installs maintenance code in *Fork to close server sockets and clean up
*Run code in child processes. Should only be called immediately after task.

: (task -60000 60000 (msg ’OK)) # Install timer task
-> (-60000 60000 (msg ’OK))
: (forked) # No timer in child processes
-> (task -60000)
: *Run
-> ((-60000 56432 (msg ’OK)))
: *Fork
-> ((task -60000) (del ’(saveHistory) ’*Bye))

(format ’num [’cnt [’sym1 [’sym2]]]) ->
sym

(format ’sym|lst [’cnt [’sym1 [’sym2]]]) -> num

Converts a number num to a string, or a string sym|lst to a number. In both
cases, optionally a precision cnt, a decimal-separator sym1 and a thousands-
separator sym2 can be supplied. Returns NIL if the conversion is unsuccess-
ful. See also Numbers and round.

34 Symbols starting with F 1125

: (format 123456789) # Integer conversion
-> "123456789"
: (format 123456789 2) # Fixed point
-> "1234567.89"
: (format 123456789 2 ",") # Comma as decimal-separator
-> "1234567,89"
: (format 123456789 2 "," ".") # and period as thousands-separator
-> "1.234.567,89"

: (format "123456789") # String to number
-> 123456789
: (format (1 "23" (4 5 6)))
-> 123456
: (format "1234567.89" 4) # scaled to four digits
-> 12345678900
: (format "1.234.567,89") # separators not recognized
-> NIL
: (format "1234567,89" 4 ",")
-> 12345678900
: (format "1.234.567,89" 4 ",") # thousands-separator not recognized
-> NIL
: (format "1.234.567,89" 4 "," ".")
-> 12345678900

(free ’cnt) -> (sym . lst)

Returns, for the cnt’th database file, the next available symbol sym (i.e. the
first symbol greater than any symbol in the database), and the list lst of free
symbols. See also seq, zap and dbck.

1126 34 Symbols starting with F

: (pool "x") # A new database
-> T
: (new T) # Create a new symbol
-> {2}
: (new T) # Create another symbol
-> {3}
: (commit) # Commit changes
-> T
: (zap ’{2}) # Delete the first symbol
-> {2}
: (free 1) # Show free list
-> ({4}) # {3} was the last symbol allocated
: (commit) # Commit the deletion of {2}
-> T
: (free 1) # Now {2} is in the free list
-> ({4} {2})

(from ’any ..) -> sym

Skips the current input channel until one of the strings any is found, and starts
subsequent reading from that point. The found any argument, or NIL (if none
is found) is returned. See also till and echo.

: (and (from "val=’") (till "’" T))
test val=’abc’
-> "abc"

(full ’any) -> bool

Returns NIL if any is a non-empty list with at least one NIL element, other-
wise T. (full X) is equivalent to (not (memq NIL X)).

: (full (1 2 3))
-> T
: (full (1 NIL 3))
-> NIL
: (full 123)
-> T

34 Symbols starting with F 1127

(fun? ’any) -> any

Returns NIL when the argument any is neither a number suitable for a code-
pointer, nor a list suitable for a lambda expression (function). Otherwise a
number is returned for a code-pointer, T for a function without arguments,
and a single formal parameter or a list of formal parameters for a function.
See also getd.

: (fun? 1000000000) # Might be a code pointer
-> 1000000000
: (fun? 100000000000000) # Too big for a code pointer
-> NIL
: (fun? 1000000001) # Cannot be a code pointer (odd)
-> NIL
: (fun? ’((A B) (* A B))) # Lambda expression
-> (A B)
: (fun? ’((A B) (* A B) . C)) # Not a lambda expression
-> NIL
: (fun? ’(1 2 3 4)) # Not a lambda expression
-> NIL
: (fun? ’((A 2 B) (* A B))) # Not a lambda expression
-> NIL

Chapter 35

Symbols starting with G

(gc [’cnt]) -> cnt | NIL

Forces a garbage collection. When cnt is given, so many megabytes of free
cells are reserved, increasing the heap size if necessary. If cnt is zero, all
currently unused heap blocks are purged, decreasing the heap size if possible.
See also heap.

: (gc)
-> NIL
: (heap)
-> 2
: (gc 4)
-> 4
: (heap)
-> 5

(ge0 ’any) -> num | NIL

Returns num when the argument is a number and greater or equal zero, other-
wise NIL. See also lt0, le0, gt0, =0 and n0.

1129

1130 35 Symbols starting with G

: (ge0 -2)
-> NIL
: (ge0 3)
-> 3
: (ge0 0)
-> 0

(genKey ’var ’cls [’hook [’num1 [’num2]]])
-> num

Generates a key for a database tree. If a minimal key num1 and/or a maximal
key num2 is given, the next free number in that range is returned. Otherwise,
the current maximal key plus one is returned. See also useKey, genStrKey
and maxKey.

: (maxKey (tree ’nr ’+Item))
-> 8
: (genKey ’nr ’+Item)
-> 9

(genStrKey ’sym ’var ’cls [’hook]) ->
sym

Generates a unique string for a database tree, by prepending as many “#”
sequences as necessary. See also genKey.

: (genStrKey "ben" ’nm ’+User)
-> "# ben"

(get ’sym1|lst [’sym2|cnt ..]) -> any

Fetches a value any from the properties of a symbol, or from a list. From the
first argument sym1|lst, values are retrieved in successive steps by either
extracting the value (if the next argument is zero) or a property from a symbol,
the asoqed element (if the next argument is a symbol), the n’th element (if

35 Symbols starting with G 1131

the next argument is a positive number) or the n’th CDR (if the next argument
is a negative number) from a list. See also put, ; and :.

: (put ’X ’a 1)
-> 1
: (get ’X ’a)
-> 1
: (put ’Y ’link ’X)
-> X
: (get ’Y ’link)
-> X
: (get ’Y ’link ’a)
-> 1
: (get ’((a (b . 1) (c . 2)) (d (e . 3) (f . 4))) ’a ’b)
-> 1
: (get ’((a (b . 1) (c . 2)) (d (e . 3) (f . 4))) ’d ’f)
-> 4
: (get ’(X Y Z) 2)
-> Y
: (get ’(X Y Z) 2 ’link ’a)
-> 1

(getd ’any) -> fun | NIL

Returns fun if any is a symbol that has a function definition, otherwise NIL.
See also fun?.

: (getd ’+)
-> 67327232
: (getd ’script)
-> ((File . @) (load File))
: (getd 1)
-> NIL

(getl ’sym1|lst1 [’sym2|cnt ..]) -> lst

Fetches the complete property list lst from a symbol. That symbol is sym1
(if no other arguments are given), or a symbol found by applying the get

1132 35 Symbols starting with G

algorithm to sym1|lst1 and the following arguments. See also putl and
maps.

: (put ’X ’a 1)
-> 1
: (put ’X ’b 2)
-> 2
: (put ’X ’flg T)
-> T
: (getl ’X)
-> (flg (2 . b) (1 . a))

(glue ’any ’lst) -> sym

Builds a new transient symbol (string) by packing the any argument be-
tween the individual elements of lst. See also text.

: (glue "," ’(a b c d))
-> "a,b,c,d"

(goal ’([pat ’any ..] . lst) [’sym ’any
..]) -> lst

Constructs a Pilog query list from the list of clauses lst. The head of the
argument list may consist of a sequence of pattern symbols (Pilog variables)
and expressions, which are used together with the optional sym and any ar-
guments to form an initial environment. See also prove and fail.

: (goal ’((likes John @X)))
-> (((1 (0) NIL ((likes John @X)) NIL T)))
: (goal ’(@X ’John (likes @X @Y)))
-> (((1 (0) NIL ((likes @X @Y)) NIL ((0 . @X) 1 . John) T)))

35 Symbols starting with G 1133

(group ’lst) -> lst

Builds a list of lists, by grouping all elements of lst with the same CAR into
a common sublist. See also Comparing, by, sort and uniq.

: (group ’((1 . a) (1 . b) (1 . c) (2 . d) (2 . e) (2 . f)))
-> ((1 a b c) (2 d e f))
: (by name group ’("x" "x" "y" "z" "x" "z")))
-> (("x" "x" "x") ("y") ("z" "z"))
: (by length group ’(123 (1 2) "abcd" "xyz" (1 2 3 4) "XY"))
-> ((123 "xyz") ((1 2) "XY") ("abcd" (1 2 3 4))

(gt0 ’any) -> num | NIL

Returns num when the argument is a number and greater than zero, otherwise
NIL. See also lt0, le0, ge0, =0 and n0.

: (gt0 -2)
-> NIL
: (gt0 3)
-> 3

Chapter 36

Symbols starting with H

*Hup

Global variable holding a (possibly empty) prg body, which will be executed
when a SIGHUP signal is sent to the current process. See also alarm, sigio
and *Sig[12].

: (de *Hup (msg ’SIGHUP))
-> *Hup

+Hook

Prefix class for +relations, typically +Link or +Joint. In essence, this
maintains an local database in the referred object. See also Database.

(rel sup (+Hook +Link) (+Sup)) # Supplier
(rel nr (+Key +Number) sup) # Item number, unique per supplier
(rel dsc (+Ref +String) sup) # Item description, indexed per supplier

(hash ’any) -> cnt

Generates a 16-bit number (1–65536) from any, suitable as a hash value for
various purposes, like randomly balanced idx structures. See also cache
and seed.

1135

1136 36 Symbols starting with H

: (hash 0)
-> 1
: (hash 1)
-> 55682
: (hash "abc")
-> 45454

(hax ’num) -> sym

(hax ’sym) -> num

Converts a number num to a string in hexadecimal/alpha notation, or a hex-
adecimal/alpha formatted string to a number. The digits are represented with
‘@’ (zero) and the letters ‘A’ - ‘O’ (from “alpha” to “omega”). This format is
used internally for the names of external symbols in the 64-bit version.
See also fmt64, hex, bin and oct.

: (hax 7)
-> "G"
: (hax 16)
-> "A@"
: (hax 255)
-> "OO"
: (hax "A")
-> 1

(hd ’sym [’cnt]) -> NIL

Displays a hexadecimal dump of the file given by sym, limited to cnt lines.
See also proc.

: (hd "lib.l" 4)
00000000 23 20 32 33 64 65 63 30 39 61 62 75 0A 23 20 28 # 23dec09abu.# (
00000010 63 29 20 53 6F 66 74 77 61 72 65 20 4C 61 62 2E c) Software Lab.
00000020 20 41 6C 65 78 61 6E 64 65 72 20 42 75 72 67 65 Alexander Burge
00000030 72 0A 0A 28 64 65 20 74 61 73 6B 20 28 4B 65 79 r..(de task (Key
-> NIL

36 Symbols starting with H 1137

(head ’cnt|lst ’lst) -> lst

Returns a new list made of the first cnt elements of lst. If cnt is negative,
it is added to the length of lst. If the first argument is a lst, head is a
predicate function returning that argument list if it is equal to the head of
the second argument, and NIL otherwise. See also tail.

: (head 3 ’(a b c d e f))
-> (a b c)
: (head 0 ’(a b c d e f))
-> NIL
: (head 10 ’(a b c d e f))
-> (a b c d e f)
: (head -2 ’(a b c d e f))
-> (a b c d)
: (head ’(a b c) ’(a b c d e f))
-> (a b c)

head/3

Pilog predicate that succeeds if the first (string) argument is a prefix of the
string representation of the result of applying the get algorithm to the fol-
lowing arguments. Typically used as filter predicate in select/3 database
queries. See also pre?, isa/2, same/3, bool/3, range/3, fold/3,
part/3 and tolr/3.

: (?
@Nm "Muller"
@Tel "37"
(select (@CuSu)

((nm +CuSu @Nm) (tel +CuSu @Tel))
(tolr @Nm @CuSu nm)
(head @Tel @CuSu tel))

(val @Name @CuSu nm)
(val @Phone @CuSu tel))

@Nm="Muller" @Tel="37" @CuSu={2-3} @Name="Miller" @Phone="37 4773 82534"
-> NIL

1138 36 Symbols starting with H

(heap ’flg) -> cnt

Returns the total size of the cell heap space in megabytes. If flg is non-NIL,
the size of the currently free space is returned. See also stack and gc.

: (gc 4)
-> 4
: (heap)
-> 5
: (heap T)
-> 4

(hear ’cnt) -> cnt

Uses the file descriptor cnt as an asynchronous command input channel. Any
executable list received via this channel will be executed in the background.
As this mechanism is also used for inter-family communication (see tell),
hear is usually only called explicitly by a top level parent process.

: (call ’mkfifo "fifo/cmd")
-> T
: (hear (open "fifo/cmd"))
-> 3

(here [’sym]) -> sym

Echoes the current input stream until sym is encountered, or until end of file.
See also echo.

36 Symbols starting with H 1139

$ cat hello.l
(html 0 "Hello" "lib.css" NIL

(<h2> NIL "Hello")
(here))

<p>Hello!</p>
<p>This is a test.</p>

$ pil @lib/http.l @lib/xhtml.l hello.l
HTTP/1.0 200 OK
Server: PicoLisp
Date: Sun, 03 Jun 2007 11:41:27 GMT
Cache-Control: max-age=0n
Cache-Control: no-cache
Content-Type: text/html; charset=utf-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hello</title>
<link rel="stylesheet" href="http://:/lib.css" type="text/css"/>
</head>
<body><h2>Hello</h2>
<p>Hello!</p>
<p>This is a test.</p>
</body>
</html>

(hex ’num [’num]) -> sym

(hex ’sym) -> num

Converts a number num to a hexadecimal string, or a hexadecimal string sym
to a number. In the first case, if the second argument is given, the result is
separated by spaces into groups of such many digits. See also bin, oct,
fmt64, hax and format.

: (hex 273)
-> "111"
: (hex "111")
-> 273
: (hex 1234567 4)
-> "12 D687"

1140 36 Symbols starting with H

(host ’any) -> sym

Returns the hostname corresponding to the given IP address. See also *Adr.

: (host "80.190.158.9")
-> "www.leo.org"

Chapter 37

Symbols starting with I

+Idx

Prefix class for maintaining non-unique full-text indexes to +String rela-
tions, a subclass of +Ref. Accepts optional arguments for the minimally in-
dexed substring length (defaults to 3), and a +Hook attribute. Often used in
combination with the +Sn soundex index, or the +Fold index prefix classes.
See also Database.

(rel nm (+Sn +Idx +String)) # Name

+index

Abstract base class of all database B-Tree index relations (prefix classes for
+relations). The class hierarchy includes +Key, +Ref and +Idx. See
also Database.

(isa ’+index Rel) # Check for an index relation

(id ’num [’num]) -> sym

(id ’sym [NIL]) -> num

1141

1142 37 Symbols starting with I

(id ’sym T) -> (num . num)

Converts one or two numbers to an external symbol, or an external symbol to
a number or a pair of numbers.

: (id 7)
-> {7}
: (id 1 2)
-> {2}
: (id ’{1-2})
-> 2
: (id ’{1-2} T)
-> (1 . 2)

(idx ’var ’any ’flg) -> lst (idx ’var
’any) -> lst (idx ’var) -> lst

Maintains an index tree in var, and checks for the existence of any. If any
is contained in var, the corresponding subtree is returned, otherwise NIL. In
the first form, any is destructively inserted into the tree if flg is non-NIL
(and any was not already there), or deleted from the tree if flg is NIL. The
second form only checks for existence, but does not change the index tree. In
the third form (when called with a single var argument) the contents of the
tree are returned as a sorted list. If all elements are inserted in sorted order,
the tree degenerates into a linear list. See also lup, hash, depth, sort,
balance and member.

37 Symbols starting with I 1143

: (idx ’X ’d T) # Insert data
-> NIL
: (idx ’X 2 T)
-> NIL
: (idx ’X ’(a b c) T)
-> NIL
: (idx ’X 17 T)
-> NIL
: (idx ’X ’A T)
-> NIL
: (idx ’X ’d T)
-> (d (2 NIL 17 NIL A) (a b c)) # ’d’ already existed
: (idx ’X T T)
-> NIL
: X # View the index tree
-> (d (2 NIL 17 NIL A) (a b c) NIL T)
: (idx ’X ’A) # Check for ’A’
-> (A)
: (idx ’X ’B) # Check for ’B’
-> NIL
: (idx ’X)
-> (2 17 A d (a b c) T) # Get list
: (idx ’X 17 NIL) # Delete ’17’
-> (17 NIL A)
: X
-> (d (2 NIL A) (a b c) NIL T) # View it again
: (idx ’X)
-> (2 A d (a b c) T) # ’17’ is deleted

(if ’any1 ’any2 . prg) -> any

Conditional execution: If the condition any1 evaluates to non-NIL, any2 is
evaluated and returned. Otherwise, prg is executed and the result returned.
See also cond, when and if2.

: (if (> 4 3) (println ’OK) (println ’Bad))
OK
-> OK
: (if (> 3 4) (println ’OK) (println ’Bad))
Bad
-> Bad

1144 37 Symbols starting with I

(if2 ’any1 ’any2 ’any3 ’any4 ’any5 . prg)
-> any

Four-way conditional execution for two conditions: If both conditions any1
and any2 evaluate to non-NIL, any3 is evaluated and returned. Otherwise,
any4 or any5 is evaluated and returned if any1 or any2 evaluate to non-
NIL, respectively. If none of the conditions evaluate to non-NIL, prg is exe-
cuted and the result returned. See also if and cond.

: (if2 T T ’both ’first ’second ’none)
-> both
: (if2 T NIL ’both ’first ’second ’none)
-> first
: (if2 NIL T ’both ’first ’second ’none)
-> second
: (if2 NIL NIL ’both ’first ’second ’none)
-> none

(ifn ’any1 ’any2 . prg) -> any

Conditional execution (“If not”): If the condition any1 evaluates to NIL,
any2 is evaluated and returned. Otherwise, prg is executed and the result
returned.

: (ifn (= 3 4) (println ’OK) (println ’Bad))
OK
-> OK

(import lst) -> NIL

Wrapper function for intern. Typically used to import symbols from other
namespaces, as created by symbols. lst should be a list of symbols. An
import conflict error is issued when a symbol with the same name already
exists in the current namespace. See also pico and local.

: (import libA˜foo libB˜bar)
-> NIL

37 Symbols starting with I 1145

(in ’any . prg) -> any

Opens any as input channel during the execution of prg. The current in-
put channel will be saved and restored appropriately. If the argument is NIL,
standard input is used. If the argument is a symbol, it is used as a file name
(opened for reading and writing if the first character is “+”). If it is a positive
number, it is used as the descriptor of an open file. If it is a negative number,
the saved input channel such many levels above the current one is used. Oth-
erwise (if it is a list), it is taken as a command with arguments, and a pipe
is opened for input. See also ipid, call, load, file, out, err, poll,
pipe and ctl.

: (in "a" (list (read) (read) (read))) # Read three items from file "a"
-> (123 (a b c) def)

(inc ’num) -> num (inc ’var [’num]) ->
num

The first form returns the value of num incremented by 1. The second form
increments the VAL of var by 1, or by num. If the first argument is NIL, it
is returned immediately. (inc ’num) is equivalent to (+ ’num 1) and
(inc ’var) is equivalent to (set ’var (+ var 1)). See also dec
and +.

1146 37 Symbols starting with I

: (inc 7)
-> 8
: (inc -1)
-> 0
: (zero N)
-> 0
: (inc ’N)
-> 1
: (inc ’N 7)
-> 8
: N
-> 8

: (setq L (1 2 3 4))
-> (1 2 3 4)
: (inc (cdr L))
-> 3
: L
-> (1 3 3 4)

(inc! ’obj ’sym [’num]) -> num

Transaction wrapper function for inc. num defaults to 1. Note that for incre-
menting a property value of an entity typically the inc!> message is used.
See also new!, set! and put!.

(inc! Obj ’cnt 0) # Incrementing a property of a non-entity object

(index ’any ’lst) -> cnt | NIL

Returns the cnt position of any in lst, or NIL if it is not found. See also
offset.

: (index ’c ’(a b c d e f))
-> 3
: (index ’(5 6) ’((1 2) (3 4) (5 6) (7 8)))
-> 3

37 Symbols starting with I 1147

(info ’any) -> (cnt|T dat . tim)

Returns information about a file with the name any: The current size cnt in
bytes, and the modification date and time (UTC). For directories, T is returned
instead of the a size. See also dir, date, time and lines.

$ ls -l x.l
-rw-r--r-- 1 abu users 208 Jun 17 08:58 x.l
$ pil +
: (info "x.l")
-> (208 730594 . 32315)
: (stamp 730594 32315)
-> "2000-06-17 08:58:35"

(init ’tree [’any1] [’any2]) -> lst

Initializes a structure for stepping iteratively through a database tree. any1
and any2 may specify a range of keys. If any2 is greater than any1, the
traversal will be in opposite direction. See also tree, step, iter and
scan.

: (init (tree ’nr ’+Item) 3 5)
-> (((3 . 5) ((3 NIL . {3-3}) (4 NIL . {3-4}) (5 NIL . {3-5}) (6 NIL . {3-6}) (7 NIL . {3-8}))))

(insert ’cnt ’lst ’any) -> lst

Inserts any into lst at position cnt. This is a non-destructive operation. See
also remove, place, append, delete and replace.

: (insert 3 ’(a b c d e) 777)
-> (a b 777 c d e)
: (insert 1 ’(a b c d e) 777)
-> (777 a b c d e)
: (insert 9 ’(a b c d e) 777)
-> (a b c d e 777)

1148 37 Symbols starting with I

(intern ’sym) -> sym

Creates or finds an internal symbol. If a symbol with the name sym is al-
ready intern, it is returned. Otherwise, sym is interned and returned. See also
symbols, zap, extern and ====.

: (intern "abc")
-> abc
: (intern ’car)
-> car
: ((intern (pack "c" "a" "r")) (1 2 3))
-> 1

(ipid) -> pid | NIL

Returns the corresponding process ID when the current input channel is read-
ing from a pipe, otherwise NIL. See also opid, in, pipe and load.

: (in ’(ls "-l") (println (line T)) (kill (ipid)))
"total 7364"
-> T

(isa ’cls|typ ’obj) -> obj | NIL

Returns obj when it is an object that inherits from cls or type. See also
OO Concepts, class, type, new and object.

: (isa ’+Address Obj)
-> {1-17}
: (isa ’(+Male +Person) Obj)
-> NIL

37 Symbols starting with I 1149

isa/2

Pilog predicate that succeeds if the second argument is of the type or class
given by the first argument, according to the isa function. Typically used in
db/3 or select/3 database queries. See also same/3, bool/3, range/3,
head/3, fold/3, part/3 and tolr/3.

: (? (db nm +Person @Prs) (isa +Woman @Prs) (val @Nm @Prs nm))
@Prs={2-Y} @Nm="Alexandra of Denmark"
@Prs={2-1I} @Nm="Alice Maud Mary"
@Prs={2-F} @Nm="Anne"
@Prs={2-j} @Nm="Augusta Victoria". # Stop

(iter ’tree [’fun] [’any1] [’any2] [’flg])

Iterates through a database tree by applying fun to all values. fun defaults to
println. any1 and any2 may specify a range of keys. If any2 is greater
than any1, the traversal will be in opposite direction. Note that the keys need
not to be atomic, depending on the application’s index structure. If flg is
non-NIL, partial keys are skipped. See also tree, scan, init and step.

: (iter (tree ’nr ’+Item))
{3-1}
{3-2}
{3-3}
{3-4}
{3-5}
{3-6}
{3-8}
-> {7-1}
: (iter (tree ’nr ’+Item) ’((This) (println (: nm))))
"Main Part"
"Spare Part"
"Auxiliary Construction"
"Enhancement Additive"
"Metal Fittings"
"Gadget Appliance"
"Testartikel"
-> {7-1}

Chapter 38

Symbols starting with J

+Joint

Class for bidirectional object relations, a subclass of +Link. Expects a (sym-
bolic) attribute, and list of classes as type of the referred database object
(of class +Entity). A +Joint corresponds to two +Links, where the at-
tribute argument is the relation of the back-link in the referred object. See also
Database.

(class +Ord +Entity) # Order class
(rel pos (+List +Joint) ord (+Pos)) # List of positions in that order
...
(class +Pos +Entity) # Position class
(rel ord (+Joint) # Back-link to the parent order

(job ’lst . prg) -> any

Executes a job within its own environment (as specified by symbol-value pairs
in lst). The current values of all symbols are saved, the symbols are bound
to the values in lst, prg is executed, then the (possibly modified) symbol
values are (destructively) stored in the environment list, and the symbols are
restored to their original values. The return value is the result of prg. Typi-
cally used in curried functions and *Run tasks. See also env, bind, let,
use and state.

1151

1152 38 Symbols starting with J

: (de tst ()
(job ’((A . 0) (B . 0))

(println (inc ’A) (inc ’B 2))))
-> tst
: (tst)
1 2
-> 2
: (tst)
2 4
-> 4
: (tst)
3 6
-> 6
: (pp ’tst)
(de tst NIL

(job ’((A . 3) (B . 6))
(println (inc ’A) (inc ’B 2))))

-> tst

(journal ’any ..) -> T

Reads journal data from the files with the names any, and writes all changes
to the database. See also pool.

: (journal "db.log")
-> T

Chapter 39

Symbols starting with K

+Key

Prefix class for maintaining unique indexes to +relations, a subclass of
+index. Accepts an optional argument for a +Hook attribute. See also
Database.

(rel nr (+Need +Key +Number)) # Mandatory, unique Customer/Supplier number

(key [’cnt]) -> sym

Returns the next character from standard input as a single-character transient
symbol. The console is set to raw mode. While waiting for a key press, a
select system call is executed for all file descriptors and timers in the VAL
of the global variable *Run. If cnt is non-NIL, that amount of milliseconds
is waited maximally, and NIL is returned upon timeout. See also raw and
wait.

: (key) # Wait for a key
-> "a" # ’a’ pressed

1153

1154 39 Symbols starting with K

(kill ’pid [’cnt]) -> flg

Sends a signal with the signal number cnt (or SIGTERM if cnt is not given)
to the process with the ID pid. Returns T if successful.

: (kill *Pid 20) # Stop current process

[2]+ Stopped pil + # Unix shell
$ fg # Job control: Foreground
pil +
-> T # ’kill’ was successful

Chapter 40

Symbols starting with L

*Led

A global variable holding a (possibly empty) prg body that implements a
“Line editor”. When non-NIL, it should return a single symbol (string) upon
execution.

: (de *Led "(bye)")
*Led redefined
-> *Led
: $ # Exit

+Link

Class for object relations, a subclass of +relation. Expects a list of
classes as type of the referred database object (of class +Entity). See also
Database.

(rel sup (+Ref +Link) NIL (+CuSu)) # Supplier (class Customer/Supplier)

1155

1156 40 Symbols starting with L

+List

Prefix class for a list of identical relations. Objects of that class maintain a list
of Lisp data of uniform type. See also Database.

(rel pos (+List +Joint) ord (+Pos)) # Positions
(rel nm (+List +Fold +Ref +String)) # List of folded and indexed names
(rel val (+Ref +List +Number)) # Indexed list of numeric values

(last ’lst) -> any

Returns the last element of lst. See also fin and tail.

: (last (1 2 3 4))
-> 4
: (last ’((a b) c (d e f)))
-> (d e f)

(later ’var . prg) -> var

Executes prg in a pipe’ed child process. The return value of prg will later
be available in var.

: (prog1 # Parallel background calculation of square numbers
(mapcan ’((N) (later (cons) (* N N))) (1 2 3 4))
(wait NIL (full @)))

-> (1 4 9 16)

(ld) -> any

loads the last file edited with vi.

40 Symbols starting with L 1157

: (vi ’main)
-> T
: (ld)
main redefined
-> go

(le0 ’any) -> num | NIL

Returns num when the argument is a number less or equal zero, otherwise
NIL. See also lt0, ge0, gt0, =0 and n0.

: (le0 -2)
-> -2
: (le0 0)
-> 0
: (le0 3)
-> NIL

(leaf ’tree) -> any

Returns the first leaf (i.e. the value of the smallest key) in a database tree. See
also tree, minKey, maxKey and step.

: (leaf (tree ’nr ’+Item))
-> {3-1}
: (db ’nr ’+Item (minKey (tree ’nr ’+Item)))
-> {3-1}

(length ’any) -> cnt | T

Returns the “length” of any. For numbers this is the number of decimal digits
in the value (plus 1 for negative values), for symbols it is the number of char-
acters in the name, and for lists it is the number of elements (or T for circular
lists). See also size.

1158 40 Symbols starting with L

: (length "abc")
-> 3
: (length "bc")
-> 3
: (length 123)
-> 3
: (length (1 (2) 3))
-> 3
: (length (1 2 3 .))
-> T

(let sym ’any . prg) -> any

(let (sym ’any ..) . prg) -> any

Defines local variables. The value of the symbol sym - or the values of the
symbols sym in the list of the second form - are saved and the symbols are
bound to the evaluated any arguments. prg is executed, then the symbols are
restored to their original values. The result of prg is returned. It is an error
condition to pass NIL as a sym argument. See also let?, bind, recur,
with, for, job and use.

: (setq X 123 Y 456)
-> 456
: (let X "Hello" (println X))
"Hello"
-> "Hello"
: (let (X "Hello" Y "world") (prinl X " " Y))
Hello world
-> "world"
: X
-> 123
: Y
-> 456

(let? sym ’any . prg) -> any

Conditional local variable binding and execution: If any evalutes to NIL,
NIL is returned. Otherwise, the value of the symbol sym is saved and sym is
bound to the evaluated any argument. prg is executed, then sym is restored

40 Symbols starting with L 1159

to its original value. The result of prg is returned. It is an error condition to
pass NIL as the sym argument. (let? sym ’any ..) is equivalent to
(when ’any (let sym @ ..)). See also let, bind, job and use.

: (setq Lst (1 NIL 2 NIL 3))
-> (1 NIL 2 NIL 3)
: (let? A (pop ’Lst) (println ’A A))
A 1
-> 1
: (let? A (pop ’Lst) (println ’A A))
-> NIL

(lieu ’any) -> sym | NIL

Returns the argument any when it is an external symbol and currently mani-
fest in heap space, otherwise NIL. See also ext?.

: (lieu *DB)
-> {1}

(line ’flg [’cnt ..]) -> lst|sym

Reads a line of characters from the current input channel. End of line is recog-
nized as linefeed (hex “0A”), carriage return (hex “0D”), or the combination
of both. (Note that a single carriage return may not work on network connec-
tions, because the character look-ahead to distinguish from return+linefeed
can block the connection.) If flg is NIL, a list of single-character transient
symbols is returned. When cnt arguments are given, subsequent characters of
the input line are grouped into sublists, to allow parsing of fixed field length
records. If flg is non-NIL, strings are returned instead of single-character
lists. NIL is returned upon end of file. See also char, till and eof.

1160 40 Symbols starting with L

: (line)
abcdefghijkl
-> ("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l")
: (line T)
abcdefghijkl
-> "abcdefghijkl"
: (line NIL 1 2 3)
abcdefghijkl
-> (("a") ("b" "c") ("d" "e" "f") "g" "h" "i" "j" "k" "l")
: (line T 1 2 3)
abcdefghijkl
-> ("a" "bc" "def" "g" "h" "i" "j" "k" "l")

(lines ’any ..) -> cnt

Returns the sum of the number of lines in the files with the names any, or
NIL if none was found. See also info.

: (lines "x.l")
-> 11

(link ’any ..) -> any

Links one or several new elements any to the end of the list in the current
make environment. This operation is efficient also for long lists, because a
pointer to the last element of the list is maintained. link returns the last
linked argument. See also yoke, chain and made.

: (make
(println (link 1))
(println (link 2 3)))

1
3
-> (1 2 3)

40 Symbols starting with L 1161

(lint ’sym) -> lst

(lint ’sym ’cls) -> lst

(lint ’(sym . cls)) -> lst

Checks the function definition or file contents (in the first form), or the method
body of sym (second and third form), for possible pitfalls. Returns an associa-
tion list of diagnoses, where var indicates improper variables, dup duplicate
parameters, def an undefined function, bnd an unbound variable, and use
unused variables. See also noLint, lintAll, debug, trace and *Dbg.

: (de foo (R S T R) # ’T’ is a improper parameter, ’R’ is duplicated
(let N 7 # ’N’ is unused

(bar X Y))) # ’bar’ is undefined, ’X’ and ’Y’ are not bound
-> foo
: (lint ’foo)
-> ((var T) (dup R) (def bar) (bnd Y X) (use N))

(lintAll [’sym ..]) -> lst

Applies lint to all internal symbols - and optionally to all files sym - and
returns a list of diagnoses. See also noLint.

: (more (lintAll "file1.l" "file2.l"))
...

(lisp ’sym [’fun]) -> num

(64-bit version only) Installs under the tag sym a callback function fun, and
returns a pointer num suitable to be passed to a C function via ‘native’. If fun
is NIL, the corresponding entry is freed. Maximally 24 callback functions can
be installed that way. ‘fun’ should be a function of maximally five numbers,
and should return a number. “Numbers” in this context are 64-bit scalars, and
may not only represent integers, but also pointers or other encoded data. See
also native.

1162 40 Symbols starting with L

(load "lib/native.l")

(gcc "ltest" NIL
(cbTest (Fun) cbTest ’N Fun))

long cbTest(int(*fun)(int,int,int,int,int)) {
return fun(1,2,3,4,5);

}
/**/

: (cbTest
(lisp ’cbTest

’((A B C D E)
(msg (list A B C D E))
(* A B C D E))))

(1 2 3 4 5)
-> 120

(list ’any [’any ..]) -> lst

Returns a list of all any arguments. See also cons.

: (list 1 2 3 4)
-> (1 2 3 4)
: (list ’a (2 3) "OK")
-> (a (2 3) "OK")

lst/3

Pilog predicate that returns subsequent list elements, after applying the get
algorithm to that object and the following arguments. Often used in database
queries. See also map/3.

: (? (db nr +Ord 1 @Ord) (lst @Pos @Ord pos))
@Ord={3-7} @Pos={4-1}
@Ord={3-7} @Pos={4-2}
@Ord={3-7} @Pos={4-3}

-> NIL

40 Symbols starting with L 1163

(lst? ’any) -> flg

Returns T when the argument any is a (possibly empty) list (NIL or a cons
pair cell). See also pair.

: (lst? NIL)
-> T
: (lst? (1 . 2))
-> T
: (lst? (1 2 3))
-> T

(listen ’cnt1 [’cnt2]) -> cnt | NIL

Listens at a socket descriptor cnt1 (as received by port) for an incoming
connection, and returns the new socket descriptor cnt. While waiting for
a connection, a select system call is executed for all file descriptors and
timers in the VAL of the global variable *Run. If cnt2 is non-NIL, that
amount of milliseconds is waited maximally, and NIL is returned upon time-
out. The global variable *Adr is set to the IP address of the client. See also
accept, connect, *Adr.

: (setq *Socket
(listen (port 6789) 60000)) # Listen at port 6789 for max 60 seconds

-> 4
: *Adr
-> "127.0.0.1"

(lit ’any) -> any

Returns the literal (i.e. quoted) value of any, by consing it with the quote
function if necessary.

1164 40 Symbols starting with L

: (lit T)
-> T
: (lit 1)
-> 1
: (lit ’(1))
-> (1)
: (lit ’(a))
-> ’(a)

(load ’any ..) -> any

Loads all any arguments. Normally, the name of each argument is taken as a
file to be executed in a read-eval loop. The argument semantics are identical
to that of in, with the exception that if an argument is a symbol and its first
character is a hyphen ‘-’, then that argument is parsed as an executable list
(without the surrounding parentheses). When any is T, all remaining com-
mand line arguments are loaded recursively. When any is NIL, standard
input is read, a prompt is issued before each read operation, the results are
printed to standard output (read-eval-print loop), and load terminates when
an empty line is entered. In any case, load terminates upon end of file, or
when NIL is read. The index for transient symbols is cleared before and after
the load, so that all transient symbols in a file have a local scope. If the names-
pace was switched (with symbols) while executing a file, it is restored to
the previous one. Returns the value of the last evaluated expression. See also
script, ipid, call, file, in, out and str.

: (load "lib.l" "-* 1 2 3")
-> 6

(loc ’sym ’lst) -> sym

Locates in lst a transient symbol with the same name as sym. Allows
to get hold of otherwise inaccessible symbols. See also ====.

: (loc "X" curry)
-> "X"
: (== @ "X")
-> NIL

40 Symbols starting with L 1165

(local lst) -> sym

Wrapper function for zap. Typically used to create namespace-local symbols.
lst should be a list of symbols. See also pico, symbols, import and
intern.

(symbols ’myLib ’pico)

(local bar foo)
(de foo (A) # ’foo’ is local to ’myLib’

...
(de bar (B) # ’bar’ is local to ’myLib’

...

(locale ’sym1 ’sym2 [’sym ..])

Sets the current locale to that given by the country file sym1 and the language
file sym2 (both located in the “loc/” directory), and optional application-
specific directories sym. The locale influences the language, and numerical,
date and other formats. See also *Uni, datStr, strDat, expDat, day,
telStr, expTel and and money.

: (locale "DE" "de" "app/loc/")
-> "Zip"
: ,"Yes"
-> "Ja"

(lock [’sym]) -> cnt | NIL

Write-locks an external symbol sym (file record locking), or the whole
database root file if sym is NIL. Returns NIL if successful, or the ID of
the process currently holding the lock. When sym is non-NIL, the lock is
released at the next top level call to commit or rollback, otherwise only
when another database is opened with pool, or when the process terminates.
See also *Solo.

1166 40 Symbols starting with L

: (lock ’{1}) # Lock single object
-> NIL
: (lock) # Lock whole database
-> NIL

(loop [’any | (NIL ’any . prg) | (T ’any
. prg) ..]) -> any

Endless loop with multiple conditional exits: The body is executed an unlim-
ited number of times. If a clause has NIL or T as its CAR, the clause’s second
element is evaluated as a condition and - if the result is NIL or non-NIL,
respectively - the prg is executed and the result returned. See also do and
for.

: (let N 3
(loop

(prinl N)
(T (=0 (dec ’N)) ’done)))

3
2
1
-> done

(low? ’any) -> sym | NIL

Returns any when the argument is a string (symbol) that starts with a lower-
case character. See also lowc and upp?

: (low? "a")
-> "a"
: (low? "A")
-> NIL
: (low? 123)
-> NIL
: (low? ".")
-> NIL

40 Symbols starting with L 1167

(lowc ’any) -> any

Lower case conversion: If any is not a symbol, it is returned as it is. Other-
wise, a new transient symbol with all characters of any, converted to lower
case, is returned. See also uppc, fold and low?.

: (lowc 123)
-> 123
: (lowc "ABC")
-> "abc"

(lt0 ’any) -> num | NIL

Returns num when the argument is a number and less than zero, otherwise
NIL. See also le0, ge0, gt0, =0 and n0.

: (lt0 -2)
-> -2
: (lt0 3)
-> NIL

(lup ’lst ’any) -> lst

(lup ’lst ’any ’any2) -> lst

Looks up any in the CAR-elements of cells stored in the index tree lst,
as built-up by idx. In the first form, the first found cell is returned, in the
second form a list of all cells whose CAR is in the range any .. any2. See
also assoc.

1168 40 Symbols starting with L

: (idx ’A ’a T)
-> NIL
: (idx ’A (1 . b) T)
-> NIL
: (idx ’A 123 T)
-> NIL
: (idx ’A (1 . a) T)
-> NIL
: (idx ’A (1 . c) T)
-> NIL
: (idx ’A (2 . d) T)
-> NIL
: (idx ’A)
-> (123 a (1 . a) (1 . b) (1 . c) (2 . d))
: (lup A 1)
-> (1 . b)
: (lup A 2)
-> (2 . d)
: (lup A 1 1)
-> ((1 . a) (1 . b) (1 . c))
: (lup A 1 2)
-> ((1 . a) (1 . b) (1 . c) (2 . d))

Chapter 41

Symbols starting with M

*Msg

A global variable holding the last recently issued error message. See also
Error Handling, *Err and ˆ.

: (+ ’A 2)
!? (+ ’A 2)
A -- Number expected
?
:
: *Msg
-> "Number expected"

+Mis

Prefix class to explicitly specify validation functions for +relations. Ex-
pects a function that takes a value and an entity object, and returns NIL if
everything is correct, or an error string. See also Database.

(class +Ord +Entity) # Order class
(rel pos (+Mis +List +Joint) # List of positions in that order

((Val Obj)
(when (memq NIL Val)

"There are empty positions"))
ord (+Pos))

1169

1170 41 Symbols starting with M

(macro prg) -> any

Substitues all pat? symbols in prg (using fill), and executes the result
with run. Used occasionally to call functions which otherwise do not evaluate
their arguments.

: (de timerMessage (@N . @Prg)
(setq @N (- @N))
(macro

(task @N 0 . @Prg)))
-> timerMessage
: (timerMessage 6000 (println ’Timer 6000))
-> (-6000 0 (println ’Timer 6000))
: (timerMessage 12000 (println ’Timer 12000))
-> (-12000 0 (println ’Timer 12000))
: (more *Run)
(-12000 2616 (println ’Timer 12000))
(-6000 2100 (println ’Timer 6000))
-> NIL
: Timer 6000
Timer 12000
...

(made [’lst1 [’lst2]]) -> lst

Initializes a new list value for the current make environment. All list elements
already produced with chain and link are discarded, and lst1 is used
instead. Optionally, lst2 can be specified as the new linkage cell, otherwise
the last cell of lst1 is used. When called without arguments, made does not
modify the environment. In any case, the current list is returned.

: (make
(link ’a ’b ’c) # Link three items
(println (made)) # Print current list (a b c)
(made (1 2 3)) # Discard it, start new with (1 2 3)
(link 4)) # Link 4

(a b c)
-> (1 2 3 4)

41 Symbols starting with M 1171

(mail ‘any ‘cnt ‘sym1 ‘sym2|lst1 ‘sym3
‘lst2 . prg)’

Sends an eMail via SMTP to a mail server at host any, port cnt. sym1
should be the “from” address, sym2|lst1 the “to” address(es), and sym3
the subject. lst2 is a list of attachments, each one specified by three elements
for path, name and mime type. prg generates the mail body with prEval.
See also connect.

(mail "localhost" 25 # Local mail server
"a@bc.de" # "From" address
"abu@software-lab.de" # "To" address
"Testmail" # Subject
(quote

"img/go.png" "go.png" "image/png" # First attachment
"img/7fach.gif" "7fach.gif" "image/gif") # Second attachment

"Hello," # First line
NIL # (empty line)
(prinl (pack "This is mail #" (+ 3 4)))) # Third line

(make .. [(made ’lst ..)] .. [(link ’any
..)] ..) -> any

Initializes and executes a list-building process with the made, chain, link
and yoke functions, and returns the result list. For efficiency, pointers to the
head and the tail of the list are maintained internally.

: (make (link 1) (link 2 3) (link 4))
-> (1 2 3 4)
: (make (made (1 2 3)) (link 4))
-> (1 2 3 4)

(map ’fun ’lst ..) -> lst

Applies fun to lst and all successive CDRs. When additional lst argu-
ments are given, they are passed to fun in the same way. Returns the result of

1172 41 Symbols starting with M

the last application. See also mapc, maplist, mapcar, mapcon, mapcan
and filter.

: (map println (1 2 3 4) ’(A B C))
(1 2 3 4) (A B C)
(2 3 4) (B C)
(3 4) (C)
(4) NIL
-> NIL

map/3

Pilog predicate that returns a list and subsequent CDRs of that list, after ap-
plying the get algorithm to that object and the following arguments. Often
used in database queries. See also lst/3.

: (? (db nr +Ord 1 @Ord) (map @L @Ord pos))
@Ord={3-7} @L=({4-1} {4-2} {4-3})
@Ord={3-7} @L=({4-2} {4-3})
@Ord={3-7} @L=({4-3})

-> NIL

(mapc ’fun ’lst ..) -> any

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns the result of the last
application. See also map, maplist, mapcar, mapcon, mapcan and
filter.

: (mapc println (1 2 3 4) ’(A B C))
1 A
2 B
3 C
4 NIL
-> NIL

41 Symbols starting with M 1173

(mapcan ’fun ’lst ..) -> lst

Applies fun to each element of lst. When additional lst arguments
are given, their elements are also passed to fun. Returns a (destructively)
concatenated list of all results. See also map, mapc, maplist, mapcar,
mapcon, filter.

: (mapcan reverse ’((a b c) (d e f) (g h i)))
-> (c b a f e d i h g)

(mapcar ’fun ’lst ..) -> lst

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns a list of all results. See
also map, mapc, maplist, mapcon, mapcan and filter.

: (mapcar + (1 2 3) (4 5 6))
-> (5 7 9)
: (mapcar ’((X Y) (+ X (* Y Y))) (1 2 3 4) (5 6 7 8))
-> (26 38 52 68)

(mapcon ’fun ’lst ..) -> lst

Applies fun to lst and all successive CDRs. When additional lst argu-
ments are given, they are passed to fun in the same way. Returns a (de-
structively) concatenated list of all results. See also map, mapc, maplist,
mapcar, mapcan and filter.

: (mapcon copy ’(1 2 3 4 5))
-> (1 2 3 4 5 2 3 4 5 3 4 5 4 5 5)

1174 41 Symbols starting with M

(maplist ’fun ’lst ..) -> lst

Applies fun to lst and all successive CDRs. When additional lst argu-
ments are given, they are passed to fun in the same way. Returns a list of all
results. See also map, mapc, mapcar, mapcon, mapcan and filter.

: (maplist cons (1 2 3) ’(A B C))
-> (((1 2 3) A B C) ((2 3) B C) ((3) C))

(maps ’fun ’sym [’lst ..]) -> any

Applies fun to all properties of sym. When additional lst arguments are
given, their elements are also passed to fun. Returns the result of the last
application. See also putl and getl.

: (put ’X ’a 1)
-> 1
: (put ’X ’b 2)
-> 2
: (put ’X ’flg T)
-> T
: (getl ’X)
-> (flg (2 . b) (1 . a))
: (maps println ’X ’(A B))
flg A
(2 . b) B
(1 . a) NIL
-> NIL

(mark ’sym|0 [’NIL | ’T | ’0]) -> flg

Tests, sets or resets a mark for sym in the database (for a second argument of
NIL, T or 0, respectively), and returns the old value. The marks are local to
the current process (not stored in the database), and vanish when the process
terminates. If the first argument is zero, all marks are cleared.

41 Symbols starting with M 1175

: (pool "db")
-> T
: (mark ’{1} T) # Mark
-> NIL
: (mark ’{1}) # Test
-> T # -> marked
: (mark ’{1} 0) # Unmark
-> T
: (mark ’{1}) # Test
-> NIL # -> unmarked

(match ’lst1 ’lst2) -> flg

Takes lst1 as a pattern to be matched against lst2, and returns T when
successful. Atoms must be equal, and sublists must match recursively. Sym-
bols in the pattern list with names starting with an at-mark “@” (see pat?)
are taken as wildcards. They can match zero, one or more elements, and are
bound to the corresponding data. See also chop, split and fill.

: (match ’(@A is @B) ’(This is a test))
-> T
: @A
-> (This)
: @B
-> (a test)
: (match ’(@X (d @Y) @Z) ’((a b c) (d (e f) g) h i))
-> T
: @X
-> ((a b c))
: @Y
-> ((e f) g)
: @Z
-> (h i)

(max ’any ..) -> any

Returns the largest of all any arguments. See also min and Comparing.

1176 41 Symbols starting with M

: (max 2 ’a ’z 9)
-> z
: (max (5) (2 3) ’X)
-> (5)

(maxKey ’tree [’any1 [’any2]]) -> any

Returns the largest key in a database tree. If a minimal key any1 and/or a
maximal key any2 is given, the largest key from that range is returned. See
also tree, leaf, minKey and genKey.

: (maxKey (tree ’nr ’+Item))
-> 7
: (maxKey (tree ’nr ’+Item) 3 5)
-> 5

(maxi ’fun ’lst ..) -> any

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns that element from lst
for which fun returned a maximal value. See also mini and sort.

: (setq A 1 B 2 C 3)
-> 3
: (maxi val ’(A B C))
-> C
: (maxi # Symbol with largest list value

’((X)
(and (pair (val X)) (size @)))

(what))
-> *History

(member ’any ’lst) -> any

Returns the tail of lst that starts with any when any is a member of lst,
otherwise NIL. See also memq, assoc and idx.

41 Symbols starting with M 1177

: (member 3 (1 2 3 4 5 6))
-> (3 4 5 6)
: (member 9 (1 2 3 4 5 6))
-> NIL
: (member ’(d e f) ’((a b c) (d e f) (g h i)))
-> ((d e f) (g h i))

member/2

Pilog predicate that succeeds if the the first argument is a member of the list
in the second argument. See also equal/2 and member.

: (? (member @X (a b c)))
@X=a
@X=b
@X=c

-> NIL

(memq ’any ’lst) -> any

Returns the tail of lst that starts with any when any is a member of
lst, otherwise NIL. == is used for comparison (pointer equality). See also
member, mmeq, asoq, delq and Comparing.

: (memq ’c ’(a b c d e f))
-> (c d e f)
: (memq (2) ’((1) (2) (3)))
-> NIL

(meta ’obj|typ ’sym [’sym2|cnt ..]) ->
any

Fetches a property value any, by searching the property lists of the classes
and superclasses of obj, or the classes in typ, for the property key sym, and
by applying the get algorithm to the following optional arguments. See also
var:.

1178 41 Symbols starting with M

: (setq A ’(B)) # Be ’A’ an object of class ’B’
-> (B)
: (put ’B ’a 123)
-> 123
: (meta ’A ’a) # Fetch ’a’ from ’B’
-> 123

(meth ’obj [’any ..]) -> any

This function is usually not called directly, but is used by dm as a template
to initialize the VAL of message symbols. It searches for itself in the meth-
ods of obj and its classes and superclasses, and executes that method. An
error ’’Bad message’’ is issued if the search is unsuccessful. See also
OO Concepts, method, send and try.

: meth
-> 67283504 # Value of ’meth’
: stop>
-> 67283504 # Value of any message

(method ’msg ’obj) -> fun

Returns the function body of the method that would be executed upon sending
the message msg to the object obj. If the message cannot be located in obj,
its classes and superclasses, NIL is returned. See also OO Concepts, send,
try, meth, super, extra, class.

: (method ’mis> ’+Number)
-> ((Val Obj) (and Val (not (num? Val)) "Numeric input expected"))

(min ’any ..) -> any

Returns the smallest of all any arguments. See also max and Comparing.

41 Symbols starting with M 1179

: (min 2 ’a ’z 9)
-> 2
: (min (5) (2 3) ’X)
-> X

(minKey ’tree [’any1 [’any2]]) -> any

Returns the smallest key in a database tree. If a minimal key any1 and/or a
maximal key any2 is given, the smallest key from that range is returned. See
also tree, leaf, maxKey and genKey.

: (minKey (tree ’nr ’+Item))
-> 1
: (minKey (tree ’nr ’+Item) 3 5)
-> 3

(mini ’fun ’lst ..) -> any

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns that element from lst
for which fun returned a minimal value. See also maxi and sort.

: (setq A 1 B 2 C 3)
-> 3
: (mini val ’(A B C))
-> A

(mix ’lst cnt|’any ..) -> lst

Builds a list from the elements of the argument lst, as specified by the fol-
lowing cnt|’any arguments. If such an argument is a number, the cnt’th
element from lst is taken, otherwise that argument is evaluated and the result
is used.

1180 41 Symbols starting with M

: (mix ’(a b c d) 3 4 1 2)
-> (c d a b)
: (mix ’(a b c d) 1 ’A 4 ’D)
-> (a A d D)

(mmeq ’lst ’lst) -> any

Returns the tail of the second argument lst that starts with a member of
the first argument lst, otherwise NIL. == is used for comparison (pointer
equality). See also member, memq, asoq and delq.

: (mmeq ’(a b c) ’(d e f))
-> NIL
: (mmeq ’(a b c) ’(d b x))
-> (b x)

(money ’num [’sym]) -> sym

Formats a number num into a digit string with two decimal places, according
to the current locale. If an additional currency name is given, it is appended
(separated by a space). See also telStr, datStr and format.

: (money 123456789)
-> "1,234,567.89"
: (money 12345 "EUR")
-> "123.45 EUR"
: (locale "DE" "de")
-> NIL
: (money 123456789 "EUR")
-> "1.234.567,89 EUR"

(more ’lst [’fun]) -> flg

(more ’cls) -> any

41 Symbols starting with M 1181

Displays the elements of lst (first form), or the type and methods of cls
(second form). fun defaults to print. In the second form, the method def-
initions of cls are pretty-printed with pp. After each step, more waits for
console input, and terminates when a non-empty line is entered. In that case,
T is returned, otherwise (when end of data is reached) NIL. See also query
and show.

: (more (all)) # Display all internal symbols
inc>
leaf
nil
inc!
accept. # Stop
-> T

: (more (all) show) # ’show’ all internal symbols
inc> 67292896

*Dbg ((859 . "lib/db.l"))

leaf ((Tree) (let (Node (cdr (root Tree)) X)
(while (val Node) (setq X (cadr @) Node (car @))) (cddr X)))

*Dbg ((173 . "lib/btree.l"))

nil 67284680
T (((@X) (@ not (-> @X))))

. # Stop
-> T

: (more ’+Link) # Display a class
(+relation)

(dm mis> (Val Obj)
(and

Val
(nor (isa (: type) Val) (canQuery Val))
"Type error"))

(dm T (Var Lst)
(unless (=: type (car Lst)) (quit "No Link" Var))
(super Var (cdr Lst)))

-> NIL

1182 41 Symbols starting with M

(msg ’any [’any ..]) -> any

Prints any with print, followed by all any arguments (printed with prin)
and a newline, to standard error. The first any argument is returned.

: (msg (1 a 2 b 3 c) " is a mixed " "list")
(1 a 2 b 3 c) is a mixed list
-> (1 a 2 b 3 c)

Chapter 42

Symbols starting with N

+Need

Prefix class for mandatory +relations. Note that this does not enforce any
requirements by itself, it only returns an error message if the mis> message
is explicitly called, e.g. by GUI functions. See also Database.

(rel nr (+Need +Key +Number)) # Item number is mandatory

+Number

Class for numeric relations, a subclass of +relation. Accepts an optional
argument for the fixpoint scale (currently not used). See also Database.

(rel pr (+Number) 2) # Price, with two decimal places

(n== ‘any ..) -> flg

Returns T when not all any arguments are the same (pointer equality). (n==
‘any ..) is equivalent to (not (== ‘any ..)). See also == and
Comparing.

1183

1184 42 Symbols starting with N

: (n== ’a ’a)
-> NIL
: (n== (1) (1))
-> T

(n0 ’any) -> flg

Returns T when any is not a number with value zero. See also =0, lt0, le0,
ge0 and gt0.

: (n0 (- 6 3 2 1))
-> NIL
: (n0 ’a)
-> T

(nT ’any) -> flg

Returns T when any is not the symbol T. See also =T.

: (nT 0)
-> T
: (nT "T")
-> T
: (nT T)
-> NIL

(name ’sym [’sym2]) -> sym

Returns, if sym2 is not given, a new transient symbol with the name of sym.
Otherwise sym must be a transient symbol, and its name is changed to that of
sym2 (note that this may give inconsistencies if the symbol is still referred to
from other namespaces). See also str, sym, symbols, zap and intern.

42 Symbols starting with N 1185

: (name ’abc)
-> "abc"
: (name "abc")
-> "abc"
: (name ’{abc})
-> "abc"
: (name (new))
-> NIL
: (de foo (Lst) (car Lst)) # ’foo’ calls ’car’
-> foo
: (intern (name (zap ’car) "xxx")) # Globally change the name of ’car’
-> xxx
: (xxx (1 2 3))
-> 1
: (pp ’foo)
(de foo (Lst)

(xxx Lst)) # Name changed
-> foo
: (foo (1 2 3)) # ’foo’ still works
-> 1
: (car (1 2 3)) # Reader returns a new ’car’ symbol
!? (car (1 2 3))
car -- Undefined
?

(nand ’any ..) -> flg

Logical NAND. The expressions any are evaluated from left to right. If NIL
is encountered, T is returned immediately. Else NIL is returned. (nand ..)
is equivalent to (not (and ..)).

: (nand (lt0 7) (read))
-> T
: (nand (lt0 -7) (read))
abc
-> NIL
: (nand (lt0 -7) (read))
NIL
-> T

1186 42 Symbols starting with N

(native ’cnt1|sym1 ’cnt2|sym2 ’sym|lst
’any ..) -> any

(64-bit version only) Calls a native C function. The first argument should spec-
ify a shared object library, either ’’@’’ (the current main program), sym1
(a library path name), or cnt1 (a library handle obtained by a previous call).
The second argument should be a symbol name sym2, or a function pointer
cnt2 obtained by a previous call). Practically, the first two arguments will
be always passed as transient symbols, which will get the library handle and
function pointer assigned as values to be cached and used in subsequent calls.
The third sym|lst argument is a return value specification, while all follow-
ing arguments are the arguments to the native function.

The return value specification may either be one of the atoms

NIL void
B byte # Byte (unsigned 8 bit)
C char # Character (UTF-8, 1-3 bytes)
I int # Integer (signed 32 bit)
N long # Long or pointer (signed 64 bit)
S string # String (UTF-8)

-1.0 float # Scaled fixpoint number
+1.0 double # Scaled fixpoint number

or nested lists of these atoms with size specifications to denote arrays and
structures, e.g.

(N . 4) # long[4]; -> (1 2 3 4)
(N (C . 4)) # {long; char[4];} -> (1234 ("a" "b" "c" NIL))
(N (B . 7)) # {long; byte[7];} -> (1234 (1 2 3 4 5 6 7))

Arguments can be

· integers (up to 64-bit) or pointers, passed as numbers

· fixpoint numbers, passed as cons pairs consisting of a the value and the
scale. If the scale is positive, the number is passed as a double, otherwise
as a float.

· strings, passed as symbols, or

· structures, passed as lists with

· a variable in the CAR (to recieve the returned structure data, ignored
when the CAR is NIL)

42 Symbols starting with N 1187

· a cons pair for the size and value specification in the CADR (see
above), and

· an optional sequence of initialization items in the CDDR, where each
may be

· a positive number, stored as an unsigned byte value

· a negative number, whose absolute value is stored as an unsigned inte-
ger

· a pair (num . cnt) where ‘num’ is stored in a field of ‘cnt’ bytes

· a pair (sym . cnt) where ‘sym’ is stored as a null-terminated
string in a field of ‘cnt’ bytes

If the last CDR of the initialization sequence is a number, it is used as
a fill-byte value for the remaining space in the structure.

native takes care of allocating memory for strings, arrays or structures, and
frees that memory when done.

The number of fixpoint arguments is limited to six. For NaN or negative in-
finity NIL, and for positive infinity T is returned.

: (native "@" "getenv" ’S "TERM") # Same as (sys "TERM")
-> "xterm"

: (native "@" "printf" ’I "abc%d%sˆJ" (+ 3 4) (pack "X" "Y" "Z"))
abc7XYZ
-> 8

: (native "@" "printf" ’I "This is %.3fˆJ" (123456 . 1000))
This is 123.456
-> 16

: (use Tim
(native "@" "time" NIL ’(Tim (8 B . 8))) # time_t 8 # Get time_t structure
(native "@" "localtime" ’(I . 9) (cons NIL (8) Tim))) # Read local time

-> (32 18 13 31 11 109 4 364 0) # 13:18:32, Dec. 31st, 2009

The C function may in turn call a function

long lisp(char*, long, long, long, long, long);

which accepts a symbol name as the first argument, and up to 5 numbers.
lisp() calls that symbol with the five numbers, and expects a numeric return

1188 42 Symbols starting with N

value. “Numbers” in this context are 64-bit scalars, and may not only represent
integers, but also pointers or other encoded data. See also errno and lisp.

(need ’cnt [’lst [’any]]) -> lst

(need ’cnt [’num|sym]) -> lst

Produces a list of at least cnt elements. When called without optional ar-
guments, a list of cnt NIL’s is returned. When lst is given, it is extended
to the left (if cnt is positive) or (destructively) to the right (if cnt is nega-
tive) with any elements. In the second form, a list of cnt atomic values is
returned. See also range.

: (need 5)
-> (NIL NIL NIL NIL NIL) # Allocate 5 cells
: (need 5 ’(a b c))
-> (NIL NIL a b c)
: (need -5 ’(a b c))
-> (a b c NIL NIL)
: (need 5 ’(a b c) " ") # String alignment
-> (" " " " a b c)
: (need 7 0)
-> (0 0 0 0 0 0 0)

(new [’flg|num] [’typ [’any ..]]) -> obj

Creates and returns a new object. If flg is given and non-NIL, the new object
will be an external symbol (created in database file 1 if T, or in the correspond-
ing database file if num is given). typ (typically a list of classes) is assigned
to the VAL, and the initial T message is sent with the arguments any to the
new object. If no T message is defined for the classes in typ or their super-
classes, the any arguments should evaluate to alternating keys and values for
the initialization of the new object. See also box, object, class, type,
isa, send and Database.

: (new)
-> $134426427
: (new T ’(+Address))
-> {1A;3}

42 Symbols starting with N 1189

(new! ’typ [’any ..]) -> obj

Transaction wrapper function for new. (new! ’(+Cls) ’key ’val
...) is equivalent to (dbSync) (new (db: +Cls) ’(+Cls) ’key
’val ...) (commit ’upd). See also set!, put! and inc!.

: (new! ’(+Item) # Create a new item
’nr 2 # Item number
’nm "Spare Part" # Description
’sup (db ’nr ’+CuSu 2) # Supplier
’inv 100 # Inventory
pr 12.50) # Price

(next) -> any

Can only be used inside functions with a variable number of arguments (with
@). Returns the next argument from the internal list. See also args, arg,
rest, and pass.

: (de foo @ (println (next))) # Print next argument
-> foo
: (foo)
NIL
-> NIL
: (foo 123)
123
-> 123

(nil . prg) -> NIL

Executes prg, and returns NIL. See also t, prog, prog1 and prog2.

: (nil (println ’OK))
OK
-> NIL

1190 42 Symbols starting with N

nil/1

Pilog predicate expects an argument variable, and succeeds if that variable is
bound to NIL. See also not/1.

: (? @X NIL (nil @X))
@X=NIL

-> NIL

(noLint ’sym)

(noLint ’sym|(sym . cls) ’sym2)

Excludes the check for a function definition of sym (in the first form), or
for variable binding and usage of sym2 in the function definition, file con-
tents or method body of sym (second form), during calls to lint. See also
lintAll.

: (de foo ()
(bar FreeVariable))

-> foo
: (lint ’foo)
-> ((def bar) (bnd FreeVariable))
: (noLint ’bar)
-> bar
: (noLint ’foo ’FreeVariable)
-> (foo . FreeVariable)
: (lint ’foo)
-> NIL

(nond (’any1 . prg1) (’any2 . prg2) ..)
-> any

Negated (“non-cond”) multi-way conditional: If any of the anyN conditions
evaluates to NIL, prgN is executed and the result returned. Otherwise (all
conditions evaluate to non-NIL), NIL is returned. See also cond, ifn and
unless.

42 Symbols starting with N 1191

: (nond
((= 3 3) (println 1))
((= 3 4) (println 2))
(NIL (println 3)))

2
-> 2

(nor ’any ..) -> flg

Logical NOR. The expressions any are evaluated from left to right. If a non-
NIL value is encountered, NIL is returned immediately. Else T is returned.
(nor ..) is equivalent to (not (or ..)).

: (nor (lt0 7) (= 3 4))
-> T

(not ’any) -> flg

Logical negation. Returns T if any evaluates to NIL.

: (not (== ’a ’a))
-> NIL
: (not (get ’a ’a))
-> T

not/1

Pilog predicate that succeeds if and only if the goal cannot be proven. See also
nil/1, true/0 and fail/0.

: (? (equal 3 4))
-> NIL
: (? (not (equal 3 4)))
-> T

1192 42 Symbols starting with N

(nth ’lst ’cnt ..) -> lst

Returns the tail of lst starting from the cnt’th element of lst. Successive
cnt arguments operate on the results in the same way. (nth ’lst 2) is
equivalent to (cdr ’lst). See also get.

: (nth ’(a b c d) 2)
-> (b c d)
: (nth ’(a (b c) d) 2 2)
-> (c)
: (cdadr ’(a (b c) d))
-> (c)

(num? ’any) -> num | NIL

Returns any when the argument any is a number, otherwise NIL.

: (num? 123)
-> 123
: (num? (1 2 3))
-> NIL

Chapter 43

Symbols starting with O

*Once

Holds an idx tree of already loaded source locations (as returned by file)
See also once.

: *Once
-> (("lib/" "misc.l" . 11) (("lib/" "http.l" . 9) (("lib/" "form.l" . 11))))

*OS

A global constant holding the name of the operating system. Possible values
include ’’Linux’’, ’’FreeBSD’’, ’’Darwin’’ or ’’Cygwin’’.

: *OS
-> "Linux"

(obj (typ var [hook] val ..) var2 val2
..) -> obj

Finds or creates a database object (using request) corresponding to (typ
var [hook] val ..), and initializes additional properties using the varN
and valN arguments.

1193

1194 43 Symbols starting with O

: (obj ((+Item) nr 2) nm "Spare Part" sup ‘(db ’nr ’+CuSu 2) inv 100 pr 1250)
-> {3-2}

(object ’sym ’any [’sym2 ’any2 ..]) ->
obj

Defines sym to be an object with the value (or type) any. The property
list is initialized with all optionally supplied key-value pairs. See also OO
Concepts, new, type and isa.

: (object ’Obj ’(+A +B +C) ’a 1 ’b 2 ’c 3)
-> Obj
: (show ’Obj)
Obj (+A +B +C)

c 3
b 2
a 1

-> Obj

(oct ’num [’num]) -> sym

(oct ’sym) -> num

Converts a number num to an octal string, or an octal string sym to a number.
In the first case, if the second argument is given, the result is separated by
spaces into groups of such many digits. See also bin, hex, fmt64, hax and
format.

: (oct 73)
-> "111"
: (oct "111")
-> 73
: (oct 1234567 3)
-> "4 553 207"

43 Symbols starting with O 1195

(off var ..) -> NIL

Stores NIL in all var arguments. See also on, onOff, zero and one.

: (off A B)
-> NIL
: A
-> NIL
: B
-> NIL

(offset ’lst1 ’lst2) -> cnt | NIL

Returns the cnt position of the tail list lst1 in lst2, or NIL if it is not
found. See also index and tail.

: (offset ’(c d e f) ’(a b c d e f))
-> 3
: (offset ’(c d e) ’(a b c d e f))
-> NIL

(on var ..) -> T

Stores T in all var arguments. See also off, onOff, zero and one.

: (on A B)
-> T
: A
-> T
: B
-> T

1196 43 Symbols starting with O

(once . prg) -> any

Executes prg once, when the current file is loaded the first time. Subsequent
loads at a later time will not execute prg, and once returns NIL. See also
*Once.

(once
(zero *Cnt1 *Cnt2) # Init counters
(load "file1.l" "file2.l")) # Load other files

(one var ..) -> 1

Stores 1 in all var arguments. See also zero, on, off and onOff.

: (one A B)
-> 1
: A
-> 1
: B
-> 1

(onOff var ..) -> flg

Logically negates the values of all var arguments. Returns the new value of
the last symbol. See also on, off, zero and one.

: (onOff A B)
-> T
: A
-> T
: B
-> T
: (onOff A B)
-> NIL
: A
-> NIL
: B
-> NIL

43 Symbols starting with O 1197

(open ’any [’flg]) -> cnt | NIL

Opens the file with the name any in read/write mode (or read-only if flg is
non-NIL), and returns a file descriptor cnt (or NIL on error). A leading “@”
character in any is substituted with the PicoLisp Home Directory, as it was
remembered during interpreter startup. If flg is NIL and the file does not
exist, it is created. The file descriptor can be used in subsequent calls to in
and out. See also close and poll.

: (open "x")
-> 3

(opid) -> pid | NIL

Returns the corresponding process ID when the current output channel is writ-
ing to a pipe, otherwise NIL. See also ipid and out.

: (out ’(cat) (call ’ps "-p" (opid)))
PID TTY TIME CMD

7127 pts/3 00:00:00 cat
-> T

(opt) -> sym

Return the next command line argument (“option”, as would be processed by
load) as a string, and remove it from the remaining command line arguments.
See also Invocation and argv.

$ pil -"de f () (println ’opt (opt))" -f abc -bye
opt "abc"

1198 43 Symbols starting with O

(or ’any ..) -> any

Logical OR. The expressions any are evaluated from left to right. If a non-
NIL value is encountered, it is returned immediately. Else the result of the last
expression is returned.

: (or (= 3 3) (read))
-> T
: (or (= 3 4) (read))
abc
-> abc

or/2

Pilog predicate that takes an arbitrary number of clauses, and succeeds if one
of them can be proven. See also not/1.

: (?
(or

((equal 3 @X) (equal @X 4))
((equal 7 @X) (equal @X 7))))

@X=7
-> NIL

(out ’any . prg) -> any

Opens any as output channel during the execution of prg. The current out-
put channel will be saved and restored appropriately. If the argument is NIL,
standard output is used. If the argument is a symbol, it is used as a file name
(opened in “append” mode if the first character is “+”). If it is a positve num-
ber, it is used as the descriptor of an open file. If it is a negative number, the
saved output channel such many levels above the current one is used. Other-
wise (if it is a list), it is taken as a command with arguments, and a pipe is
opened for output. See also opid, call, in, err, ctl, pipe, poll,
close and load.

: (out "a" (println 123 ’(a b c) ’def)) # Write one line to file "a"
-> def

Chapter 44

Symbols starting with P

*PPid

A global constant holding the process-id of the parent picolisp process, or
NIL if the current process is a top level process.

: (println *PPid *Pid)
NIL 5286

: (unless (fork) (println *PPid *Pid) (bye))
5286 5522

*Pid

A global constant holding the current process-id.

: *Pid
-> 6386
: (call "ps") # Show processes

PID TTY TIME CMD
....
6386 pts/1 00:00:00 pil # <- current process
6388 pts/1 00:00:00 ps
-> T

1199

1200 44 Symbols starting with P

*Prompt

Global variable holding a (possibly empty) prg body, which is executed

· and the result printed - every time before a prompt is output to the

console in the “read-eval-print-loop” (REPL).

: (de *Prompt (pack "[" (stamp) "]"))
*Prompt redefined
-> *Prompt
[2011-10-11 16:50:05]: (+ 1 2 3)
-> 6
[2011-10-11 16:50:11]:

(pack ’any ..) -> sym

Returns a transient symbol whose name is concatenated from all arguments
any. A NIL arguments contributes nothing to the result string, a number is
converted to a digit string, a symbol supplies the characters of its name, and
for a list its elements are taken. See also text and glue.

: (pack ’car " is " 1 ’(" symbol " name))
-> "car is 1 symbol name"

(pad ’cnt ’any) -> sym

Returns a transient symbol with any packed with leading ’0’ characters, up
to a field width of cnt. See also format and align.

: (pad 5 1)
-> "00001"
: (pad 5 123456789)
-> "123456789"

44 Symbols starting with P 1201

(pair ’any) -> any

Returns any when the argument a cons pair cell. See also atom.

: (pair NIL)
-> NIL
: (pair (1 . 2))
-> (1 . 2)
: (pair (1 2 3))
-> (1 2 3)

part/3

Pilog predicate that succeeds if the first argument, after folding it to a canon-
ical form, is a /substring/ of the folded string representation of the result of ap-
plying the get algorithm to the following arguments. Typically used as filter
predicate in select/3 database queries. See also sub?, isa/2, same/3,
bool/3, range/3, head/3, fold/3 and tolr/3.

: (?
@Nr (1 . 5)
@Nm "part"
(select (@Item)

((nr +Item @Nr) (nm +Item @Nm))
(range @Nr @Item nr)
(part @Nm @Item nm)))
@Nr=(1 . 5) @Nm="part" @Item={3-1}
@Nr=(1 . 5) @Nm="part" @Item={3-2}

-> NIL

(pass ’fun [’any ..]) -> any

Passes to fun all arguments any, and all remaining variable arguments (@)
as they would be returned by rest. (pass ’fun ’any) is equivalent to
(apply ’fun (rest) ’any). See also apply.

1202 44 Symbols starting with P

: (de bar (A B . @)
(println ’bar A B (rest)))

-> bar
: (de foo (A B . @)

(println ’foo A B)
(pass bar 1)
(pass bar 2))

-> foo
: (foo ’a ’b ’c ’d ’e ’f)
foo a b
bar 1 c (d e f)
bar 2 c (d e f)
-> (d e f)

(pat? ’any) -> pat | NIL

Returns any when the argument any is a symbol whose name starts with an
at-mark “@”, otherwise NIL.

: (pat? ’@)
-> @
: (pat? "@Abc")
-> "@Abc"
: (pat? "ABC")
-> NIL
: (pat? 123)
-> NIL

(patch ’lst ’any . prg) -> any

Destructively replaces all sub-expressions of lst, that match the pattern
any, by the result of the execution of prg. See also daemon and redef.

44 Symbols starting with P 1203

: (pp ’hello)
(de hello NIL

(prinl "Hello world!"))
-> hello

: (patch hello ’prinl ’println)
-> NIL
: (pp ’hello)
(de hello NIL

(println "Hello world!"))
-> hello

: (patch hello ’(prinl @S) (fill ’(println "We said: " . @S)))
-> NIL
: (hello)
We said: Hello world!
-> "Hello world!"

(path ’any) -> sym

Substitutes any leading “@” character in the any argument with the PicoLisp
Home Directory, as it was remembered during interpreter startup. Optionally,
the name may be preceded by a “+” character (as used by in and out).
This mechanism is used internally by all I/O functions. See also Invocation,
basename and dirname.

$ /usr/bin/picolisp /usr/lib/picolisp/lib.l
: (path "a/b/c")
-> "a/b/c"
: (path "@a/b/c")
-> "/usr/lib/picolisp/a/b/c"
: (path "+@a/b/c")
-> "+/usr/lib/picolisp/a/b/c"

(peek) -> sym

Single character look-ahead: Returns the same character as the next call to
char would return. See also skip.

1204 44 Symbols starting with P

$ cat a
Comment
abcd
$ pil +
: (in "a" (list (peek) (char)))
-> ("#" "#")

permute/2

Pilog predicate that succeeds if the second argument is a permutation of the
list in the second argument. See also append/3.

: (? (permute (a b c) @X))
@X=(a b c)
@X=(a c b)
@X=(b a c)
@X=(b c a)
@X=(c a b)
@X=(c b a)
-> NIL

(pick ’fun ’lst ..) -> any

Applies fun to successive elements of lst until non-NIL is returned. Re-
turns that value, or NIL if fun did not return non-NIL for any element
of lst. When additional lst arguments are given, their elements are also
passed to fun. (pick ’fun ’lst) is equivalent to (fun (find ’fun
’lst)). See also seek, find and extract.

: (setq A NIL B 1 C NIL D 2 E NIL F 3)
-> 3
: (find val ’(A B C D E))
-> B
: (pick val ’(A B C D E))
-> 1

44 Symbols starting with P 1205

pico

(64-bit version only) A global constant holding the initial (default) namespace
of internal symbols. Its value is a cons pair of two ‘idx’ trees, one for symbols
with short names and one for symbols with long names (more than 7 bytes in
the name). See also symbols, import and intern.

: (symbols)
-> pico
: (cdr pico)
-> (rollback (*NoTrace (ledSearch (expandTab (********)) *CtryCode ...

(pil [’any ..]) -> sym

Returns the path name to the packed any arguments in the directory “.pil/”
in the user’s home directory. See also tmp.

: (pil "history") # Path to the line editor’s history file
-> "/home/app/.pil/history"

(pilog ’lst . prg) -> any

Evaluates a Pilog query, and executes prg for each result set with all Pi-
log variables bound to their matching values. See also solve, ?, goal and
prove.

: (pilog ’((append @X @Y (a b c))) (println @X ’- @Y))
NIL - (a b c)
(a) - (b c)
(a b) - (c)
(a b c) - NIL
-> NIL

1206 44 Symbols starting with P

(pipe exe) -> cnt

(pipe exe . prg) -> any

Executes exe in a fork’ed child process (which terminates thereafter). In
the first form, pipe just returns a file descriptor to read from the standard
output of that process. In the second form, it opens the standard output of
that process as input channel during the execution of prg. The current input
channel will be saved and restored appropriately. See also later, ipid, in
and out.

: (pipe # equivalent to ’any’
(prinl "(a b # CommentˆJc d)") # (child process)
(read)) # (parent process)

-> (a b c d)
: (pipe # pipe through an external program

(out ’(tr "[a-z]" "[A-Z]") # (child process)
(prinl "abc def ghi"))

(line T)) # (parent process)
-> "ABC DEF GHI"

(place ’cnt ’lst ’any) -> lst

Places any into lst at position cnt. This is a non-destructive operation. See
also insert, remove, append, delete and replace.

: (place 3 ’(a b c d e) 777)
-> (a b 777 d e)
: (place 1 ’(a b c d e) 777)
-> (777 b c d e)
: (place 9 ’(a b c d e) 777)
-> (a b c d e 777)

(poll ’cnt) -> cnt | NIL

Checks for the availability of data for reading on the file descriptor cnt. See
also open, in and close.

44 Symbols starting with P 1207

: (and (poll *Fd) (in @ (read))) # Prevent blocking

(pool [’sym1 [’lst] [’sym2] [’sym3]])
-> T

Opens the file sym1 as a database file in read/write mode. If the file does not
exist, it is created. A currently open database is closed. lst is a list of block
size scale factors (i.e. numbers), defaulting to (2) (for a single file with a 256
byte block size). If lst is given, an individual database file is opened for each
item. If sym2 is non-NIL, it is opened in append-mode as an asynchronous
replication journal. If sym3 is non-NIL, it is opened for reading and append-
ing, to be used as a synchronous transaction log during commits. See also
dbs, *Dbs and journal.

: (pool "/dev/hda2")
-> T

: *Dbs
-> (1 2 2 4)
: (pool "dbFile" *Dbs)
-> T
:
abu:˜/pico ls -l dbFile*
-rw-r--r-- 1 abu abu 256 2007-06-11 07:57 dbFile1
-rw-r--r-- 1 abu abu 13 2007-06-11 07:57 dbFile2
-rw-r--r-- 1 abu abu 13 2007-06-11 07:57 dbFile3
-rw-r--r-- 1 abu abu 13 2007-06-11 07:57 dbFile4

(pop ’var) -> any

Pops the first element (CAR) from the stack in var. See also push, queue,
cut, del and fifo.

1208 44 Symbols starting with P

: (setq S ’((a b c) (1 2 3)))
-> ((a b c) (1 2 3))
: (pop S)
-> a
: (pop (cdr S))
-> 1
: (pop ’S)
-> (b c)
: S
-> ((2 3))

(port [’T] ’cnt|(cnt . cnt) [’var]) ->
cnt

Opens a TCP-Port cnt (or a UDP-Port if the first argument is T), and returns
a socket descriptor suitable as an argument for listen or accept (or udp,
respectively). If cnt is zero, some free port number is allocated. If a pair of
cnts is given instead, it should be a range of numbers which are tried in turn.
When var is given, it is bound to the port number.

: (port 0 ’A) # Allocate free port
-> 4
: A
-> 1034 # Got 1034
: (port (4000 . 4008) ’A) # Try one of these ports
-> 5
: A
-> 4002

(pp ’sym) -> sym

(pp ’sym ’cls) -> sym

(pp ’(sym . cls)) -> sym

Pretty-prints the function or method definition of sym. The output format
would regenerate that same definition when read and executed. See also
pretty, debug and vi.

44 Symbols starting with P 1209

: (pp ’tab)
(de tab (Lst . @)

(for N Lst
(let V (next)

(and (gt0 N) (space (- N (length V))))
(prin V)
(and

(lt0 N)
(space (- 0 N (length V))))))

(prinl))
-> tab

: (pp ’has> ’+Entity)
(dm has> (Var Val)

(or
(nor Val (get This Var))
(has> (meta This Var) Val (get This Var))))

-> has>

: (more (can ’has>) pp)
(dm (has> . +relation) (Val X)

(and (= Val X) X))

(dm (has> . +Fold) (Val X)
(extra

Val
(if (= Val (fold Val)) (fold X) X)))

(dm (has> . +Entity) (Var Val)
(or

(nor Val (get This Var))
(has> (meta This Var) Val (get This Var))))

(dm (has> . +List) (Val X)
(and

Val
(or

(extra Val X)
(find ’((X) (extra Val X)) X))))

(dm (has> . +Bag) (Val X)
(and

Val
(or (super Val X) (car (member Val X)))))

1210 44 Symbols starting with P

(pr ’any ..) -> any

Binary print: Prints all any arguments to the current output channel in en-
coded binary format. See also rd, tell, hear and wr.

: (out "x" (pr 7 "abc" (1 2 3) ’a)) # Print to "x"
-> a
: (hd "x")
00000000 04 0E 0E 61 62 63 01 04 02 04 04 04 06 03 05 61 ...abc.........a
-> NIL

(prEval ’prg [’cnt]) -> any

Executes prg, similar to run, by evaluating all expressions in prg (within
the binding environment given by cnt-1). As a side effect, all atomic ex-
pressions will be printed with prinl. See also eval.

: (let Prg 567
(prEval

’("abc" (prinl (+ 1 2 3)) Prg 987)))
abc
6
567
987
-> 987

(pre? ’any1 ’any2) -> any2 | NIL

Returns any2 when the string representation of any1 is a prefix of the string
representation of any2. See also sub?.

44 Symbols starting with P 1211

: (pre? "abc" "abcdef")
-> "abcdef"
: (pre? "def" "abcdef")
-> NIL
: (pre? (+ 3 4) "7fach")
-> "7fach"
: (pre? NIL "abcdef")
-> "abcdef"

(pretty ’any ’cnt)

Pretty-prints any. If any is an atom, or a list with a size not greater than 12,
it is printed as is. Otherwise, only the opening parenthesis and the CAR of
the list is printed, all other elementes are pretty-printed recursively indented
by three spaces, followed by a space and the corresponding closing parenthe-
sis. The initial indentation level cnt defaults to zero. See also pp.

: (pretty ’(a (b c d) (e (f (g) (h) (i)) (j (k) (l) (m))) (n o p) q))
(a

(b c d)
(e

(f (g) (h) (i))
(j (k) (l) (m)))

(n o p)
q)-> ")"

(prin ’any ..) -> any

Prints the string representation of all any arguments to the current output
channel. No space or newline is printed between individual items, or after the
last item. For lists, all elements are prin’ted recursively. See also prinl.

: (prin ’abc 123 ’(a 1 b 2))
abc123a1b2-> (a 1 b 2)

1212 44 Symbols starting with P

(prinl ’any ..) -> any

Prints the string representation of all any arguments to the current output
channel, followed by a newline. No space or newline is printed between indi-
vidual items. For lists, all elements are prin’ted recursively. See also prin.

: (prinl ’abc 123 ’(a 1 b 2))
abc123a1b2
-> (a 1 b 2)

(print ’any ..) -> any

Prints all any arguments to the current output channel. If there is more than
one argument, a space is printed between successive arguments. No space or
newline is printed after the last item. See also println, printsp, sym and
str

: (print 123)
123-> 123
: (print 1 2 3)
1 2 3-> 3
: (print ’(a b c) ’def)
(a b c) def-> def

(println ’any ..) -> any

Prints all any arguments to the current output channel, followed by a newline.
If there is more than one argument, a space is printed between successive
arguments. See also print, printsp.

: (println ’(a b c) ’def)
(a b c) def
-> def

44 Symbols starting with P 1213

(printsp ’any ..) -> any

Prints all any arguments to the current output channel, followed by a space.
If there is more than one argument, a space is printed between successive
arguments. See also print, println.

: (printsp ’(a b c) ’def)
(a b c) def -> def

(prior ’lst1 ’lst2) -> lst | NIL

Returns the cell in lst2 which immediately precedes the cell lst1, or NIL
if lst1 is not found in lst2 or is the very first cell. == is used for compari-
son (pointer equality). See also offset and memq.

: (setq L (1 2 3 4 5 6))
-> (1 2 3 4 5 6)
: (setq X (cdddr L))
-> (4 5 6)
: (prior X L)
-> (3 4 5 6)

(proc ’sym ..) -> T

Shows a list of processes with command names given by the sym arguments,
using the system ps utility. See also hd.

1214 44 Symbols starting with P

: (proc ’pil)
PID PPID STARTED SIZE %CPU WCHAN
16993 3267 12:38:21 1516 0.5 -
CMD
/usr/bin/picolisp /usr/lib/picolisp/lib.l /usr/bin/pil +

PID PPID STARTED SIZE %CPU WCHAN
15731 1834 12:36:35 2544 0.1 -
CMD
/usr/bin/picolisp /usr/lib/picolisp/lib.l /usr/bin/pil app/main.l -main -go +

PID PPID STARTED SIZE %CPU WCHAN
15823 15731 12:36:44 2548 0.0 -
CMD
/usr/bin/picolisp /usr/lib/picolisp/lib.l /usr/bin/pil app/main.l -main -go +

-> T

(prog . prg) -> any

Executes prg, and returns the result of the last expression. See also nil, t,
prog1 and prog2.

: (prog (print 1) (print 2) (print 3))
123-> 3

(prog1 ’any1 . prg) -> any1

Executes all arguments, and returns the result of the first expression any1.
See also nil, t, prog and prog2.

: (prog1 (print 1) (print 2) (print 3))
123-> 1

44 Symbols starting with P 1215

(prog2 ’any1 ’any2 . prg) -> any2

Executes all arguments, and returns the result of the second expression any2.
See also nil, t, prog and prog1.

: (prog2 (print 1) (print 2) (print 3))
123-> 2

(prop ’sym1|lst [’sym2|cnt ..] ’sym) ->
var

Fetches a property for a property key sym from a symbol. That symbol is
sym1 (if no other arguments are given), or a symbol found by applying the
get algorithm to sym1|lst and the following arguments. The property (the
cell, not just its value) is returned, suitable for direct (destructive) manipula-
tions with functions expecting a var argument. See also ::.

: (put ’X ’cnt 0)
-> 0
: (prop ’X ’cnt)
-> (0 . cnt)
: (inc (prop ’X ’cnt)) # Directly manipulate the property value
-> 1
: (get ’X ’cnt)
-> 1

(protect . prg) -> any

Executes prg, and returns the result of the last expression. If a signal is re-
ceived during that time, its handling will be delayed until the execution of
prg is completed. See also alarm, *Hup,

Chapter 45

Symbols starting with Q

(qsym . sym) -> lst

Returns a cons pair of the value and property list of sym. See also quote,
val and getl.

: (setq A 1234)
-> 1234
: (put ’A ’a 1)
-> 1
: (put ’A ’b 2)
-> 2
: (put ’A ’f T)
-> T
: (qsym . A)
-> (1234 f (2 . b) (1 . a))

(quote . any) -> any

Returns any unevaluated. The reader recognizes the single quote char ’ as a
macro for this function. See also lit.

1217

1218 45 Symbols starting with Q

: ’a
-> a
: ’(foo a b c)
-> (foo a b c)
: (quote (quote (quote a)))
-> (’(’(a)))

(query ’lst [’lst]) -> flg

Handles an interactive Pilog query. The two lst arguments are passed to
prove. query displays each result, waits for console input, and terminates
when a non-empty line is entered. See also ?, pilog and solve.

: (query (goal ’((append @X @Y (a b c)))))
@X=NIL @Y=(a b c)
@X=(a) @Y=(b c). # Stop
-> NIL

(queue ’var ’any) -> any

Implements a queue using a list in var. The any argument is (destructively)
concatenated to the end of the value list. See also push, pop and fifo.

: (queue ’A 1)
-> 1
: (queue ’A 2)
-> 2
: (queue ’A 3)
-> 3
: A
-> (1 2 3)
: (pop ’A)
-> 1
: A
-> (2 3)

45 Symbols starting with Q 1219

(quit [’any [’any]])

Stops current execution. If no arguments are given, all pending finally
expressions are executed and control is returned to the top level read-eval-
print loop. Otherwise, an error handler is entered. The first argument can be
some error message, and the second might be the reason for the error. See also
Error Handling.

: (de foo (X) (quit "Sorry, my error" X))
-> foo
: (foo 123) # ’X’ is bound to ’123’
123 -- Sorry, my error # Error entered
? X # Inspect ’X’
-> 123
? # Empty line: Exit
:

Chapter 46

Symbols starting with R

*Run

This global variable can hold a list of prg expressions which are used during
key, sync, wait and listen. The first element of each expression must
either be a positive number (thus denoting a file descriptor to wait for) or a
negative number (denoting a timeout value in milliseconds (in that case an-
other number must follow to hold the remaining time)). A select system
call is performed with these values, and the corresponding prg body is ex-
ecuted when input data are available or when a timeout occurred. See also
task.

: (de *Run (-2000 0 (println ’2sec))) # Install 2-sec-timer
-> *Run
: 2sec # Prints "2sec" every 2 seconds
2sec
2sec

(Ctrl-D) Exit
$

+Ref

Prefix class for maintaining non-unique indexes to +relations, a subclass
of +index. Accepts an optional argument for a +Hook attribute. See also
Database.

(rel tel (+Fold +Ref +String)) # Phone number with folded, non-unique index

1221

1222 46 Symbols starting with R

+Ref2

Prefix class for maintaining a secondary (“backing”) index to +relations.
Can only be used as a prefix class to +Key or +Ref. It maintains an index in
the current (sub)class, in addition to that in one of the superclasses, to allow
(sub)class-specific queries. See also Database.

(class +Ord +Entity) # Order class
(rel nr (+Need +Key +Number)) # Order number
...
(class +EuOrd +Ord) # EU-specific order subclass
(rel nr (+Ref2 +Key +Number)) # Order number with backing index

+relation

Abstract base class of all database releations. Relation objects are usually
defined with rel. The class hierarchy includes the classes +Any, +Bag,
+Bool, +Number, +Date, +Time, +Symbol, +String, +Link, +Joint
and +Blob, and the prefix classes +Hook, +index, +Key, +Ref, +Ref2,
+Idx, +Sn, +Fold, +Aux, +UB, +Dep, +List, +Need, +Mis and +Alt.
See also Database and +Entity.

Messages to relation objects include

mis> (Val Obj) # Return error if mismatching type or value
has> (Val X) # Check if the value is present
put> (Obj Old New) # Put new value
rel> (Obj Old New) # Maintain relational strutures
lose> (Obj Val) # Delete relational structures
keep> (Obj Val) # Restore deleted relational structures
zap> (Obj Val) # Clean up relational structures

(rand [’cnt1 ’cnt2] | [’T]) -> cnt | flg

Returns a pseudo random number in the range cnt1 .. cnt2 (or –2147483648
.. +2147483647 if no arguments are given). If the argument is T, a boolean
value flg is returned. See also seed.

46 Symbols starting with R 1223

: (rand 3 9)
-> 3
: (rand 3 9)
-> 7

(range ’num1 ’num2 [’num3]) -> lst

Produces a list of numbers in the range num1 through num2. When num3
is non-NIL), it is used to increment num1 (if it is smaller than num2) or to
decrement num1 (if it is greater than num2). See also need.

: (range 1 6)
-> (1 2 3 4 5 6)
: (range 6 1)
-> (6 5 4 3 2 1)
: (range -3 3)
-> (-3 -2 -1 0 1 2 3)
: (range 3 -3 2)
-> (3 1 -1 -3)

range/3

Pilog predicate that succeeds if the first argument is in the range of the result of
applying the get algorithm to the following arguments. Typically used as fil-
ter predicate in select/3 database queries. See also Comparing, isa/2,
same/3, bool/3, head/3, fold/3, part/3 and tolr/3.

: (?
@Nr (1 . 5) # Numbers between 1 and 5
@Nm "part"
(select (@Item)

((nr +Item @Nr) (nm +Item @Nm))
(range @Nr @Item nr)
(part @Nm @Item nm)))
@Nr=(1 . 5) @Nm="part" @Item={3-1}
@Nr=(1 . 5) @Nm="part" @Item={3-2}

-> NIL

1224 46 Symbols starting with R

(rank ’any ’lst [’flg]) -> lst

Searches a ranking list. lst should be sorted. Returns the element from lst
with a maximal CAR less or equal to any (if flg is NIL), or with a minimal
CAR greater or equal to any (if flg is non-NIL), or NIL if no match is
found. See also assoc and Comparing.

: (rank 0 ’((1 . a) (100 . b) (1000 . c)))
-> NIL
: (rank 50 ’((1 . a) (100 . b) (1000 . c)))
-> (1 . a)
: (rank 100 ’((1 . a) (100 . b) (1000 . c)))
-> (100 . b)
: (rank 300 ’((1 . a) (100 . b) (1000 . c)))
-> (100 . b)
: (rank 9999 ’((1 . a) (100 . b) (1000 . c)))
-> (1000 . c)
: (rank 50 ’((1000 . a) (100 . b) (1 . c)) T)
-> (100 . b)

(raw [’flg]) -> flg

Console mode control function. When called without arguments, it returns the
current console mode (NIL for “cooked mode”). Otherwise, the console is set
to the new state. See also key.

$ pil
: (raw)
-> NIL
$ pil +
: (raw)
-> T

(rc ’sym ’any1 [’any2]) -> any

Fetches a value from a resource file sym, or stores a value any2 in that file,
using a key any1. All values are stored in a list in the file, using assoc.
During the whole operation, the file is exclusively locked with ctl.

46 Symbols starting with R 1225

: (info "a.rc") # File exists?
-> NIL # No
: (rc "a.rc" ’a 1) # Store 1 for ’a’
-> 1
: (rc "a.rc" ’b (2 3 4)) # Store (2 3 4) for ’b’
-> (2 3 4)
: (rc "a.rc" ’c ’b) # Store ’b’ for ’c’
-> b
: (info "a.rc") # Check file
-> (28 733124 . 61673)
: (in "a.rc" (echo)) # Display it
((c . b) (b 2 3 4) (a . 1))
-> T
: (rc "a.rc" ’c) # Fetch value for ’c’
-> b
: (rc "a.rc" @) # Fetch value for ’b’
-> (2 3 4)

(rd [’sym]) -> any

(rd ’cnt) -> num | NIL

Binary read: Reads one item from the current input channel in encoded binary
format. When called with a cnt argument (second form), that number of
raw bytes (in big endian format if cnt is positive, otherwise little endian) is
read as a single number. Upon end of file, if the sym argument is given, it is
returned, otherwise NIL. See also pr, tell, hear and wr.

: (out "x" (pr ’abc "EOF" 123 "def"))
-> "def"
: (in "x" (rd))
-> abc
: (in "x"

(make
(use X

(until (== "EOF" (setq X (rd "EOF"))) # ’==’ detects end of file
(link X)))))

-> (abc "EOF" 123 "def") # as opposed to reading a symbol "EOF"

: (in "/dev/urandom" (rd 20))
-> 396737673456823753584720194864200246115286686486

1226 46 Symbols starting with R

(read [’sym1 [’sym2]]) -> any

Reads one item from the current input channel. NIL is returned upon end
of file. When called without arguments, an arbitrary Lisp expression is read.
Otherwise, a token (a number, or an internal or transient symbol) is read. In
that case, sym1 specifies which set of characters to accept for continuous
symbol names (in addition to the standard alphanumerical characters), and
sym2 an optional comment character. See also any, str, skip and eof.

: (list (read) (read) (read)) # Read three things from console
123 # a number
abcd # a symbol
(def # and a list
ghi
jkl
)
-> (123 abcd (def ghi jkl))
: (make (while (read "_" "#") (link @)))
abc = def_ghi("xyz"+-123) # Comment
NIL
-> (abc "=" def_ghi "(" "xyz" "+" "-" 123 ")")

(recur fun) -> any

(recurse ..) -> any

Implements anonymous recursion, by defining the function recurse on the
fly. During the execution of fun, the symbol recurse is bound to the func-
tion definition fun. See also let and lambda.

46 Symbols starting with R 1227

: (de fibonacci (N)
(when (lt0 N)

(quit "Bad fibonacci" N))
(recur (N)

(if (> 2 N)
1
(+

(recurse (dec N))
(recurse (- N 2))))))

-> fibonacci
: (fibonacci 22)
-> 28657
: (fibonacci -7)
-7 -- Bad fibonacci

(redef sym . fun) -> sym

Redefines sym in terms of itself. The current definition is saved in a new
symbol, which is substituted for each occurrence of sym in fun, and which
is also returned. See also de, undef, daemon and patch.

1228 46 Symbols starting with R

: (de hello () (prinl "Hello world!"))
-> hello
: (pp ’hello)
(de hello NIL

(prinl "Hello world!"))
-> hello

: (redef hello (A B)
(println ’Before A)
(prog1 (hello) (println ’After B)))

-> "hello"
: (pp ’hello)
(de hello (A B)

(println ’Before A)
(prog1 ("hello") (println ’After B)))

-> hello
: (hello 1 2)
Before 1
Hello world!
After 2
-> "Hello world!"

: (redef * @
(msg (rest))
(pass *))

-> "*"
: (* 1 2 3)
(1 2 3)
-> 6

: (redef + @
(pass (ifn (num? (next)) pack +) (arg)))

-> "+"
: (+ 1 2 3)
-> 6
: (+ "a" ’b ’(c d e))
-> "abcde"

46 Symbols starting with R 1229

(rel var lst [any ..]) -> any

Defines a relation for var in the current class *Class, using lst as the
list of classes for that relation, and possibly additional arguments any for its
initialization. See also Database, class, extend, dm and var.

(class +Person +Entity)
(rel nm (+List +Ref +String)) # Names
(rel tel (+Ref +String)) # Telephone
(rel adr (+Joint) prs (+Address)) # Address

(class +Address +Entity)
(rel cit (+Need +Hook +Link) (+City)) # City
(rel str (+List +Ref +String) cit) # Street
(rel prs (+List +Joint) adr (+Person)) # Inhabitants

(class +City +Entity)
(rel nm (+List +Ref +String)) # Zip / Names

(release ’sym) -> NIL

Releases the mutex represented by the file ‘sym’. This is the reverse operation
of acquire.

: (release "sema1")
-> NIL

remote/2

Pilog predicate for remote database queries. It takes a list and an arbitrary
number of clauses. The list should contain a Pilog variable for the result in
the CAR, and a list of resources in the CDR. The clauses will be evaluated on
remote machines according to these resources. Each resource must be a cons
pair of two functions, an “out” function in the CAR, and an “in” function in
the CDR. See also *Ext, select/3 and db/3.

1230 46 Symbols starting with R

(setq *Ext # Set up external offsets
(mapcar

’((@Host @Ext)
(cons @Ext

(curry (@Host @Ext (Sock)) (Obj)
(when (or Sock (setq Sock (connect @Host 4040)))

(ext @Ext
(out Sock (pr (cons ’qsym Obj)))
(prog1 (in Sock (rd))

(unless @
(close Sock)
(off Sock))))))))

’("localhost")
’(20)))

(de rsrc () # Simple resource handler, ignoring errors or EOFs
(extract

’((@Ext Host)
(let? @Sock (connect Host 4040)

(cons
(curry (@Ext @Sock) (X) # out

(ext @Ext (out @Sock (pr X))))
(curry (@Ext @Sock) () # in

(ext @Ext (in @Sock (rd)))))))
’(20)
’("localhost")))

: (?
@Nr (1 . 3)
@Sup 2
@Rsrc (rsrc)
(remote (@Item . @Rsrc)

(db nr +Item @Nr @Item)
(val @Sup @Item sup nr))

(show @Item))
{L-2} (+Item)

pr 1250
inv 100
sup {K-2}
nm Spare Part
nr 2

@Nr=(1 . 3) @Sup=2 @Rsrc=((((X) (ext 20 (out 16 (pr X))))
NIL (ext 20 (in 16 (rd))))) @Item={L-2}

-> NIL

46 Symbols starting with R 1231

(remove ’cnt ’lst) -> lst

Removes the element at position cnt from lst. This is a non-destructive
operation. See also insert, place, append, delete and replace.

: (remove 3 ’(a b c d e))
-> (a b d e)
: (remove 1 ’(a b c d e))
-> (b c d e)
: (remove 9 ’(a b c d e))
-> (a b c d e)

(repeat) -> lst

Makes the current Pilog definition “tail recursive”, by closing the previously
defined clauses in the T property to a circular list. See also be.

(be a (1)) # Define three facts
(be a (2))
(be a (3))
(repeat) # Unlimited supply

: (? (a @N))
@N=1
@N=2
@N=3
@N=1
@N=2
@N=3. # Stop

-> NIL

repeat/0

Pilog predicate that always succeeds, also on backtracking. See also repeat
and true/0.

1232 46 Symbols starting with R

: (be int (@N) # Generate unlimited supply of integers
(@ zero *N)
(repeat) # Repeat from here
(@N inc ’*N))

-> int

: (? (int @X))
@X=1
@X=2
@X=3
@X=4. # Stop
-> NIL

(replace ’lst ’any1 ’any2 ..) -> lst

Replaces in lst all occurrences of any1 with any2. For optional additional
argument pairs, this process is repeated. This is a non-destructive operation.
See also append, delete, insert, remove and place.

: (replace ’(a b b a) ’a ’A)
-> (A b b A)
: (replace ’(a b b a) ’b ’B)
-> (a B B a)
: (replace ’(a b b a) ’a ’B ’b ’A)
-> (B A A B)

(request ’typ ’var [’hook] ’val ..) ->
obj

Returns a database object. If a matching object cannot be found (using db), a
new object of the given type is created (using new). See also obj.

: (request ’(+Item) ’nr 2)
-> {3-2}

46 Symbols starting with R 1233

(rest) -> lst

Can only be used inside functions with a variable number of arguments (with
@). Returns the list of all remaining arguments from the internal list. See also
args, next, arg and pass.

: (de foo @ (println (rest)))
-> foo
: (foo 1 2 3)
(1 2 3)
-> (1 2 3)

(retract) -> lst

Removes a Pilog fact or rule. See also be, clause, asserta and assertz.

: (be a (1))
-> a
: (be a (2))
-> a
: (be a (3))
-> a

: (retract ’(a (2)))
-> (((1)) ((3)))

: (? (a @N))
@N=1
@N=3

-> NIL

retract/1

Pilog predicate that removes a fact or rule. See also retract, asserta/1
and assertz/1.

1234 46 Symbols starting with R

: (be a (1))
-> a
: (be a (2))
-> a
: (be a (3))
-> a

: (? (retract (a 2)))
-> T
: (rules ’a)
1 (be a (1))
2 (be a (3))
-> a

(reverse ’lst) -> lst

Returns a reversed copy of lst. See also flip.

: (reverse (1 2 3 4))
-> (4 3 2 1)

(rewind) -> flg

Sets the file position indicator for the current output stream to the beginning
of the file, and truncates the file length to zero. Returns T when successful.
See also flush.

: (out "a" (prinl "Hello world"))
-> "Hello world"
: (in "a" (echo))
Hello world
-> T
: (info "a")
-> (12 733216 . 53888)
: (out "a" (rewind))
-> T
: (info "a")
-> (0 733216 . 53922)

46 Symbols starting with R 1235

(rollback) -> T

Cancels a transaction, by discarding all modifications of external symbols.
See also commit.

: (pool "db")
-> T
.. Modify external objects ..
: (rollback) # Rollback
-> T

(root ’tree) -> (num . sym)

Returns the root of a database index tree, with the number of entries in num,
and the base node in sym. See also tree.

: (root (tree ’nr ’+Item))
-> (7 . {7-1})

(rot ’lst [’cnt]) -> lst

Rotate: The contents of the cells of lst are (destructively) shifted right, and
the value from the last cell is stored in the first cell. Without the optional cnt
argument, the whole list is rotated, otherwise only the first cnt elements. See
also flip .

: (rot (1 2 3 4)) # Rotate all four elements
-> (4 1 2 3)
: (rot (1 2 3 4 5 6) 3) # Rotate only the first three elements
-> (3 1 2 4 5 6)

(round ’num1 ’num2) -> sym

Formats a number num1 with num2 decimal places, according to the current
scale *Scl. num2 defaults to 3. See also Numbers and format.

1236 46 Symbols starting with R

: (scl 4) # Set scale to 4
-> 4
: (round 123456) # Format with three decimal places
-> "12.346"
: (round 123456 2) # Format with two decimal places
-> "12.35"
: (format 123456 *Scl) # Format with full precision
-> "12.3456"

(rules ’sym ..) -> sym

Prints all rules defined for the sym arguments. See also Pilog and be.

: (rules ’member ’append)
1 (be member (@X (@X . @)))
2 (be member (@X (@ . @Y)) (member @X @Y))
1 (be append (NIL @X @X))
2 (be append ((@A . @X) @Y (@A . @Z)) (append @X @Y @Z))
-> append

(run ’any [’cnt [’lst]]) -> any

If any is an atom, run behaves like eval. Otherwise any is a list, which
is evaluated in sequence. The last result is returned. If a binding environment
offset cnt is given, that evaluation takes place in the corresponding environ-
ment, and an optional lst of excluded symbols can be supplied. See also
up.

: (run ’((println (+ 1 2 3)) (println ’OK)))
6
OK
-> OK

Chapter 47

Symbols starting with S

*Scl

A global variable holding the current fixpoint input scale. See also Numbers
and scl.

: (str "123.45") # Default value of ’*Scl’ is 0
-> (123)
: (setq *Scl 3)
-> 3
: (str "123.45")
-> (123450)

*Sig1

*Sig2

Global variables holding (possibly empty) prg bodies, which will be exe-
cuted when a SIGUSR1 signal (or a SIGUSR2 signal, respectively) is sent to
the current process. See also alarm, sigio and *Hup.

: (de *Sig1 (msg ’SIGUSR1))
-> *Sig1

1237

1238 47 Symbols starting with S

*Solo

A global variable indicating exclusive database access. Its value is 0 initially,
set to T (or NIL) during cooperative database locks when lock is success-
fully called with a NIL (or non-NIL) argument. See also *Zap.

: *Solo
-> 0
: (lock *DB)
-> NIL
: *Solo
-> NIL
: (rollback)
-> T
: *Solo
-> 0
: (lock)
-> NIL
: *Solo
-> T
: (rollback)
-> T
: *Solo
-> T

+Sn

Prefix class for maintaining indexes according to a modified soundex algo-
rithm, for tolerant name searches, to +String relations. Typically used in
combination with the +Idx prefix class. See also Database.

(rel nm (+Sn +Idx +String)) # Name

47 Symbols starting with S 1239

+String

Class for string (transient symbol) relations, a subclass of +Symbol. Ac-
cepts an optional argument for the string length (currently not used). See also
Database.

(rel nm (+Sn +Idx +String)) # Name, indexed by soundex and substrings

+Symbol

Class for symbolic relations, a subclass of +relation. Objects of that
class typically maintain internal symbols, as opposed to the more often-used
+String for transient symbols. See also Database.

(rel perm (+List +Symbol)) # Permission list

same/3

Pilog predicate that succeeds if the first argument matches the result of ap-
plying the get algorithm to the following arguments. Typically used as fil-
ter predicate in select/3 database queries. See also isa/2, bool/3,
range/3, head/3, fold/3, part/3 and tolr/3.

: (?
@Nr 2
@Nm "Spare"
(select (@Item)

((nr +Item @Nr) (nm +Item @Nm))
(same @Nr @Item nr)
(head @Nm @Item nm)))

@Nr=2 @Nm="Spare" @Item={3-2}

1240 47 Symbols starting with S

(scan ’tree [’fun] [’any1] [’any2] [’flg])

Scans through a database tree by applying fun to all key-value pairs. fun
should be a function accepting two arguments for key and value. It defaults to
println. any1 and any2 may specify a range of keys. If any2 is greater
than any1, the traversal will be in opposite direction. Note that the keys need
not to be atomic, depending on the application’s index structure. If flg is
non-NIL, partial keys are skipped. See also tree, iter, init and step.

: (scan (tree ’nm ’+Item))
("ASLRSNSTRSTN" {3-3} . T) {3-3}
("Additive" {3-4}) {3-4}
("Appliance" {3-6}) {3-6}
("Auxiliary Construction" . {3-3}) {3-3}
("Construction" {3-3}) {3-3}
("ENNSNNTTTF" {3-4} . T) {3-4}
("Enhancement Additive" . {3-4}) {3-4}
("Fittings" {3-5}) {3-5}
("GTSTFLNS" {3-6} . T) {3-6}
("Gadget Appliance" . {3-6}) {3-6}
...

: (scan (tree ’nm ’+Item) println NIL T T) # ’flg’ is non-NIL
("Auxiliary Construction" . {3-3}) {3-3}
("Enhancement Additive" . {3-4}) {3-4}
("Gadget Appliance" . {3-6}) {3-6}
("Main Part" . {3-1}) {3-1}
("Metal Fittings" . {3-5}) {3-5}
("Spare Part" . {3-2}) {3-2}
("Testartikel" . {3-8}) {3-8}
-> {7-6}

(scl ’num) -> num

Sets *Scl globally to num. See also Numbers.

47 Symbols starting with S 1241

: (scl 0)
-> 0
: (str "123.45")
-> (123)
: (scl 1)
-> 1
: (read)
123.45
-> 1235
: (scl 3)
-> 3
: (str "123.45")
-> (123450)

(script ’any ..) -> any

The first any argument is loaded, with the remaining arguments passed as
variable arguments. They can be accessed with next, arg, args and rest.

$ cat x
(* (next) (next))

$ pil +
: (script "x" 3 4)
-> 12

(sect ’lst ’lst) -> lst

Returns the intersection of the lst arguments. See also diff.

: (sect (1 2 3 4) (3 4 5 6))
-> (3 4)
: (sect (1 2 3) (4 5 6))
-> NIL

1242 47 Symbols starting with S

(seed ’any) -> cnt

Initializes the random generator’s seed, and returns a pseudo random number
in the range –2147483648 .. +2147483647. See also rand and hash.

: (seed "init string")
-> 2015582081
: (rand)
-> -706917003
: (rand)
-> 1224196082

: (seed (time))
-> 128285383

(seek ’fun ’lst ..) -> lst

Applies fun to lst and all successive CDRs, until non-NIL is returned.
Returns the tail of lst starting with that element, or NIL if fun did not
return non-NIL for any element of lst. When additional lst arguments are
given, they are passed to fun in the same way. See also find, pick.

: (seek ’((X) (> (car X) 9)) (1 5 8 12 19 22))
-> (12 19 22)

(select [var ..] cls [hook|T] [var val
..]) -> obj | NIL

Interactive database function, loosely modelled after the SQL ‘SELECT’ com-
mand. A (limited) front-end to the Pilog select/3 predicate. When called
with only a cls argument, select steps through all objects of that class,
and shows their complete contents (this is analog to ’SELECT * from CLS’).
If cls is followed by attribute/value specifications, the search is limited to
these values (this is analog to ‘SELECT * from CLS where VAR = VAL’).
If between the select function and cls one or several attribute names are
supplied, only these attribute (instead of the full show) are printed. These at-

47 Symbols starting with S 1243

tribute specifications may also be lists, then the get algorithm will be used to
retrieve related data. See also update, Database and Pilog.

: (select +Item) # Show all items
{3-1} (+Item)

nr 1
pr 29900
inv 100
sup {2-1}
nm "Main Part"

{3-2} (+Item)
nr 2
pr 1250
inv 100
sup {2-2}
nm "Spare Part"

. # Stop
-> {3-2}

: (select +Item nr 3) # Show only item 3
{3-3} (+Item)

nr 3
sup {2-1}
pr 15700
nm "Auxiliary Construction"
inv 100

. # Stop
-> {3-3}

Show selected attributes for items 3 through 3
: (select nr nm pr (sup nm) +Item nr (3 . 5))
3 "Auxiliary Construction" 157.00 "Active Parts Inc." {3-3}
4 "Enhancement Additive" 9.99 "Seven Oaks Ltd." {3-4}
5 "Metal Fittings" 79.80 "Active Parts Inc." {3-5}
-> NIL

select/3

Pilog database predicate that allows combined searches over +index and
other relations. It takes a list of Pilog variables, a list of generator clauses,
and an arbitrary number of filter clauses. The functionality is described in

1244 47 Symbols starting with S

detail in The ‘select’ Predicate. See also db/3, isa/2, same/3, bool/3,
range/3, head/3, fold/3, part/3, tolr/3 and remote/2.

: (?
@Nr (2 . 5) # Select all items with numbers between 2 and 5
@Sup "Active" # and suppliers matching "Active"
(select (@Item) # Bind results to ’@Item"

((nr +Item @Nr) (nm +CuSu @Sup (sup +Item))) # Generator clauses
(range @Nr @Item nr) # Filter clauses
(part @Sup @Item sup nm)))

@Nr=(2 . 5) @Sup="Active" @Item={3-3}
@Nr=(2 . 5) @Sup="Active" @Item={3-5}

-> NIL

(send ’msg ’obj [’any ..]) -> any

Sends the message msg to the object obj, optionally with arguments any. If
the message cannot be located in obj, its classes and superclasses, an error
’’Bad message’’ is issued. See also OO Concepts, try, method,
meth, super and extra.

: (send ’stop> Dlg) # Equivalent to (stop> Dlg)
-> NIL

(seq ’cnt|sym1) -> sym | NIL

Sequential single step: Returns the first external symbol in the cnt’th database
file, or the next external symbol following sym1 in the database, or NILwhen
the end of the database is reached. See also free.

: (pool "db")
-> T
: (seq *DB)
-> {2}
: (seq @)
-> {3}

47 Symbols starting with S 1245

(set ’var ’any ..) -> any

Stores new values any in the var arguments. See also setq, val, con and
def.

: (set ’L ’(a b c) (cdr L) ’999)
-> 999
: L
-> (a 999 c)

(set! ’obj ’any) -> any

Transaction wrapper function for set. Note that for setting the value of enti-
ties typically the set!> message is used. See also new!, put! and inc!.

(set! Obj (* Count Size)) # Setting a non-entity object to a numeric value

(setq var ’any ..) -> any

Stores new values any in the var arguments. See also set, val and def.

: (setq A 123 B (list A A)) # Set ’A’ to 123, then ’B’ to (123 123)
-> (123 123)

(show ’any [’sym|cnt ..]) -> any

Shows the name, value and property list of a symbol found by applying the
get algorithm to any and the following arguments. See also edit and
view.

1246 47 Symbols starting with S

: (setq A 123456)
-> 123456
: (put ’A ’x 1)
-> 1
: (put ’A ’lst (9 8 7))
-> (9 8 7)
: (put ’A ’flg T)
-> T

: (show ’A)
A 123456

flg
lst (9 8 7)
x 1

-> A

: (show ’A ’lst 2)
-> 8

show/1

Pilog predicate that always succeeds, and shows the name, value and property
list of the argument symbol. See also show.

: (? (db nr +Item 2 @Item) (show @Item))
{3-2} (+Item)

nm "Spare Part"
nr 2
pr 1250
inv 100
sup {2-2}

@Item={3-2}
-> NIL

(sigio [’cnt [. prg]]) -> cnt | prg

Sets a signal handler prg for SIGIO on the file descriptor cnt. If called with-
out arguments, the currently installed handler is returned. See also alarm,
*Hup and *Sig[12].

47 Symbols starting with S 1247

First session
: (sigio (setq *SigSock (port T 4444)) # Register signal handler at UDP port

(while (udp *SigSock) # Queue all received data
(fifo ’*SigQueue @)))

-> 3

Second session
: (for I 7 (udp "localhost" 4444 I)) # Send numbers to first session

First session
: (fifo ’*SigQueue)
-> 1
: (fifo ’*SigQueue)
-> 2

(size ’any) -> cnt

Returns the “size” of any. For numbers this is the number of bytes needed
for the value, for external symbols it is the number of bytes it would occupy
in the database, for other symbols it is the number of bytes occupied by the
UTF–8 representation of the name, and for lists it is the total number of cells
in this list and all its sublists. See also length.

: (size "abc")
-> 3
: (size "bc")
-> 4
: (size 127) # One byte
-> 1
: (size 128) # Two bytes (eight bits plus sign bit!)
-> 2
: (size (1 (2) 3))
-> 4
: (size (1 2 3 .))
-> 3

1248 47 Symbols starting with S

(skip [’any]) -> sym

Skips all whitespace (and comments if any is given) in the input stream.
Returns the next available character, or NIL upon end of file. See also peek
and eof.

$ cat a
Comment
abcd
$ pil +
: (in "a" (skip "#"))
-> "a"

(solve ’lst [. prg]) -> lst

Evaluates a Pilog query and, returns the list of result sets. If prg is given, it is
executed for each result set, with all Pilog variables bound to their matching
values, and returns a list of the results. See also pilog, ?, goal and prove.

: (solve ’((append @X @Y (a b c))))
-> (((@X) (@Y a b c)) ((@X a) (@Y b c)) ((@X a b) (@Y c)) ((@X a b c) (@Y)))

: (solve ’((append @X @Y (a b c))) @X)
-> (NIL (a) (a b) (a b c))

(sort ’lst [’fun]) -> lst

Sorts lst by destructively exchanging its elements. If fun is given, it is
used as a “less than” predicate for comparisons. Typically, sort is used in
combination with by, giving shorter and often more efficient solutions than
with the predicate function. See also Comparing, group, maxi, mini and
uniq.

47 Symbols starting with S 1249

: (sort ’(a 3 1 (1 2 3) d b 4 T NIL (a b c) (x y z) c 2))
-> (NIL 1 2 3 4 a b c d (1 2 3) (a b c) (x y z) T)
: (sort ’(a 3 1 (1 2 3) d b 4 T NIL (a b c) (x y z) c 2) >)
-> (T (x y z) (a b c) (1 2 3) d c b a 4 3 2 1 NIL)
: (by cadr sort ’((1 4 3) (5 1 3) (1 2 4) (3 8 5) (6 4 5)))
-> ((5 1 3) (1 2 4) (1 4 3) (6 4 5) (3 8 5))

(space [’cnt]) -> cnt

Prints cnt spaces, or a single space when cnt is not given.

: (space)
-> 1

: (space 1)
-> 1

: (space 2)
-> 2

(sp? ’any) -> flg

Returns T when the argument any is NIL, or if it is a string (symbol) that
consists only of whitespace characters.

: (sp? " ")
-> T
: (sp? "ABC")
-> NIL
: (sp? 123)
-> NIL

(split ’lst ’any ..) -> lst

Splits lst at all places containing an element any and returns the resulting
list of sublists. See also stem.

1250 47 Symbols starting with S

: (split (1 a 2 b 3 c 4 d 5 e 6) ’e 3 ’a)
-> ((1) (2 b) (c 4 d 5) (6))
: (mapcar pack (split (chop "The quick brown fox") " "))
-> ("The" "quick" "brown" "fox")

(sqrt ’num [’flg]) -> num

Returns the square root of the num argument. If flg is given and non-NIL,
the result will be rounded.

: (sqrt 64)
-> 8
: (sqrt 1000)
-> 31
: (sqrt 1000 T)
-> 32
: (sqrt 100)
-> 100000000000000000000

(stack [’cnt]) -> cnt | (.. sym . cnt)

(64-bit version only) Maintains the stack segment size for coroutines. If called
without a cnt argument, or if already one or more coroutines are running, the
current size in megabytes is returned. Otherwise, the stack segment size is set
to the new value (default 4 MB). If there are running coroutines, their tags will
be consed in front of the size. See also heap.

47 Symbols starting with S 1251

: (stack) # Get current stack segment size
-> 4
: (stack 10) # Set to 10 MB
-> 10
: (let N 0 (recur (N) (recurse (inc N))))
!? (recurse (inc N))
Stack overflow
? N
-> 109181
?

: (co "routine" (yield 7)) # Create two coroutines
-> 7
: (co "routine2" (yield 8))
-> 8
: (stack)
-> ("routine2" "routine" . 4)

(stamp [’dat ’tim]|[’T]) -> sym

Returns a date-time string in the form “YYYY-MM-DD HH:MM:SS”. If dat
and tim is missing, the current date and time is used. If T is passed, the
current Coordinated Universal Time (UTC) is used instead. See also date
and time.

: (stamp)
-> "2000-09-12 07:48:04"
: (stamp (date) 0)
-> "2000-09-12 00:00:00"
: (stamp (date 2000 1 1) (time 12 0 0))
-> "2000-01-01 12:00:00"

(state ’var (sym|lst exe [. prg]) ..)
-> any

Implements a finite state machine. The variable var holds the current state
as a symbolic value. When a clause is found that contains the current state in
its CAR sym|lst value, and where the exe in its CADR evaluates to non-
NIL, the current state will be set to that value, the body prg in the CDDR

1252 47 Symbols starting with S

will be executed, and the result returned. T is a catch-all for any state. If no
state-condition matches, NIL is returned. See also case, cond and job.

: (de tst ()
(job ’((Cnt . 4))

(state ’(start)
(start ’run

(printsp ’start))
(run (and (gt0 (dec ’Cnt)) ’run)

(printsp ’run))
(run ’stop

(printsp ’run))
(stop ’start

(setq Cnt 4)
(println ’stop)))))

-> tst
: (do 12 (tst))
start run run run run stop
start run run run run stop
-> stop
: (pp ’tst)
(de tst NIL

(job ’((Cnt . 4))
(state ’(start)
...

-> tst
: (do 3 (tst))
start run run -> run
: (pp ’tst)
(de tst NIL

(job ’((Cnt . 2))
(state ’(run)
...

-> tst

(stem ’lst ’any ..) -> lst

Returns the tail of lst that does not contain any of the any arguments.
(stem ’lst ’any ..) is equivalent to (last (split ’lst ’any
..)). See also tail and split.

47 Symbols starting with S 1253

: (stem (chop "abc/def\\ghi") "/" "\\")
-> ("g" "h" "i")

(step ’lst [’flg]) -> any

Single-steps iteratively through a database tree. lst is a structure as received
from init. If flg is non-NIL, partial keys are skipped. See also tree,
scan, iter, leaf and fetch.

: (setq Q (init (tree ’nr ’+Item) 3 5))
-> (((3 . 5) ((3 NIL . {3-3}) (4 NIL . {3-4}) (5 NIL . {3-5})

(6 NIL . {3-6}) (7 NIL . {3-8}))))
: (get (step Q) ’nr)
-> 3
: (get (step Q) ’nr)
-> 4
: (get (step Q) ’nr)
-> 5
: (get (step Q) ’nr)
-> NIL

(store ’tree ’any1 ’any2 [’(num1 . num2)])

Stores a value any2 for the key any1 in a database tree. num1 is a database
file number, as used in new (defaulting to 1), and num2 a database block size
(defaulting to 256). When any2 is NIL, the corresponding entry is deleted
from the tree. See also tree and fetch.

: (store (tree ’nr ’+Item) 2 ’{3-2})

(str ’sym [’sym1]) -> lst

(str ’lst) -> sym

In the first form, the string sym is parsed into a list. This mechanism is also
used by load. If sym1 is given, it should specify a set of characters, and

1254 47 Symbols starting with S

str will then return a list of tokens analog to read. The second form does
the reverse operation by building a string from a list. See also any, name and
sym.

: (str "a (1 2) b")
-> (a (1 2) b)
: (str ’(a "Hello" DEF))
-> "a \"Hello\" DEF"
: (str "a*3+b*4" "_")
-> (a "*" 3 "+" b "*" 4)

(strDat ’sym) -> dat

Converts a string sym in the date format of the current locale to a date.
See also expDat, $dat and datStr.

: (strDat "2007-06-01")
-> 733134
: (strDat "01.06.2007")
-> NIL
: (locale "DE" "de")
-> NIL
: (strDat "01.06.2007")
-> 733134
: (strDat "1.6.2007")
-> 733134

(strip ’any) -> any

Strips all leading quote symbols from any.

: (strip 123)
-> 123
: (strip ’’’(a))
-> (a)
: (strip (quote quote a b c))
-> (a b c)

47 Symbols starting with S 1255

(str? ’any) -> sym | NIL

Returns the argument any when it is a transient symbol (string), otherwise
NIL. See also sym?, box? and ext?.

: (str? 123)
-> NIL
: (str? ’{ABC})
-> NIL
: (str? ’abc)
-> NIL
: (str? "abc")
-> "abc"

(sub? ’any1 ’any2) -> any2 | NIL

Returns any2 when the string representation of any1 is a substring of the
string representation of any2. See also pre?.

: (sub? "def" "abcdef")
-> T
: (sub? "abb" "abcdef")
-> NIL
: (sub? NIL "abcdef")
-> T

(subr ’sym) -> num

Converts a Lisp-function that was previously converted with expr back to a
C-function.

1256 47 Symbols starting with S

: car
-> 67313448
: (expr ’car)
-> (@ (pass $385260187))
: (subr ’car)
-> 67313448
: car
-> 67313448

(sum ’fun ’lst ..) -> num

Applies fun to each element of lst. When additional lst arguments are
given, their elements are also passed to fun. Returns the sum of all numeric
values returned from fun.

: (setq A 1 B 2 C 3)
-> 3
: (sum val ’(A B C))
-> 6
: (sum # Total size of symbol list values

’((X)
(and (pair (val X)) (size @)))

(what))
-> 32021

(super [’any ..]) -> any

Can only be used inside methods. Sends the current message to the current
object This, this time starting the search for a method at the superclass(es)
of the class where the current method was found. See also OO Concepts,
extra, method, meth, send and try.

(dm stop> () # ’stop>’ method of current class
(super) # Call the ’stop>’ method of the superclass
...) # other things

47 Symbols starting with S 1257

(sym ’any) -> sym

Generate the printed representation of any into the name of a new symbol
sym. This is the reverse operation of any. See also name and str.

: (sym ’(abc "Hello" 123))
-> "(abc \"Hello\" 123)"

(sym? ’any) -> flg

Returns T when the argument any is a symbol. See also str?, box? and
ext?.

: (sym? ’a)
-> T
: (sym? NIL)
-> T
: (sym? 123)
-> NIL
: (sym? ’(a b))
-> NIL

(symbols) -> sym

(symbols ’sym1) -> sym2

(symbols ’sym1 ’sym2) -> sym3

(64-bit version only) Creates and manages namespaces of internal symbols: In
the first form, the current namespace is returned. In the second form, the cur-
rent namespace is set to sym1, and the previous namespace sym2 is returned.
In the third form, sym1 is assigned a balanced copy of an existing names-
pace sym2 and becomes the new current namespace, returning the previous
namespace sym3. See also pico, local, import and intern.

1258 47 Symbols starting with S

: (symbols ’myLib ’pico)
-> pico
: (de foo (X)

(bar (inx X)))
-> foo

: (symbols ’pico)
-> myLib
: (pp ’foo)
(de foo . NIL)
-> foo
: (pp ’myLib˜foo)
(de "foo" (X)

("bar" ("inx" X)))
-> "foo"

: (symbols ’myLib)
-> pico
: (pp ’foo)
(de foo (X)

(bar (inx X)))
-> foo

(sync) -> flg

Waits for pending data from all family processes. While other processes are
still sending data (via the tell mechanism), a select system call is exe-
cuted for all file descriptors and timers in the VAL of the global variable *Run.
When used in a non-database context, (tell) should be called in the end to
inform the parent process that it may grant synchronization to other processes
waiting for sync. In a database context, where sync is usually called by
dbSync, this is not necessary because it is done internally by commit or
rollback. See also key and wait.

: (or (lock) (sync)) # Ensure database consistency
-> T # (numeric process-id if lock failed)

47 Symbols starting with S 1259

(sys ’any [’any]) -> sym

Returns or sets a system environment variable.

: (sys "TERM") # Get current value
-> "xterm"
: (sys "TERM" "vt100") # Set new value
-> "vt100"
: (sys "TERM")
-> "vt100"

Chapter 48

Symbols starting with T

*Tmp

A global variable holding the temporary directory name created with tmp.
See also *Bye.

: *Bye
-> ((saveHistory) (and *Tmp (call ’rm "-r" *Tmp)))
: (tmp "foo" 123)
-> "/home/app/.pil/tmp/27140/foo123"
: *Tmp
-> "/home/app/.pil/tmp/27140/"

*Tsm

A global variable which may hold a cons pair of two strings with escape se-
quences, to switch on and off an alternative transient symbol markup. If set,
printwill output these sequences to the console instead of the standard dou-
ble quote markup characters.

1261

1262 48 Symbols starting with T

: (de *Tsm "ˆ[[4m" . "ˆ[[24m") # vt100 escape sequences for underline
-> *Tsm
: Hello world
-> Hello world
: (off *Tsm)
-> NIL
: "Hello world" # No underlining
-> "Hello world"

+Time

Class for clock time values (as calculated by time), a subclass of +Number.
See also Database.

(rel tim (+Time)) # Time of the day

T

A global constant, evaluating to itself. T is commonly returned as the boolean
value “true” (though any non-NIL values could be used). It represents the
absolute maximum, as it is larger than any other object. As a property key, it
is used to store Pilog clauses, and inside Pilog clauses it is the cut operator.
See also NIL and and Comparing.

: T
-> T
: (= 123 123)
-> T
: (get ’not T)
-> ((@P (1 -> @P) T (fail)) (@P))

This

Holds the current object during method execution (see OO Concepts), or in-
side the body of a with statement. As it is a normal symbol, however, it can
be used in normal bindings anywhere. See also isa, :, =:, :: and var:.

48 Symbols starting with T 1263

: (with ’X (println ’This ’is This))
This is X
-> X
: (put ’X ’a 1)
-> 1
: (put ’X ’b 2)
-> 2
: (put ’Y ’a 111)
-> 111
: (put ’Y ’b 222)
-> 222
: (mapcar ’((This) (cons (: a) (: b))) ’(X Y))
-> ((1 . 2) (111 . 222))

(t . prg) -> T

Executes prg, and returns T. See also nil, prog, prog1 and prog2.

: (t (println ’OK))
OK
-> T

(tab ’lst ’any ..) -> NIL

Print all any arguments in a tabular format. lst should be a list of numbers,
specifying the field width for each argument. All items in a column will be
left-aligned for negative numbers, otherwise right-aligned. See also align,
center and wrap.

1264 48 Symbols starting with T

: (let Fmt (-3 14 14)
(tab Fmt "Key" "Rand 1" "Rand 2")
(tab Fmt "---" "------" "------")
(for C ’(A B C D E F)

(tab Fmt C (rand) (rand))))
Key Rand 1 Rand 2
--- ------ ------
A 0 1481765933
B -1062105905 -877267386
C -956092119 812669700
D 553475508 -1702133896
E 1344887256 -1417066392
F 1812158119 -1999783937
-> NIL

(tail ’cnt|lst ’lst) -> lst

Returns the last cnt elements of lst. If cnt is negative, it is added to the
length of lst. If the first argument is a lst, tail is a predicate function
returning that argument list if it is equal to the tail of the second argument,
and NIL otherwise. (tail -2 Lst) is equivalent to (nth Lst 3). See
also offset, head, last and stem.

: (tail 3 ’(a b c d e f))
-> (d e f)
: (tail -2 ’(a b c d e f))
-> (c d e f)
: (tail 0 ’(a b c d e f))
-> NIL
: (tail 10 ’(a b c d e f))
-> (a b c d e f)
: (tail ’(d e f) ’(a b c d e f))
-> (d e f)

(task ’num [’num] [sym ’any ..] [. prg])
-> lst

A front-end to the *Run global. If called with only a single num argument,
the corresponding entry is removed from the value of *Run. Otherwise, a new

48 Symbols starting with T 1265

entry is created. If an entry with that key already exists, an error is issued. For
negative numbers, a second number must be supplied. If sym/any arguments
are given, a job environment is built for thie *Run entry. See also forked
and timeout.

: (task -10000 5000 N 0 (msg (inc ’N))) # Install task
-> (-10000 5000 (job ’((N . 0)) (msg (inc ’N)))) # for every 10 seconds
: 1 # ... after 5 seconds
2 # ... after 10 seconds
3 # ... after 10 seconds
(task -10000) # remove again
-> NIL

: (task (port T 4444) (eval (udp @))) # Receive RPC via UDP
-> (3 (eval (udp @)))

Another session (on the same machine)
: (udp "localhost" 4444 ’(println *Pid)) # Send RPC message
-> (println *Pid)

(telStr ’sym) -> sym

Formats a telephone number according to the current locale. If the string
head matches the local country code, it is replaced with 0, otherwise + is
prepended. See also expTel, datStr, money and format.

: (telStr "49 1234 5678-0")
-> "+49 1234 5678-0"
: (locale "DE" "de")
-> NIL
: (telStr "49 1234 5678-0")
-> "01234 5678-0"

(tell [’cnt] ’sym [’any ..]) -> any

Family IPC: Send an executable list (sym any ..) to all family members
(i.e. all children of the current process, and all other children of the parent
process, see fork) for automatic execution. When the cnt argument is given
and non-zero, it should be the PID of such a process, and the list will be sent

1266 48 Symbols starting with T

only to that process. tell is also used internally by commit to notify about
database changes. When called without arguments, no message is actually
sent, and the parent process may grant sync to the next waiting process. See
also hear.

: (call ’ps "x") # Show processes
PID TTY STAT TIME COMMAND
..

1321 pts/0 S 0:00 /usr/bin/picolisp .. # Parent process
1324 pts/0 S 0:01 /usr/bin/picolisp .. # First child
1325 pts/0 S 0:01 /usr/bin/picolisp .. # Second child
1326 pts/0 R 0:00 ps x
-> T
: *Pid # We are the second child
-> 1325
: (tell ’println ’*Pid) # Ask all others to print their Pid’s
1324
-> *Pid

(test ’any . prg)

Executes prg, and issues an error if the result does not match the any
argument. See also assert.

: (test 12 (* 3 4))
-> NIL
: (test 12 (+ 3 4))
((+ 3 4))
12 -- ’test’ failed
?

(text ’any1 ’any ..) -> sym

Builds a new transient symbol (string) from the string representation of any1,
by replacing all occurrences of an at-mark “@”, followed by one of the let-
ters”1” through “9”, and”A” through “Z”, with the corresponding any argu-
ment. In this context “@A” refers to the 10th argument. A literal at-mark in
the text can be represented by two successive at-marks. See also pack and
glue.

48 Symbols starting with T 1267

: (text "abc @1 def @2" ’XYZ 123)
-> "abc XYZ def 123"
: (text "a@@bc.@1" "de")
-> "a@bc.de"

(tim$ ’tim [’flg]) -> sym

: (tim$ (time))
-> "10:57"
: (tim$ (time) T)
-> "10:57:56"

(timeout [’num])

Sets or refreshes a timeout value in the *Run global, so that the current pro-
cess executes bye after the given period. If called without arguments, the
timeout is removed. See also task.

: (timeout 3600000) # Timeout after one hour
-> (-1 3600000 (bye))
: *Run # Look after a few seconds
-> ((-1 3574516 (bye)))

(throw ’sym ’any)

Non-local jump into a previous catch environment with the jump labe sym
(or T as a catch-all). Any pending finally expressions are executed, local
symbol bindings are restored, open files are closed and internal data struc-
tures are reset appropriately, as the environment was at the time when the
corresponding catch was called. Then any is returned from that catch.
See also quit.

1268 48 Symbols starting with T

: (de foo (N)
(println N)
(throw ’OK))

-> foo
: (let N 1 (catch ’OK (foo 7)) (println N))
7
1
-> 1

(tick (cnt1 . cnt2) . prg) -> any

Executes prg, then (destructively) adds the number of elapsed user ticks to
the cnt1 parameter, and the number of elapsed system ticks to the cnt2
parameter. Thus, cnt1 and cnt2 will finally contain the total number of
user and system time ticks spent in prg and all functions called (this works
also for recursive functions). For execution profiling, tick is usually inserted
into words with prof, and removed with unprof. See also usec.

: (de foo () # Define function with empty loop
(tick (0 . 0) (do 100000000)))

-> foo
: (foo) # Execute it
-> NIL
: (pp ’foo)
(de foo NIL

(tick (97 . 0) (do 100000000))) # ’tick’ incremented ’cnt1’ by 97
-> foo

(till ’any [’flg]) -> lst|sym

Reads from the current input channel till a character contained in any is found
(or until end of file if any is NIL). If flg is NIL, a list of single-character
transient symbols is returned. Otherwise, a single string is returned. See also
from and line.

48 Symbols starting with T 1269

: (till ":")
abc:def
-> ("a" "b" "c")
: (till ":" T)
abc:def
-> "abc"

(time [’T]) -> tim

(time ’tim) -> (h m s)

(time ’h ’m [’s]) -> tim | NIL

(time ’(h m [s])) -> tim | NIL

Calculates the time of day, represented as the number of seconds since mid-
night. When called without arguments, the current local time is returned.
When called with a T argument, the time of the last call to date is returned.
When called with a single number tim, it is taken as a time value and a list
with the corresponding hour, minute and second is returned. When called with
two or three numbers (or a list of two or three numbers) for the hour, minute
(and optionally the second), the corresponding time value is returned (or NIL
if they do not represent a legal time). See also date, stamp, usec, tim$
and $tim.

: (time) # Now
-> 32334
: (time 32334) # Now
-> (8 58 54)
: (time 25 30) # Illegal time
-> NIL

(tmp [’any ..]) -> sym

Returns the path name to the packed any arguments in a process-local tem-
porary directory. The directory name consists of the path to “.pil/tmp/” in the
user’s home directory, followed by the current process ID *Pid. This direc-
tory is automatically created if necessary, and removed upon termination of
the process (bye). See also pil, *Tmp and *Bye .

1270 48 Symbols starting with T

: *Pid
-> 27140
: (tmp "foo" 123)
-> "/home/app/.pil/tmp/27140/foo123"
: (out (tmp "foo" 123) (println ’OK))
-> OK
: (dir (tmp))
-> ("foo123")
: (in (tmp "foo" 123) (read))
-> OK

tolr/3

Pilog predicate that succeeds if the first argument is either a substring or a
+Sn soundex match of the result of applying the get algorithm to the fol-
lowing arguments. Typically used as filter predicate in select/3 database
queries. See also isa/2, same/3, bool/3, range/3, head/3, fold/3
and part/3.

: (?
@Nr (1 . 5)
@Nm "Sven"
(select (@CuSu)

((nr +CuSu @Nr) (nm +CuSu @Nm))
(range @Nr @CuSu nr)
(tolr @Nm @CuSu nm))

(val @Name @CuSu nm))
@Nr=(1 . 5) @Nm="Sven" @CuSu={2-2} @Name="Seven Oaks Ltd."

(touch ’sym) -> sym

When sym is an external symbol, it is marked as “modified” so that upon a
later commit it will be written to the database file. An explicit call of touch
is only necessary when the value or properties of sym are indirectly modified.

48 Symbols starting with T 1271

: (get ’{2} ’lst)
-> (1 2 3 4 5)
: (set (cdr (get (touch ’{2}) ’lst)) 999) # Only read-access, need ’touch’
-> 999
: (get ’{2} ’lst) # Modified second list element
-> (1 999 3 4 5)

(trace ’sym) -> sym

(trace ’sym ’cls) -> sym

(trace ’(sym . cls)) -> sym

Inserts a $ trace function call at the beginning of the function or method body
of sym, so that trace information will be printed before and after execution.
Built-in functions (C-function pointer) are automatically converted to Lisp
expressions (see expr). See also *Dbg, traceAll and untrace, debug
and lint.

: (trace ’+)
-> +
: (+ 3 4)
+ : 3 4
+ = 7
-> 7

(traceAll [’lst]) -> sym

Traces all Lisp level functions by inserting a $ function call at the beginning.
lst may contain symbols which are to be excluded from that process. In
addition, all symbols in the global variable *NoTrace are excluded. See also
trace, untrace and *Dbg.

: (traceAll) # Trace all Lisp level functions
-> balance

1272 48 Symbols starting with T

(tree ’var ’cls [’hook]) -> tree

Returns a data structure specifying a database index tree. var and cls deter-
mine the relation, with an optional hook object. See also root, fetch,
store, count, leaf, minKey, maxKey, init, step, scan, iter,
prune, zapTree and chkTree.

: (tree ’nm ’+Item)
-> (nm . +Item)

(trim ’lst) -> lst

Returns a copy of lstwith all trailing whitespace characters or NIL elements
removed. See also clip.

: (trim (1 NIL 2 NIL NIL))
-> (1 NIL 2)
: (trim ’(a b " " " "))
-> (a b)

true/0

Pilog predicate that always succeeds. See also fail/0 and repeat/0.

: (? (true))
-> T

(try ’msg ’obj [’any ..]) -> any

Tries to send the message msg to the object obj, optionally with arguments
any. If obj is not an object, or if the message cannot be located in obj, in
its classes or superclasses, NIL is returned. See also OO Concepts, send,
method, meth, super and extra.

48 Symbols starting with T 1273

: (try ’msg> 123)
-> NIL
: (try ’html> ’a)
-> NIL

(type ’any) -> lst

Return the type (list of classes) of the object sym. See also OO Concepts,
isa, class, new and object.

: (type ’{1A;3})
(+Address)
: (type ’+DnButton)
-> (+Tiny +Rid +JS +Able +Button)

Chapter 49

Symbols starting with U

*Uni

A global variable holding an idx tree, with all unique data that were col-
lected with the comma (,) read-macro. Typically used for localization. See
also Read-Macros and locale.

: (off *Uni) # Clear
-> NIL
: ,"abc" # Collect a transient symbol
-> "abc"
: ,(1 2 3) # Collect a list
-> (1 2 3)
: *Uni
-> ("abc" NIL (1 2 3))

+UB

Prefix class for +Aux to maintain an UB-Tree index instead of the direct val-
ues. This allows efficient range access to multidimensional data. Only numeric
keys are supported. See also Database.

1275

1276 49 Symbols starting with U

(class +Pos +Entity)
(rel x (+UB +Aux +Ref +Number) (y z))
(rel y (+Number))
(rel z (+Number))

: (scan (tree ’x ’+Pos))
...
(664594005183881683 . {B}) {B}
(899018453307525604 . {C}) {C} # UBKEY of (516516 690628 706223)
(943014863198293414 . {2}) {2}
(988682500781514058 . {A}) {A}
(994667870851824704 . {8}) {8}
(1016631364991047263 . {:}) {:}
...

: (show ’{C})
{C} (+Pos)

z 706223
y 690628
x 516516

-> {C}

Discrete queries work the same way as without the +UB prefix
: (db ’x ’+Pos 516516 ’y 690628 ’z 706223)
-> {C}
: (aux ’x ’+Pos 516516 690628 706223)
-> {C}
: (? (db x +Pos (516516 690628 706223) @Pos))
@Pos={C}
-> NIL

Efficient range queries are are possible now
: (?

@X (416511 . 616519)
@Y (590621 . 890629)
@Z (606221 . 906229)
(select (@@)

((x +Pos (@X @Y @Z))) # Range query
(range @X @@ x) # Filter
(range @Y @@ y)
(range @Z @@ z)))

@X=(416511 . 616519) @Y=(590621 . 890629) @Z=(606221 . 906229) @@={C}
@X=(416511 . 616519) @Y=(590621 . 890629) @Z=(606221 . 906229) @@={8}

49 Symbols starting with U 1277

(u) -> T

Removes ! all breakpoints in all subexpressions of the current breakpoint.
Typically used when single-stepping a function or method with debug. See
also d and unbug.

! (u) # Unbug subexpression(s) at breakpoint
-> T

(udp ’any1 ’any2 ’any3) -> any

(udp ’cnt) -> any

Simple unidirectional sending/receiving of UDP packets. In the first form,
any3 is sent to a UDP server listening at host any1, port any2. In the second
form, one item is received from a UDP socket cnt, established with port.
See also listen and connect.

First session
: (port T 6666)
-> 3
: (udp 3) # Receive a datagram

Second session (on the same machine)
: (udp "localhost" 6666 ’(a b c))
-> (a b c)

First session
-> (a b c)

(ultimo ’y ’m) -> cnt

Returns the date of the last day of the month m in the year y. See also day
and week.

1278 49 Symbols starting with U

: (date (ultimo 2007 1))
-> (2007 1 31)
: (date (ultimo 2007 2))
-> (2007 2 28)
: (date (ultimo 2004 2))
-> (2004 2 29)
: (date (ultimo 2000 2))
-> (2000 2 29)
: (date (ultimo 1900 2))
-> (1900 2 28)

(unbug ’sym) -> T

(unbug ’sym ’cls) -> T

(unbug ’(sym . cls)) -> T

Removes all ! breakpoints in the function or method body of sym, as inserted
with debug or d, or directly with edit. See also u.

: (pp ’tst)
(de tst (N)

(! println (+ 3 N))) # ’tst’ has a breakpoint ’!’
-> tst
: (unbug ’tst) # Unbug it
-> T
: (pp ’tst) # Restore
(de tst (N)

(println (+ 3 N)))

(undef ’sym) -> fun

(undef ’sym ’cls) -> fun

(undef ’(sym . cls)) -> fun

Undefines the function or method sym. Returns the previous definition. See
also de, dm, def and redef.

49 Symbols starting with U 1279

: (de hello () "Hello world!")
-> hello
: hello
-> (NIL "Hello world!")
: (undef ’hello)
-> (NIL "Hello world!")
: hello
-> NIL

(unify ’any) -> lst

Unifies any with the current Pilog environment at the current level and with a
value of NIL, and returns the new environment or NIL if not successful. See
also prove and ->.

: (? (@A unify ’(@B @C)))
@A=(((NIL . @C) 0 . @C) ((NIL . @B) 0 . @B) T)

(uniq ’lst) -> lst

Returns a unique list, by eleminating all duplicate elements from lst. See
also Comparing, sort and group.

: (uniq (2 4 6 1 2 3 4 5 6 1 3 5))
-> (2 4 6 1 3 5)

uniq/2

Pilog predicate that succeeds if the first argument is not yet stored in the sec-
ond argument’s index structure. idx is used internally storing for the values
and checking for uniqueness. See also member/2.

1280 49 Symbols starting with U

: (? (uniq a @Z)) # Remember ’a’
@Z=NIL # Succeeded

: (? (uniq b @Z)) # Remember ’b’
@Z=NIL # Succeeded

: (? (uniq a @Z)) # Remembered ’a’?
-> NIL # Yes: Not unique

(unless ’any . prg) -> any

Conditional execution: When the condition any evaluates to non-NIL, NIL is
returned. Otherwise prg is executed and the result returned. See also when.

: (unless (= 3 3) (println ’Strange ’result))
-> NIL
: (unless (= 3 4) (println ’Strange ’result))
Strange result
-> result

(until ’any . prg) -> any

Conditional loop: While the condition any evaluates to NIL, prg is repeat-
edly executed. If prg is never executed, NIL is returned. Otherwise the result
of prg is returned. See also while.

: (until (=T (setq N (read)))
(println ’square (* N N)))

4
square 16
9
square 81
T
-> 81

49 Symbols starting with U 1281

(untrace ’sym) -> sym

(untrace ’sym ’cls) -> sym

(untrace ’(sym . cls)) -> sym

Removes the $ trace function call at the beginning of the function or method
body of sym, so that no more trace information will be printed before and after
execution. Built-in functions (C-function pointer) are automatically converted
to their original form (see subr). See also trace and traceAll.

: (trace ’+) # Trace the ’+’ function
-> +
: +
-> (@ ($ + @ (pass $385455126))) # Modified for tracing
: (untrace ’+) # Untrace ’+’
-> +
: +
-> 67319120 # Back to original form

(up [cnt] sym [’val]) -> any

Looks up (or modifies) the cnt’th previously saved value of sym in the cor-
responding enclosing environment. If cnt is not given, 1 is used. See also
eval, run and env.

: (let N 1 ((quote (N) (println N (up N))) 2))
2 1
-> 1
: (let N 1 ((quote (N) (println N (up N) (up N 7))) 2) N)
2 1 7
-> 7

(upd sym ..) -> lst

Synchronizes the internal state of all passed (external) symbols by pass-
ing them to wipe. upd is the standard function passed to commit during
database transactions.

1282 49 Symbols starting with U

(commit ’upd) # Commit changes, informing all sister processes

(update ’obj [’var]) -> obj

Interactive database function for modifying external symbols. When called
only with an obj argument, update steps through the value and all prop-
erties of that object (and recursively also through substructures) and allows
to edit them with the console line editor. When the var argument is given,
only that single property is handed to the editor. To delete a propery, NIL
must be explicitly entered. update will correctly handle all entity/relation
mechanisms. See also select, edit and Database.

: (show ’{3-1}) # Show item 1
{3-1} (+Item)

nr 1
pr 29900
inv 100
sup {2-1}
nm "Main Part"

-> {3-1}

: (update ’{3-1} ’pr) # Update the prices of that item
{3-1} pr 299.00 # The cursor is right behind "299.00"
-> {3-1}

(upp? ’any) -> sym | NIL

Returns any when the argument is a string (symbol) that starts with an upper-
case character. See also uppc and low?

: (upp? "A")
-> T
: (upp? "a")
-> NIL
: (upp? 123)
-> NIL
: (upp? ".")
-> NIL

49 Symbols starting with U 1283

(uppc ’any) -> any

Upper case conversion: If any is not a symbol, it is returned as it is. Other-
wise, a new transient symbol with all characters of any, converted to upper
case, is returned. See also lowc, fold and upp?.

: (uppc 123)
-> 123
: (uppc "abc")
-> "ABC"
: (uppc ’car)
-> "CAR"

(use sym . prg) -> any

(use (sym ..) . prg) -> any

Defines local variables. The value of the symbol sym - or the values of the
symbols sym in the list of the second form - are saved, prg is executed, then
the symbols are restored to their original values. During execution of prg,
the values of the symbols can be temporarily modified. The return value is the
result of prg. See also bind, job and let.

: (setq X 123 Y 456)
-> 456
: (use (X Y) (setq X 3 Y 4) (* X Y))
-> 12
: X
-> 123
: Y
-> 456

(useKey ’var ’cls [’hook]) -> num

Generates or reuses a key for a database tree, by randomly trying to locate a
free number. See also genKey.

1284 49 Symbols starting with U

: (maxKey (tree ’nr ’+Item))
-> 8
: (useKey ’nr ’+Item)
-> 12

(usec) -> num

Returns the number the microseconds since interpreter startup. See also time
and tick.

: (usec)
-> 1154702479219050

Chapter 50

Symbols starting with V

(val ’var) -> any

Returns the current value of var. See also setq, set and def.

: (setq L ’(a b c))
-> (a b c)
: (val ’L)
-> (a b c)
: (val (cdr L))
-> b

val/3

Pilog predicate that returns the value of an object’s attribute. Typically used in
database queries. The first argument is a Pilog variable to bind the value, the
second is the object, and the third and following arguments are used to apply
the get algorithm to that object. See also db/3 and select/3.

1285

1286 50 Symbols starting with V

: (?
(db nr +Item (2 . 5) @Item) # Fetch articles 2 through 5
(val @Nm @Item nm) # Get item description
(val @Sup @Item sup nm)) # and supplier’s name
@Item={3-2} @Nm="Spare Part" @Sup="Seven Oaks Ltd."
@Item={3-3} @Nm="Auxiliary Construction" @Sup="Active Parts Inc."
@Item={3-4} @Nm="Enhancement Additive" @Sup="Seven Oaks Ltd."
@Item={3-5} @Nm="Metal Fittings" @Sup="Active Parts Inc."

-> NIL

(var sym . any) -> any

(var (sym . cls) . any) -> any

Defines a class variable sym with the initial value any for the current class,
implicitly given by the value of the global variable *Class, or - in the sec-
ond form - for the explicitly given class cls. See also OO Concepts, rel and
var:.

: (class +A)
-> +A
: (var a . 1)
-> 1
: (var b . 2)
-> 2
: (show ’+A)
+A NIL

b 2
a 1

-> +A

(var: sym) -> any

Fetches the value of a class variable sym for the current object This, by
searching the property lists of its class(es) and supperclasses. See also OO
Concepts, var, with, meta, :, =: and ::.

50 Symbols starting with V 1287

: (object ’O ’(+A) ’a 9 ’b 8)
-> O
: (with ’O (list (: a) (: b) (var: a) (var: b)))
-> (9 8 1 2)

(version [’flg]) -> lst

Prints the current version as a string of dot-separated numbers, and returns
the current version as a list of numbers. The JVM- and C-versions print an
additional “JVM” or “C”, respectively, separated by a space. When flg is
non-NIL, printing is suppressed.

$ pil -version
3.0.1.22
: (version T)
-> (3 0 1 22)

(vi ’sym) -> sym

(vi ’sym ’cls) -> sym

(vi ’(sym . cls)) -> sym

(vi) -> NIL

Opens the “vi” editor on the function or method definition of sym. A call
to ld thereafter will load the modified file. See also doc, edit, *Dbg,
debug and pp.

: (vi ’url> ’+CuSu) # Edit the method’s source code, then exit from ’vi’
-> T

(view ’lst [’T]) -> any

Views lst as tree-structured ASCII graphics. When the T argument is given,
lst should be a binary tree structure (as generated by idx), which is then
shown as a left-rotated tree. See also pretty and show.

1288 50 Symbols starting with V

: (balance ’I ’(a b c d e f g h i j k l m n o))
-> NIL
: I
-> (h (d (b (a) c) f (e) g) l (j (i) k) n (m) o)

: (view I)
+-- h
|
+---+-- d
| |
| +---+-- b
| | |
| | +---+-- a
| | |
| | +-- c
| |
| +-- f
| |
| +---+-- e
| |
| +-- g
|
+-- l
|
+---+-- j
| |
| +---+-- i
| |
| +-- k
|
+-- n
|
+---+-- m
|
+-- o
-> NIL

: (view I T)
o

n
m

l
k

j
i

h
g

f
e

d
c

b
a

-> NIL

Chapter 51

Symbols starting with W

(wait [’cnt] . prg) -> any

Waits for a condition. While the result of the execution of prg is NIL, a
select system call is executed for all file descriptors and timers in the VAL
of the global variable *Run. When cnt is non-NIL, the waiting time is lim-
ited to cnt milliseconds. Returns the result of prg. See also key and sync.

: (wait 2000) # Wait 2 seconds
-> NIL
: (prog

(zero *Cnt)
(setq *Run # Install background loop

’((-2000 0 (println (inc ’*Cnt))))) # Increment ’*Cnt’ every 2 sec
(wait NIL (> *Cnt 6)) # Wait until > 6
(off *Run))

1 # Waiting ..
2
3
4
5
6
7
-> NIL

1289

1290 51 Symbols starting with W

(week ’dat) -> num

Returns the number of the week for a given date dat. See also day,
ultimo, datStr and strDat.

: (datStr (date))
-> "2007-06-01"
: (week (date))
-> 22

(when ’any . prg) -> any

Conditional execution: When the condition any evaluates to non-NIL, prg
is executed and the result is returned. Otherwise NIL is returned. See also
unless.

: (when (> 4 3) (println ’OK) (println ’Good))
OK
Good
-> Good

(while ’any . prg) -> any

Conditional loop: While the condition any evaluates to non-NIL, prg is re-
peatedly executed. If prg is never executed, NIL is returned. Otherwise the
result of prg is returned. See also until.

: (while (read)
(println ’got: @))

abc
got: abc
1234
got: 1234
NIL
-> 1234

51 Symbols starting with W 1291

(what ’sym) -> lst

Returns a list of all internal symbols that match the pattern string sym. See
also match, who and can.

: (what "cd@dr")
-> (cdaddr cdaadr cddr cddddr cdddr cddadr cdadr)

(who ’any) -> lst

Returns a list of all functions or method definitions that contain the atom or
pattern any. See also match, what and can.

: (who ’caddr) # Who is using ’caddr’?
-> ($dat lint1 expDat datStr $tim tim$ mail _gen dat$ datSym)

: (who "Type error")
-> ((mis> . +Link) *Uni (mis> . +Joint))

: (more (who "Type error") pp) # Pretty print all results
(dm (mis> . +Link) (Val Obj)

(and
Val
(nor (isa (: type) Val) (canQuery Val))
"Type error"))

. # Stop
-> T

(wipe ’sym|lst) -> sym|lst

Clears the VAL and the property list of sym, or of all symbols in the list lst.
When a symbol is an external symbol, its state is also set to “not loaded”. Does
nothing when sym is an external symbol that has been modified or deleted
(“dirty”).

1292 51 Symbols starting with W

: (setq A (1 2 3 4))
-> (1 2 3 4)
: (put ’A ’a 1)
-> 1
: (put ’A ’b 2)
-> 2
: (show ’A)
A (1 2 3 4)

b 2
a 1

-> A
: (wipe ’A)
-> A
: (show ’A)
A NIL
-> A

(with ’sym . prg) -> any

Saves the current object This and sets it to the new value sym. Then prg
is executed, and This is restored to its previous value. The return value is
the result of prg. Used typically to access the local data of sym in the same
manner as inside a method body. prg is not executed (and NIL is returned)
when sym is NIL. (with ’X . prg) is equivalent to (let? This ’X
. prg).

: (put ’X ’a 1)
-> 1
: (put ’X ’b 2)
-> 2
: (with ’X (list (: a) (: b)))
-> (1 2)

(wr ’cnt ..) -> cnt

Writes all cnt arguments as raw bytes to the current output channel. See also
rd and pr.

51 Symbols starting with W 1293

: (out "x" (wr 1 255 257)) # Write to "x"
-> 257
: (hd "x")
00000000 01 FF 01 ...
-> NIL

(wrap ’cnt ’lst) -> sym

Returns a transient symbol with all characters in lst packed in lines with a
maximal length of cnt. See also tab, align and center.

: (wrap 20 (chop "The quick brown fox jumps over the lazy dog"))
-> "The quick brown foxˆJjumps over the lazyˆJdog"
: (wrap 8 (chop "The quick brown fox jumps over the lazy dog"))
-> "TheˆJquickˆJbrownˆJfoxˆJjumpsˆJover theˆJlazy dog"

Chapter 52

Symbols starting with X

(xchg ’var ’var ..) -> any

Exchange the values of successive var argument pairs.

: (setq A 1 B 2 C ’(a b c))
-> (a b c)
: (xchg ’A C ’B (cdr C))
-> 2
: A
-> a
: B
-> b
: C
-> (1 2 c)

(xor ’any ’any) -> flg

Returns T if exactly one of the arguments evaluates to non-NIL.

: (xor T NIL)
-> T
: (xor T T)
-> NIL

1295

1296 52 Symbols starting with X

(x| ’num ..) -> num

Returns the bitwise XOR of all num arguments. When one of the arguments
evaluates to NIL, it is returned immediately. See also &, | and bit?.

: (x| 2 7)
-> 5
: (x| 2 7 1)
-> 4

Chapter 53

Symbols starting with Y

(yield ’any [’sym]) -> any

(64-bit version only) Transfers control from the current coroutine back to the
caller (when the sym tag is not given), or to some other coroutine (specified
by sym) to continue execution at the point where that coroutine had called
yield before. In the first case, the value any will be returned from the cor-
responding co call, in the second case it will be the return value of that yield
call. See also stack, catch and throw.

: (co "rt1" # Start first routine
(msg (yield 1) " in rt1 from rt2") # Return ’1’, wait for value from "rt2"
7) # Then return ’7’

-> 1

: (co "rt2" # Start second routine
(yield 2 "rt1")) # Send ’2’ to "rt1"

2 in rt1 from rt2
-> 7

(yoke ’any ..) -> any

Inserts one or several new elements any in front of the list in the current
make environment. yoke returns the last inserted argument. See also link,
chain and made.

1297

1298 53 Symbols starting with Y

: (make (link 2 3) (yoke 1) (link 4))
-> (1 2 3 4)

Chapter 54

Symbols starting with Z

*Zap

A global variable holding a list and a pathname. If given, and the value of
*Solo is NIL, external symbols which are no longer accessible can be col-
lected in the CAR, e.g. during DB tree processing, and written to the file in
the CDR at the next commit. A (typically periodic) call to zap will clean
them up later.

: (setq *Zap ’(NIL . "db/app/_zap"))
-> "db/app/_zap"

(zap ’sym) -> sym

“Delete” the symbol sym. For internal symbols, that means to remove it from
the internal index, effectively transforming it to a transient symbol. For exter-
nal symbols, it means to mark it as “deleted”, so that upon a later commit it
will be removed from the database file. See also intern.

1299

1300 54 Symbols starting with Z

: (de foo (Lst) (car Lst)) # ’foo’ calls ’car’
-> foo
: (zap ’car) # Delete the symbol ’car’
-> "car"
: (pp ’foo)
(de foo (Lst)

("car" Lst)) # ’car’ is now a transient symbol
-> foo
: (foo (1 2 3)) # ’foo’ still works
-> 1
: (car (1 2 3)) # Reader returns a new ’car’ symbol
!? (car (1 2 3))
car -- Undefined
?

(zapTree ’sym)

Recursively deletes a tree structure from the database. See also tree, chkTree
and prune.

: (zapTree (cdr (root (tree ’nm ’+Item))))

(zap)

Delayed deletion (with zap) of external symbols which were collected e.g.
during DB tree processing. An auxiliary file (with the name taken from the
CDR of the value of *Zap, concatenated with a “ ” character) is used as an
intermediary file.

54 Symbols starting with Z 1301

: *Zap
-> (NIL . "db/app/Z")
: (call ’ls "-l" "db/app")
...
-rw-r--r-- 1 abu abu 1536 2007-06-23 12:34 Z
-rw-r--r-- 1 abu abu 1280 2007-05-23 12:15 Z_
...
: (zap_)
...
: (call ’ls "-l" "db/app")
...
-rw-r--r-- 1 abu abu 1536 2007-06-23 12:34 Z_
...

(zero var ..) -> 0

Stores 0 in all var arguments. See also one, on, off and onOff.

: (zero A B)
-> 0
: A
-> 0
: B
-> 0

Part IV

Appendix

Licence and Links

Appendix A

GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We

1305

1306 A GNU Free Documentation License

recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed un-
der the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept
the license if you copy, modify or distribute the work in a way requiring per-
mission under copyright law.

A ”Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text edi-
tors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to

A GNU Free Documentation License 1307

text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy that is
not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include propri-
etary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose ti-
tle either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”En-
dorsements”, or ”History”.) To ”Preserve the Title” of such a section when
you modify the Document means that it remains a section ”Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control

1308 A GNU Free Documentation License

the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s li-
cense notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus ac-
cessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

A GNU Free Documentation License 1309

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document. E. Add an appropri-
ate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License. I. Preserve the section Entitled
”History”, Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled ”History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-

1310 A GNU Free Documentation License

ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

A GNU Free Documentation License 1311

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Enti-
tled ”Dedications”. You must delete all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution

1312 A GNU Free Documentation License

medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original En-
glish version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the origi-
nal version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, mod-
ify, sublicense or distribute the Document is void, and will automatically ter-
minate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses ter-
minated so long as such parties remain in full compliance.

A GNU Free Documentation License 1313

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any ver-
sion ever published (not as a draft) by the Free Software Foundation. How to
use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

Appendix B

Links to original Rosetta Code Tasks

Table B.1: URI’s of Rosetta Code Tasks

Task
URI
100 Doors
http://rosettacode.org/wiki/100 doors
24 Game
http://rosettacode.org/wiki/24 game
24 Game/Solve
http://rosettacode.org/wiki/24 game/Solve
99 Bottles Of Beer
http://rosettacode.org/wiki/99 Bottles of Beer
A%2bb
http://rosettacode.org/wiki/A%2BB
Abstract Type

http://rosettacode.org/wiki/Abstract type
Accumulator Factory
http://rosettacode.org/wiki/Accumulator factory
Ackermann Function
http://rosettacode.org/wiki/Ackermann function
Active Directory/Connect

http://rosettacode.org/wiki/Active Directory/Connect
Active Directory/Search For A User
http://rosettacode.org/wiki/Active Directory/Search for a user
Active Object

http://rosettacode.org/wiki/Active object
Add A Variable To A Class Instance At Runtime
http://rosettacode.org/wiki/Add a variable to a class instance at runtime
Address Of A Variable

http://rosettacode.org/wiki/Address of a variable

1315

http://rosettacode.org/wiki/100_doors
http://rosettacode.org/wiki/24_game
http://rosettacode.org/wiki/24_game/Solve
http://rosettacode.org/wiki/99_Bottles_of_Beer
http://rosettacode.org/wiki/A%2BB
http://rosettacode.org/wiki/Abstract_type
http://rosettacode.org/wiki/Accumulator_factory
http://rosettacode.org/wiki/Ackermann_function
http://rosettacode.org/wiki/Active_Directory/Connect
http://rosettacode.org/wiki/Active_Directory/Search_for_a_user
http://rosettacode.org/wiki/Active_object
http://rosettacode.org/wiki/Add_a_variable_to_a_class_instance_at_runtime
http://rosettacode.org/wiki/Address_of_a_variable

1316 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Align Columns
http://rosettacode.org/wiki/Align columns
Amb
http://rosettacode.org/wiki/Amb
Anagrams
http://rosettacode.org/wiki/Anagrams
Anagrams/Deranged Anagrams

http://rosettacode.org/wiki/Anagrams/Deranged anagrams
Animate A Pendulum
http://rosettacode.org/wiki/Animate a pendulum
Animation
http://rosettacode.org/wiki/Animation
Anonymous Recursion

http://rosettacode.org/wiki/Anonymous recursion
Apply A Callback To An Array
http://rosettacode.org/wiki/Apply a callback to an array
Arbitrary-Precision Integers (Included)

http://rosettacode.org/wiki/Arbitrary-precision integers (included)
Arena Storage Pool
http://rosettacode.org/wiki/Arena storage pool
Arithmetic Evaluation

http://rosettacode.org/wiki/Arithmetic evaluation
Arithmetic-Geometric Mean
http://rosettacode.org/wiki/Arithmetic-geometric mean
Arithmetic/Complex

http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Integer
http://rosettacode.org/wiki/Arithmetic/Integer
Arithmetic/Rational
http://rosettacode.org/wiki/Arithmetic/Rational
Array Concatenation

http://rosettacode.org/wiki/Array concatenation
Arrays
http://rosettacode.org/wiki/Arrays
Assertions
http://rosettacode.org/wiki/Assertions
Associative Arrays/Creation

http://rosettacode.org/wiki/Associative arrays/Creation
Associative Arrays/Iteration
http://rosettacode.org/wiki/Associative arrays/Iteration
Atomic Updates

http://rosettacode.org/wiki/Atomic updates

http://rosettacode.org/wiki/Align_columns
http://rosettacode.org/wiki/Amb
http://rosettacode.org/wiki/Anagrams
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
http://rosettacode.org/wiki/Animate_a_pendulum
http://rosettacode.org/wiki/Animation
http://rosettacode.org/wiki/Anonymous_recursion
http://rosettacode.org/wiki/Apply_a_callback_to_an_array
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
http://rosettacode.org/wiki/Arena_storage_pool
http://rosettacode.org/wiki/Arithmetic_evaluation
http://rosettacode.org/wiki/Arithmetic-geometric_mean
http://rosettacode.org/wiki/Arithmetic/Complex
http://rosettacode.org/wiki/Arithmetic/Integer
http://rosettacode.org/wiki/Arithmetic/Rational
http://rosettacode.org/wiki/Array_concatenation
http://rosettacode.org/wiki/Arrays
http://rosettacode.org/wiki/Assertions
http://rosettacode.org/wiki/Associative_arrays/Creation
http://rosettacode.org/wiki/Associative_arrays/Iteration
http://rosettacode.org/wiki/Atomic_updates

B Links to original Rosetta Code Tasks 1317

Table B.1: Task URI’s (cont.)

Task \ URI
Averages/Arithmetic Mean
http://rosettacode.org/wiki/Averages/Arithmetic mean
Averages/Median
http://rosettacode.org/wiki/Averages/Median
Averages/Mode

http://rosettacode.org/wiki/Averages/Mode
Averages/Pythagorean Means
http://rosettacode.org/wiki/Averages/Pythagorean means
Averages/Root Mean Square

http://rosettacode.org/wiki/Averages/Root mean square
Averages/Simple Moving Average
http://rosettacode.org/wiki/Averages/Simple moving average
Balanced Brackets

http://rosettacode.org/wiki/Balanced brackets
Best Shuffle
http://rosettacode.org/wiki/Best shuffle
Binary Digits
http://rosettacode.org/wiki/Binary digits
Binary Search
http://rosettacode.org/wiki/Binary search
Binary Strings

http://rosettacode.org/wiki/Binary strings
Bitmap
http://rosettacode.org/wiki/Bitmap
Bitmap/Bresenham%27s Line Algorithm
http://rosettacode.org/wiki/Bitmap/Bresenham%27s line algorithm
Bitmap/B%c3%a9zier Curves/Cubic

http://rosettacode.org/wiki/Bitmap/B%C3%A9zier curves/Cubic
Bitmap/B%c3%a9zier Curves/Quadratic

http://rosettacode.org/wiki/Bitmap/B%C3%A9zier curves/Quadratic
Bitmap/Flood Fill
http://rosettacode.org/wiki/Bitmap/Flood fill
Bitmap/Histogram

http://rosettacode.org/wiki/Bitmap/Histogram
Bitmap/Midpoint Circle Algorithm
http://rosettacode.org/wiki/Bitmap/Midpoint circle algorithm
Bitmap/Ppm Conversion Through A Pipe

http://rosettacode.org/wiki/Bitmap/PPM conversion through a pipe
Bitmap/Read A Ppm File
http://rosettacode.org/wiki/Bitmap/Read a PPM file
Bitmap/Read An Image Through A Pipe

http://rosettacode.org/wiki/Bitmap/Read an image through a pipe

http://rosettacode.org/wiki/Averages/Arithmetic_mean
http://rosettacode.org/wiki/Averages/Median
http://rosettacode.org/wiki/Averages/Mode
http://rosettacode.org/wiki/Averages/Pythagorean_means
http://rosettacode.org/wiki/Averages/Root_mean_square
http://rosettacode.org/wiki/Averages/Simple_moving_average
http://rosettacode.org/wiki/Balanced_brackets
http://rosettacode.org/wiki/Best_shuffle
http://rosettacode.org/wiki/Binary_digits
http://rosettacode.org/wiki/Binary_search
http://rosettacode.org/wiki/Binary_strings
http://rosettacode.org/wiki/Bitmap
http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm
http://rosettacode.org/wiki/Bitmap/B%C3%A9zier_curves/Cubic
http://rosettacode.org/wiki/Bitmap/B%C3%A9zier_curves/Quadratic
http://rosettacode.org/wiki/Bitmap/Flood_fill
http://rosettacode.org/wiki/Bitmap/Histogram
http://rosettacode.org/wiki/Bitmap/Midpoint_circle_algorithm
http://rosettacode.org/wiki/Bitmap/PPM_conversion_through_a_pipe
http://rosettacode.org/wiki/Bitmap/Read_a_PPM_file
http://rosettacode.org/wiki/Bitmap/Read_an_image_through_a_pipe

1318 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Bitmap/Write A Ppm File
http://rosettacode.org/wiki/Bitmap/Write a PPM file
Bitwise Io

http://rosettacode.org/wiki/Bitwise IO
Bitwise Operations
http://rosettacode.org/wiki/Bitwise operations
Boolean Values
http://rosettacode.org/wiki/Boolean values
Box The Compass
http://rosettacode.org/wiki/Box the compass
Break Oo Privacy

http://rosettacode.org/wiki/Break OO privacy
Brownian Tree
http://rosettacode.org/wiki/Brownian tree
Bulls And Cows
http://rosettacode.org/wiki/Bulls and cows
Bulls And Cows/Player

http://rosettacode.org/wiki/Bulls and cows/Player
Caesar Cipher
http://rosettacode.org/wiki/Caesar cipher
Calendar
http://rosettacode.org/wiki/Calendar
Calendar - For %22real%22 Programmers

http://rosettacode.org/wiki/Calendar - for %22real%22 programmers
Call A Foreign-Language Function

http://rosettacode.org/wiki/Call a foreign-language function
Call A Function
http://rosettacode.org/wiki/Call a function
Call A Function In A Shared Library

http://rosettacode.org/wiki/Call a function in a shared library
Call An Object Method
http://rosettacode.org/wiki/Call an object method
Case-Sensitivity Of Identifiers

http://rosettacode.org/wiki/Case-sensitivity of identifiers
Catalan Numbers
http://rosettacode.org/wiki/Catalan numbers
Character Codes
http://rosettacode.org/wiki/Character codes
Character Matching

http://rosettacode.org/wiki/Character matching
Chat Server
http://rosettacode.org/wiki/Chat server

http://rosettacode.org/wiki/Bitmap/Write_a_PPM_file
http://rosettacode.org/wiki/Bitwise_IO
http://rosettacode.org/wiki/Bitwise_operations
http://rosettacode.org/wiki/Boolean_values
http://rosettacode.org/wiki/Box_the_compass
http://rosettacode.org/wiki/Break_OO_privacy
http://rosettacode.org/wiki/Brownian_tree
http://rosettacode.org/wiki/Bulls_and_cows
http://rosettacode.org/wiki/Bulls_and_cows/Player
http://rosettacode.org/wiki/Caesar_cipher
http://rosettacode.org/wiki/Calendar
http://rosettacode.org/wiki/Calendar_-_for_%22real%22_programmers
http://rosettacode.org/wiki/Call_a_foreign-language_function
http://rosettacode.org/wiki/Call_a_function
http://rosettacode.org/wiki/Call_a_function_in_a_shared_library
http://rosettacode.org/wiki/Call_an_object_method
http://rosettacode.org/wiki/Case-sensitivity_of_identifiers
http://rosettacode.org/wiki/Catalan_numbers
http://rosettacode.org/wiki/Character_codes
http://rosettacode.org/wiki/Character_matching
http://rosettacode.org/wiki/Chat_server

B Links to original Rosetta Code Tasks 1319

Table B.1: Task URI’s (cont.)

Task \ URI
Checkpoint Synchronization
http://rosettacode.org/wiki/Checkpoint synchronization
Chess Player

http://rosettacode.org/wiki/Chess player
Chess Player/Picolisp
http://rosettacode.org/wiki/Chess player/PicoLisp
Cholesky Decomposition
http://rosettacode.org/wiki/Cholesky decomposition
Classes

http://rosettacode.org/wiki/Classes
Closest-Pair Problem
http://rosettacode.org/wiki/Closest-pair problem
Closures/Variable Capture
http://rosettacode.org/wiki/Closures/Variable capture
Collections

http://rosettacode.org/wiki/Collections
Color Of A Screen Pixel
http://rosettacode.org/wiki/Color of a screen pixel
Colour Bars/Display
http://rosettacode.org/wiki/Colour bars/Display
Colour Pinstripe/Printer

http://rosettacode.org/wiki/Colour pinstripe/Printer
Combinations
http://rosettacode.org/wiki/Combinations
Combinations With Repetitions

http://rosettacode.org/wiki/Combinations with repetitions
Command-Line Arguments
http://rosettacode.org/wiki/Command-line arguments
Comments
http://rosettacode.org/wiki/Comments
Compile-Time Calculation

http://rosettacode.org/wiki/Compile-time calculation
Compound Data Type
http://rosettacode.org/wiki/Compound data type
Concurrent Computing
http://rosettacode.org/wiki/Concurrent computing
Conditional Structures

http://rosettacode.org/wiki/Conditional structures
Constrained Genericity
http://rosettacode.org/wiki/Constrained genericity
Constrained Random Points On A Circle

http://rosettacode.org/wiki/Constrained random points on a circle

http://rosettacode.org/wiki/Checkpoint_synchronization
http://rosettacode.org/wiki/Chess_player
http://rosettacode.org/wiki/Chess_player/PicoLisp
http://rosettacode.org/wiki/Cholesky_decomposition
http://rosettacode.org/wiki/Classes
http://rosettacode.org/wiki/Closest-pair_problem
http://rosettacode.org/wiki/Closures/Variable_capture
http://rosettacode.org/wiki/Collections
http://rosettacode.org/wiki/Color_of_a_screen_pixel
http://rosettacode.org/wiki/Colour_bars/Display
http://rosettacode.org/wiki/Colour_pinstripe/Printer
http://rosettacode.org/wiki/Combinations
http://rosettacode.org/wiki/Combinations_with_repetitions
http://rosettacode.org/wiki/Command-line_arguments
http://rosettacode.org/wiki/Comments
http://rosettacode.org/wiki/Compile-time_calculation
http://rosettacode.org/wiki/Compound_data_type
http://rosettacode.org/wiki/Concurrent_computing
http://rosettacode.org/wiki/Conditional_structures
http://rosettacode.org/wiki/Constrained_genericity
http://rosettacode.org/wiki/Constrained_random_points_on_a_circle

1320 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Conway%27s Game Of Life
http://rosettacode.org/wiki/Conway%27s Game of Life
Copy A String

http://rosettacode.org/wiki/Copy a string
Count In Factors
http://rosettacode.org/wiki/Count in factors
Count In Octal
http://rosettacode.org/wiki/Count in octal
Count Occurrences Of A Substring

http://rosettacode.org/wiki/Count occurrences of a substring
Count The Coins
http://rosettacode.org/wiki/Count the coins
Create A File
http://rosettacode.org/wiki/Create a file
Create A Two-Dimensional Array At Runtime

http://rosettacode.org/wiki/Create a two-dimensional array at runtime
Create An Html Table
http://rosettacode.org/wiki/Create an HTML table
Create An Object At A Given Address

http://rosettacode.org/wiki/Create an object at a given address
Csv To Html Translation
http://rosettacode.org/wiki/CSV to HTML translation
Date Format

http://rosettacode.org/wiki/Date format
Date Manipulation
http://rosettacode.org/wiki/Date manipulation
Day Of The Week
http://rosettacode.org/wiki/Day of the week
Deal Cards For Freecell

http://rosettacode.org/wiki/Deal cards for FreeCell
Decision Tables
http://rosettacode.org/wiki/Decision tables
Deepcopy
http://rosettacode.org/wiki/Deepcopy
Define A Primitive Data Type

http://rosettacode.org/wiki/Define a primitive data type
Delegates
http://rosettacode.org/wiki/Delegates
Delete A File
http://rosettacode.org/wiki/Delete a file
Detect Division By Zero

http://rosettacode.org/wiki/Detect division by zero

http://rosettacode.org/wiki/Conway%27s_Game_of_Life
http://rosettacode.org/wiki/Copy_a_string
http://rosettacode.org/wiki/Count_in_factors
http://rosettacode.org/wiki/Count_in_octal
http://rosettacode.org/wiki/Count_occurrences_of_a_substring
http://rosettacode.org/wiki/Count_the_coins
http://rosettacode.org/wiki/Create_a_file
http://rosettacode.org/wiki/Create_a_two-dimensional_array_at_runtime
http://rosettacode.org/wiki/Create_an_HTML_table
http://rosettacode.org/wiki/Create_an_object_at_a_given_address
http://rosettacode.org/wiki/CSV_to_HTML_translation
http://rosettacode.org/wiki/Date_format
http://rosettacode.org/wiki/Date_manipulation
http://rosettacode.org/wiki/Day_of_the_week
http://rosettacode.org/wiki/Deal_cards_for_FreeCell
http://rosettacode.org/wiki/Decision_tables
http://rosettacode.org/wiki/Deepcopy
http://rosettacode.org/wiki/Define_a_primitive_data_type
http://rosettacode.org/wiki/Delegates
http://rosettacode.org/wiki/Delete_a_file
http://rosettacode.org/wiki/Detect_division_by_zero

B Links to original Rosetta Code Tasks 1321

Table B.1: Task URI’s (cont.)

Task \ URI
Determine If A String Is Numeric
http://rosettacode.org/wiki/Determine if a string is numeric
Determine If Only One Instance Is Running

http://rosettacode.org/wiki/Determine if only one instance is running
Dinesman%27s Multiple-Dwelling Problem

http://rosettacode.org/wiki/Dinesman%27s multiple-dwelling problem
Dining Philosophers
http://rosettacode.org/wiki/Dining philosophers
Discordian Date

http://rosettacode.org/wiki/Discordian date
Distributed Programming
http://rosettacode.org/wiki/Distributed programming
Dns Query
http://rosettacode.org/wiki/DNS query
Documentation

http://rosettacode.org/wiki/Documentation
Dot Product
http://rosettacode.org/wiki/Dot product
Doubly-Linked List/Definition
http://rosettacode.org/wiki/Doubly-linked list/Definition
Doubly-Linked List/Element Definition

http://rosettacode.org/wiki/Doubly-linked list/Element definition
Doubly-Linked List/Element Insertion

http://rosettacode.org/wiki/Doubly-linked list/Element insertion
Doubly-Linked List/Traversal
http://rosettacode.org/wiki/Doubly-linked list/Traversal
Dragon Curve

http://rosettacode.org/wiki/Dragon curve
Draw A Clock
http://rosettacode.org/wiki/Draw a clock
Draw A Cuboid
http://rosettacode.org/wiki/Draw a cuboid
Draw A Sphere
http://rosettacode.org/wiki/Draw a sphere
Dynamic Variable Names

http://rosettacode.org/wiki/Dynamic variable names
Echo Server
http://rosettacode.org/wiki/Echo server
Element-Wise Operations
http://rosettacode.org/wiki/Element-wise operations
Empty Directory

http://rosettacode.org/wiki/Empty directory

http://rosettacode.org/wiki/Determine_if_a_string_is_numeric
http://rosettacode.org/wiki/Determine_if_only_one_instance_is_running
http://rosettacode.org/wiki/Dinesman%27s_multiple-dwelling_problem
http://rosettacode.org/wiki/Dining_philosophers
http://rosettacode.org/wiki/Discordian_date
http://rosettacode.org/wiki/Distributed_programming
http://rosettacode.org/wiki/DNS_query
http://rosettacode.org/wiki/Documentation
http://rosettacode.org/wiki/Dot_product
http://rosettacode.org/wiki/Doubly-linked_list/Definition
http://rosettacode.org/wiki/Doubly-linked_list/Element_definition
http://rosettacode.org/wiki/Doubly-linked_list/Element_insertion
http://rosettacode.org/wiki/Doubly-linked_list/Traversal
http://rosettacode.org/wiki/Dragon_curve
http://rosettacode.org/wiki/Draw_a_clock
http://rosettacode.org/wiki/Draw_a_cuboid
http://rosettacode.org/wiki/Draw_a_sphere
http://rosettacode.org/wiki/Dynamic_variable_names
http://rosettacode.org/wiki/Echo_server
http://rosettacode.org/wiki/Element-wise_operations
http://rosettacode.org/wiki/Empty_directory

1322 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Empty Program
http://rosettacode.org/wiki/Empty program
Empty String
http://rosettacode.org/wiki/Empty string
Enforced Immutability

http://rosettacode.org/wiki/Enforced immutability
Ensure That A File Exists
http://rosettacode.org/wiki/Ensure that a file exists
Enumerations
http://rosettacode.org/wiki/Enumerations
Environment Variables

http://rosettacode.org/wiki/Environment variables
Equilibrium Index
http://rosettacode.org/wiki/Equilibrium index
Ethiopian Multiplication
http://rosettacode.org/wiki/Ethiopian multiplication
Euler Method

http://rosettacode.org/wiki/Euler method
Evaluate Binomial Coefficients
http://rosettacode.org/wiki/Evaluate binomial coefficients
Even Or Odd
http://rosettacode.org/wiki/Even or odd
Events
http://rosettacode.org/wiki/Events
Evolutionary Algorithm

http://rosettacode.org/wiki/Evolutionary algorithm
Exceptions
http://rosettacode.org/wiki/Exceptions
Exceptions/Catch An Exception Thrown In A Nested Call

http://rosettacode.org/wiki/Exceptions/Catch an exception thrown in a nested call
Executable Library

http://rosettacode.org/wiki/Executable library
Execute A Markov Algorithm
http://rosettacode.org/wiki/Execute a Markov algorithm
Execute A System Command

http://rosettacode.org/wiki/Execute a system command
Execute Brain****
http://rosettacode.org/wiki/Execute Brain****
Execute Hq9%2b
http://rosettacode.org/wiki/Execute HQ9%2B
Exponentiation Operator

http://rosettacode.org/wiki/Exponentiation operator

http://rosettacode.org/wiki/Empty_program
http://rosettacode.org/wiki/Empty_string
http://rosettacode.org/wiki/Enforced_immutability
http://rosettacode.org/wiki/Ensure_that_a_file_exists
http://rosettacode.org/wiki/Enumerations
http://rosettacode.org/wiki/Environment_variables
http://rosettacode.org/wiki/Equilibrium_index
http://rosettacode.org/wiki/Ethiopian_multiplication
http://rosettacode.org/wiki/Euler_method
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
http://rosettacode.org/wiki/Even_or_odd
http://rosettacode.org/wiki/Events
http://rosettacode.org/wiki/Evolutionary_algorithm
http://rosettacode.org/wiki/Exceptions
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call
http://rosettacode.org/wiki/Executable_library
http://rosettacode.org/wiki/Execute_a_Markov_algorithm
http://rosettacode.org/wiki/Execute_a_system_command
http://rosettacode.org/wiki/Execute_Brain****
http://rosettacode.org/wiki/Execute_HQ9%2B
http://rosettacode.org/wiki/Exponentiation_operator

B Links to original Rosetta Code Tasks 1323

Table B.1: Task URI’s (cont.)

Task \ URI
Extend Your Language
http://rosettacode.org/wiki/Extend your language
Extreme Floating Point Values

http://rosettacode.org/wiki/Extreme floating point values
Factorial
http://rosettacode.org/wiki/Factorial
Factors Of A Mersenne Number

http://rosettacode.org/wiki/Factors of a Mersenne number
Factors Of An Integer
http://rosettacode.org/wiki/Factors of an integer
Fast Fourier Transform

http://rosettacode.org/wiki/Fast Fourier transform
Fibonacci N-Step Number Sequences
http://rosettacode.org/wiki/Fibonacci n-step number sequences
Fibonacci Sequence

http://rosettacode.org/wiki/Fibonacci sequence
File Io
http://rosettacode.org/wiki/File IO
File Modification Time
http://rosettacode.org/wiki/File modification time
File Size
http://rosettacode.org/wiki/File size
Filter

http://rosettacode.org/wiki/Filter
Find Common Directory Path
http://rosettacode.org/wiki/Find common directory path
Find First And Last Set Bit Of A Long Integer

http://rosettacode.org/wiki/Find first and last set bit of a long integer
Find Limit Of Recursion

http://rosettacode.org/wiki/Find limit of recursion
Find The Missing Permutation
http://rosettacode.org/wiki/Find the missing permutation
First Class Environments

http://rosettacode.org/wiki/First class environments
First-Class Functions
http://rosettacode.org/wiki/First-class functions
First-Class Functions/Use Numbers Analogously

http://rosettacode.org/wiki/First-class functions/Use numbers analogously
Five Weekends
http://rosettacode.org/wiki/Five weekends
Fizzbuzz

http://rosettacode.org/wiki/FizzBuzz

http://rosettacode.org/wiki/Extend_your_language
http://rosettacode.org/wiki/Extreme_floating_point_values
http://rosettacode.org/wiki/Factorial
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
http://rosettacode.org/wiki/Factors_of_an_integer
http://rosettacode.org/wiki/Fast_Fourier_transform
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
http://rosettacode.org/wiki/Fibonacci_sequence
http://rosettacode.org/wiki/File_IO
http://rosettacode.org/wiki/File_modification_time
http://rosettacode.org/wiki/File_size
http://rosettacode.org/wiki/Filter
http://rosettacode.org/wiki/Find_common_directory_path
http://rosettacode.org/wiki/Find_first_and_last_set_bit_of_a_long_integer
http://rosettacode.org/wiki/Find_limit_of_recursion
http://rosettacode.org/wiki/Find_the_missing_permutation
http://rosettacode.org/wiki/First_class_environments
http://rosettacode.org/wiki/First-class_functions
http://rosettacode.org/wiki/First-class_functions/Use_numbers_analogously
http://rosettacode.org/wiki/Five_weekends
http://rosettacode.org/wiki/FizzBuzz

1324 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Flatten A List
http://rosettacode.org/wiki/Flatten a list
Flow-Control Structures
http://rosettacode.org/wiki/Flow-control structures
Floyd%27s Triangle

http://rosettacode.org/wiki/Floyd%27s triangle
Forest Fire
http://rosettacode.org/wiki/Forest fire
Fork
http://rosettacode.org/wiki/Fork
Formal Power Series
http://rosettacode.org/wiki/Formal power series
Formatted Numeric Output

http://rosettacode.org/wiki/Formatted numeric output
Forward Difference
http://rosettacode.org/wiki/Forward difference
Four Bit Adder
http://rosettacode.org/wiki/Four bit adder
Fractal Tree

http://rosettacode.org/wiki/Fractal tree
Function Composition
http://rosettacode.org/wiki/Function composition
Function Definition
http://rosettacode.org/wiki/Function definition
Function Frequency

http://rosettacode.org/wiki/Function frequency
Gamma Function
http://rosettacode.org/wiki/Gamma function
Generator
http://rosettacode.org/wiki/Generator
Generic Swap
http://rosettacode.org/wiki/Generic swap
Globally Replace Text In Several Files

http://rosettacode.org/wiki/Globally replace text in several files
Go Fish
http://rosettacode.org/wiki/Go Fish
Gray Code
http://rosettacode.org/wiki/Gray code
Grayscale Image

http://rosettacode.org/wiki/Grayscale image
Greatest Common Divisor
http://rosettacode.org/wiki/Greatest common divisor

http://rosettacode.org/wiki/Flatten_a_list
http://rosettacode.org/wiki/Flow-control_structures
http://rosettacode.org/wiki/Floyd%27s_triangle
http://rosettacode.org/wiki/Forest_fire
http://rosettacode.org/wiki/Fork
http://rosettacode.org/wiki/Formal_power_series
http://rosettacode.org/wiki/Formatted_numeric_output
http://rosettacode.org/wiki/Forward_difference
http://rosettacode.org/wiki/Four_bit_adder
http://rosettacode.org/wiki/Fractal_tree
http://rosettacode.org/wiki/Function_composition
http://rosettacode.org/wiki/Function_definition
http://rosettacode.org/wiki/Function_frequency
http://rosettacode.org/wiki/Gamma_function
http://rosettacode.org/wiki/Generator
http://rosettacode.org/wiki/Generic_swap
http://rosettacode.org/wiki/Globally_replace_text_in_several_files
http://rosettacode.org/wiki/Go_Fish
http://rosettacode.org/wiki/Gray_code
http://rosettacode.org/wiki/Grayscale_image
http://rosettacode.org/wiki/Greatest_common_divisor

B Links to original Rosetta Code Tasks 1325

Table B.1: Task URI’s (cont.)

Task \ URI
Greatest Element Of A List

http://rosettacode.org/wiki/Greatest element of a list
Greatest Subsequential Sum
http://rosettacode.org/wiki/Greatest subsequential sum
Guess The Number

http://rosettacode.org/wiki/Guess the number
Guess The Number/With Feedback
http://rosettacode.org/wiki/Guess the number/With feedback
Guess The Number/With Feedback (Player)

http://rosettacode.org/wiki/Guess the number/With feedback (player)
Gui Component Interaction
http://rosettacode.org/wiki/GUI component interaction
Gui Enabling/Disabling Of Controls

http://rosettacode.org/wiki/GUI enabling/disabling of controls
Gui/Maximum Window Dimensions
http://rosettacode.org/wiki/GUI/Maximum window dimensions
Hailstone Sequence

http://rosettacode.org/wiki/Hailstone sequence
Hamming Numbers
http://rosettacode.org/wiki/Hamming numbers
Handle A Signal
http://rosettacode.org/wiki/Handle a signal
Happy Numbers

http://rosettacode.org/wiki/Happy numbers
Hash From Two Arrays
http://rosettacode.org/wiki/Hash from two arrays
Haversine Formula
http://rosettacode.org/wiki/Haversine formula
Hello World/Graphical

http://rosettacode.org/wiki/Hello world/Graphical
Hello World/Line Printer
http://rosettacode.org/wiki/Hello world/Line printer
Hello World/Newbie

http://rosettacode.org/wiki/Hello world/Newbie
Hello World/Newline Omission
http://rosettacode.org/wiki/Hello world/Newline omission
Hello World/Standard Error

http://rosettacode.org/wiki/Hello world/Standard error
Hello World/Text
http://rosettacode.org/wiki/Hello world/Text
Hello World/Web Server

http://rosettacode.org/wiki/Hello world/Web server

http://rosettacode.org/wiki/Greatest_element_of_a_list
http://rosettacode.org/wiki/Greatest_subsequential_sum
http://rosettacode.org/wiki/Guess_the_number
http://rosettacode.org/wiki/Guess_the_number/With_feedback
http://rosettacode.org/wiki/Guess_the_number/With_feedback_(player)
http://rosettacode.org/wiki/GUI_component_interaction
http://rosettacode.org/wiki/GUI_enabling/disabling_of_controls
http://rosettacode.org/wiki/GUI/Maximum_window_dimensions
http://rosettacode.org/wiki/Hailstone_sequence
http://rosettacode.org/wiki/Hamming_numbers
http://rosettacode.org/wiki/Handle_a_signal
http://rosettacode.org/wiki/Happy_numbers
http://rosettacode.org/wiki/Hash_from_two_arrays
http://rosettacode.org/wiki/Haversine_formula
http://rosettacode.org/wiki/Hello_world/Graphical
http://rosettacode.org/wiki/Hello_world/Line_printer
http://rosettacode.org/wiki/Hello_world/Newbie
http://rosettacode.org/wiki/Hello_world/Newline_omission
http://rosettacode.org/wiki/Hello_world/Standard_error
http://rosettacode.org/wiki/Hello_world/Text
http://rosettacode.org/wiki/Hello_world/Web_server

1326 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Here Document
http://rosettacode.org/wiki/Here document
Higher-Order Functions
http://rosettacode.org/wiki/Higher-order functions
History Variables

http://rosettacode.org/wiki/History variables
Hofstadter Figure-Figure Sequences
http://rosettacode.org/wiki/Hofstadter Figure-Figure sequences
Hofstadter Q Sequence

http://rosettacode.org/wiki/Hofstadter Q sequence
Holidays Related To Easter

http://rosettacode.org/wiki/Holidays related to Easter
Horizontal Sundial Calculations
http://rosettacode.org/wiki/Horizontal sundial calculations
Horner%27s Rule For Polynomial Evaluation

http://rosettacode.org/wiki/Horner%27s rule for polynomial evaluation
Host Introspection
http://rosettacode.org/wiki/Host introspection
Hostname

http://rosettacode.org/wiki/Hostname
Http
http://rosettacode.org/wiki/HTTP
Https
http://rosettacode.org/wiki/HTTPS
Https/Authenticated
http://rosettacode.org/wiki/HTTPS/Authenticated
Https/Client-Authenticated

http://rosettacode.org/wiki/HTTPS/Client-authenticated
Huffman Coding
http://rosettacode.org/wiki/Huffman coding
Identity Matrix
http://rosettacode.org/wiki/Identity matrix
Image Convolution

http://rosettacode.org/wiki/Image convolution
Image Noise
http://rosettacode.org/wiki/Image noise
Include A File
http://rosettacode.org/wiki/Include a file
Increment A Numerical String

http://rosettacode.org/wiki/Increment a numerical string
Infinity
http://rosettacode.org/wiki/Infinity

http://rosettacode.org/wiki/Here_document
http://rosettacode.org/wiki/Higher-order_functions
http://rosettacode.org/wiki/History_variables
http://rosettacode.org/wiki/Hofstadter_Figure-Figure_sequences
http://rosettacode.org/wiki/Hofstadter_Q_sequence
http://rosettacode.org/wiki/Holidays_related_to_Easter
http://rosettacode.org/wiki/Horizontal_sundial_calculations
http://rosettacode.org/wiki/Horner%27s_rule_for_polynomial_evaluation
http://rosettacode.org/wiki/Host_introspection
http://rosettacode.org/wiki/Hostname
http://rosettacode.org/wiki/HTTP
http://rosettacode.org/wiki/HTTPS
http://rosettacode.org/wiki/HTTPS/Authenticated
http://rosettacode.org/wiki/HTTPS/Client-authenticated
http://rosettacode.org/wiki/Huffman_coding
http://rosettacode.org/wiki/Identity_matrix
http://rosettacode.org/wiki/Image_convolution
http://rosettacode.org/wiki/Image_noise
http://rosettacode.org/wiki/Include_a_file
http://rosettacode.org/wiki/Increment_a_numerical_string
http://rosettacode.org/wiki/Infinity

B Links to original Rosetta Code Tasks 1327

Table B.1: Task URI’s (cont.)

Task \ URI
Inheritance/Multiple
http://rosettacode.org/wiki/Inheritance/Multiple
Inheritance/Single

http://rosettacode.org/wiki/Inheritance/Single
Input Loop
http://rosettacode.org/wiki/Input loop
Integer Comparison
http://rosettacode.org/wiki/Integer comparison
Integer Sequence

http://rosettacode.org/wiki/Integer sequence
Interactive Programming
http://rosettacode.org/wiki/Interactive programming
Introspection
http://rosettacode.org/wiki/Introspection
Inverted Index

http://rosettacode.org/wiki/Inverted index
Inverted Syntax
http://rosettacode.org/wiki/Inverted syntax
Ipc Via Named Pipe
http://rosettacode.org/wiki/IPC via named pipe
Jensen%27s Device

http://rosettacode.org/wiki/Jensen%27s Device
Joystick Position
http://rosettacode.org/wiki/Joystick position
Json
http://rosettacode.org/wiki/JSON
Jump Anywhere
http://rosettacode.org/wiki/Jump anywhere
Kaprekar Numbers

http://rosettacode.org/wiki/Kaprekar numbers
Keyboard Input/Flush The Keyboard Buffer
http://rosettacode.org/wiki/Keyboard input/Flush the keyboard buffer
Keyboard Input/Keypress Check

http://rosettacode.org/wiki/Keyboard input/Keypress check
Keyboard Input/Obtain A Y Or N Response

http://rosettacode.org/wiki/Keyboard input/Obtain a Y or N response
Keyboard Macros
http://rosettacode.org/wiki/Keyboard macros
Knapsack Problem/0-1

http://rosettacode.org/wiki/Knapsack problem/0-1
Knapsack Problem/Bounded
http://rosettacode.org/wiki/Knapsack problem/Bounded

http://rosettacode.org/wiki/Inheritance/Multiple
http://rosettacode.org/wiki/Inheritance/Single
http://rosettacode.org/wiki/Input_loop
http://rosettacode.org/wiki/Integer_comparison
http://rosettacode.org/wiki/Integer_sequence
http://rosettacode.org/wiki/Interactive_programming
http://rosettacode.org/wiki/Introspection
http://rosettacode.org/wiki/Inverted_index
http://rosettacode.org/wiki/Inverted_syntax
http://rosettacode.org/wiki/IPC_via_named_pipe
http://rosettacode.org/wiki/Jensen%27s_Device
http://rosettacode.org/wiki/Joystick_position
http://rosettacode.org/wiki/JSON
http://rosettacode.org/wiki/Jump_anywhere
http://rosettacode.org/wiki/Kaprekar_numbers
http://rosettacode.org/wiki/Keyboard_input/Flush_the_keyboard_buffer
http://rosettacode.org/wiki/Keyboard_input/Keypress_check
http://rosettacode.org/wiki/Keyboard_input/Obtain_a_Y_or_N_response
http://rosettacode.org/wiki/Keyboard_macros
http://rosettacode.org/wiki/Knapsack_problem/0-1
http://rosettacode.org/wiki/Knapsack_problem/Bounded

1328 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Knapsack Problem/Continuous

http://rosettacode.org/wiki/Knapsack problem/Continuous
Knapsack Problem/Unbounded
http://rosettacode.org/wiki/Knapsack problem/Unbounded
Knight%27s Tour

http://rosettacode.org/wiki/Knight%27s tour
Knuth Shuffle
http://rosettacode.org/wiki/Knuth shuffle
Knuth%27s Algorithm S
http://rosettacode.org/wiki/Knuth%27s algorithm S
Langton%27s Ant

http://rosettacode.org/wiki/Langton%27s ant
Last Fridays Of Year
http://rosettacode.org/wiki/Last Fridays of year
Last Letter-First Letter
http://rosettacode.org/wiki/Last letter-first letter
Leap Year

http://rosettacode.org/wiki/Leap year
Least Common Multiple
http://rosettacode.org/wiki/Least common multiple
Letter Frequency
http://rosettacode.org/wiki/Letter frequency
Levenshtein Distance

http://rosettacode.org/wiki/Levenshtein distance
Linear Congruential Generator
http://rosettacode.org/wiki/Linear congruential generator
List Comprehensions

http://rosettacode.org/wiki/List comprehensions
Literals/Floating Point
http://rosettacode.org/wiki/Literals/Floating point
Literals/Integer
http://rosettacode.org/wiki/Literals/Integer
Literals/String

http://rosettacode.org/wiki/Literals/String
Logical Operations
http://rosettacode.org/wiki/Logical operations
Long Multiplication
http://rosettacode.org/wiki/Long multiplication
Longest Common Subsequence

http://rosettacode.org/wiki/Longest common subsequence
Longest String Challenge
http://rosettacode.org/wiki/Longest string challenge

http://rosettacode.org/wiki/Knapsack_problem/Continuous
http://rosettacode.org/wiki/Knapsack_problem/Unbounded
http://rosettacode.org/wiki/Knight%27s_tour
http://rosettacode.org/wiki/Knuth_shuffle
http://rosettacode.org/wiki/Knuth%27s_algorithm_S
http://rosettacode.org/wiki/Langton%27s_ant
http://rosettacode.org/wiki/Last_Fridays_of_year
http://rosettacode.org/wiki/Last_letter-first_letter
http://rosettacode.org/wiki/Leap_year
http://rosettacode.org/wiki/Least_common_multiple
http://rosettacode.org/wiki/Letter_frequency
http://rosettacode.org/wiki/Levenshtein_distance
http://rosettacode.org/wiki/Linear_congruential_generator
http://rosettacode.org/wiki/List_comprehensions
http://rosettacode.org/wiki/Literals/Floating_point
http://rosettacode.org/wiki/Literals/Integer
http://rosettacode.org/wiki/Literals/String
http://rosettacode.org/wiki/Logical_operations
http://rosettacode.org/wiki/Long_multiplication
http://rosettacode.org/wiki/Longest_common_subsequence
http://rosettacode.org/wiki/Longest_string_challenge

B Links to original Rosetta Code Tasks 1329

Table B.1: Task URI’s (cont.)

Task \ URI
Look-And-Say Sequence

http://rosettacode.org/wiki/Look-and-say sequence
Loop Over Multiple Arrays Simultaneously
http://rosettacode.org/wiki/Loop over multiple arrays simultaneously
Loops/Break

http://rosettacode.org/wiki/Loops/Break
Loops/Continue
http://rosettacode.org/wiki/Loops/Continue
Loops/Do-While
http://rosettacode.org/wiki/Loops/Do-while
Loops/Downward For
http://rosettacode.org/wiki/Loops/Downward for
Loops/For

http://rosettacode.org/wiki/Loops/For
Loops/For With A Specified Step
http://rosettacode.org/wiki/Loops/For with a specified step
Loops/Foreach
http://rosettacode.org/wiki/Loops/Foreach
Loops/Infinite

http://rosettacode.org/wiki/Loops/Infinite
Loops/N Plus One Half
http://rosettacode.org/wiki/Loops/N plus one half
Loops/Nested
http://rosettacode.org/wiki/Loops/Nested
Loops/While
http://rosettacode.org/wiki/Loops/While
Lucas-Lehmer Test

http://rosettacode.org/wiki/Lucas-Lehmer test
Luhn Test Of Credit Card Numbers
http://rosettacode.org/wiki/Luhn test of credit card numbers
Lzw Compression

http://rosettacode.org/wiki/LZW compression
Mad Libs
http://rosettacode.org/wiki/Mad Libs
Man Or Boy Test
http://rosettacode.org/wiki/Man or boy test
Mandelbrot Set
http://rosettacode.org/wiki/Mandelbrot set
Map Range

http://rosettacode.org/wiki/Map range
Matrix Multiplication
http://rosettacode.org/wiki/Matrix multiplication

http://rosettacode.org/wiki/Look-and-say_sequence
http://rosettacode.org/wiki/Loop_over_multiple_arrays_simultaneously
http://rosettacode.org/wiki/Loops/Break
http://rosettacode.org/wiki/Loops/Continue
http://rosettacode.org/wiki/Loops/Do-while
http://rosettacode.org/wiki/Loops/Downward_for
http://rosettacode.org/wiki/Loops/For
http://rosettacode.org/wiki/Loops/For_with_a_specified_step
http://rosettacode.org/wiki/Loops/Foreach
http://rosettacode.org/wiki/Loops/Infinite
http://rosettacode.org/wiki/Loops/N_plus_one_half
http://rosettacode.org/wiki/Loops/Nested
http://rosettacode.org/wiki/Loops/While
http://rosettacode.org/wiki/Lucas-Lehmer_test
http://rosettacode.org/wiki/Luhn_test_of_credit_card_numbers
http://rosettacode.org/wiki/LZW_compression
http://rosettacode.org/wiki/Mad_Libs
http://rosettacode.org/wiki/Man_or_boy_test
http://rosettacode.org/wiki/Mandelbrot_set
http://rosettacode.org/wiki/Map_range
http://rosettacode.org/wiki/Matrix_multiplication

1330 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Matrix Transposition
http://rosettacode.org/wiki/Matrix transposition
Matrix-Exponentiation Operator

http://rosettacode.org/wiki/Matrix-exponentiation operator
Maze Generation
http://rosettacode.org/wiki/Maze generation
Maze Solving
http://rosettacode.org/wiki/Maze solving
Md5

http://rosettacode.org/wiki/MD5
Md5/Implementation
http://rosettacode.org/wiki/MD5/Implementation
Median Filter
http://rosettacode.org/wiki/Median filter
Memory Allocation
http://rosettacode.org/wiki/Memory allocation
Memory Layout Of A Data Structure

http://rosettacode.org/wiki/Memory layout of a data structure
Menu
http://rosettacode.org/wiki/Menu
Metaprogramming
http://rosettacode.org/wiki/Metaprogramming
Metered Concurrency

http://rosettacode.org/wiki/Metered concurrency
Metronome
http://rosettacode.org/wiki/Metronome
Miller-Rabin Primality Test
http://rosettacode.org/wiki/Miller-Rabin primality test
Minesweeper Game

http://rosettacode.org/wiki/Minesweeper game
Modular Exponentiation
http://rosettacode.org/wiki/Modular exponentiation
Monte Carlo Methods
http://rosettacode.org/wiki/Monte Carlo methods
Monty Hall Problem

http://rosettacode.org/wiki/Monty Hall problem
Morse Code
http://rosettacode.org/wiki/Morse code
Mouse Position
http://rosettacode.org/wiki/Mouse position
Multiline Shebang
http://rosettacode.org/wiki/Multiline shebang

http://rosettacode.org/wiki/Matrix_transposition
http://rosettacode.org/wiki/Matrix-exponentiation_operator
http://rosettacode.org/wiki/Maze_generation
http://rosettacode.org/wiki/Maze_solving
http://rosettacode.org/wiki/MD5
http://rosettacode.org/wiki/MD5/Implementation
http://rosettacode.org/wiki/Median_filter
http://rosettacode.org/wiki/Memory_allocation
http://rosettacode.org/wiki/Memory_layout_of_a_data_structure
http://rosettacode.org/wiki/Menu
http://rosettacode.org/wiki/Metaprogramming
http://rosettacode.org/wiki/Metered_concurrency
http://rosettacode.org/wiki/Metronome
http://rosettacode.org/wiki/Miller-Rabin_primality_test
http://rosettacode.org/wiki/Minesweeper_game
http://rosettacode.org/wiki/Modular_exponentiation
http://rosettacode.org/wiki/Monte_Carlo_methods
http://rosettacode.org/wiki/Monty_Hall_problem
http://rosettacode.org/wiki/Morse_code
http://rosettacode.org/wiki/Mouse_position
http://rosettacode.org/wiki/Multiline_shebang

B Links to original Rosetta Code Tasks 1331

Table B.1: Task URI’s (cont.)

Task \ URI
Multiple Distinct Objects

http://rosettacode.org/wiki/Multiple distinct objects
Multiple Regression
http://rosettacode.org/wiki/Multiple regression
Multiplication Tables

http://rosettacode.org/wiki/Multiplication tables
Multisplit
http://rosettacode.org/wiki/Multisplit
Mutex
http://rosettacode.org/wiki/Mutex
Mutual Recursion
http://rosettacode.org/wiki/Mutual recursion
N-Queens Problem

http://rosettacode.org/wiki/N-queens problem
Named Parameters
http://rosettacode.org/wiki/Named parameters
Narcissist
http://rosettacode.org/wiki/Narcissist
Natural Sorting
http://rosettacode.org/wiki/Natural sorting
Non-Continuous Subsequences

http://rosettacode.org/wiki/Non-continuous subsequences
Non-Decimal Radices/Convert
http://rosettacode.org/wiki/Non-decimal radices/Convert
Non-Decimal Radices/Input

http://rosettacode.org/wiki/Non-decimal radices/Input
Non-Decimal Radices/Output
http://rosettacode.org/wiki/Non-decimal radices/Output
Nth Root
http://rosettacode.org/wiki/Nth root
Null Object

http://rosettacode.org/wiki/Null object
Number Names
http://rosettacode.org/wiki/Number names
Number Reversal Game
http://rosettacode.org/wiki/Number reversal game
Numeric Error Propagation

http://rosettacode.org/wiki/Numeric error propagation
Numerical Integration
http://rosettacode.org/wiki/Numerical integration
Object Serialization

http://rosettacode.org/wiki/Object serialization

http://rosettacode.org/wiki/Multiple_distinct_objects
http://rosettacode.org/wiki/Multiple_regression
http://rosettacode.org/wiki/Multiplication_tables
http://rosettacode.org/wiki/Multisplit
http://rosettacode.org/wiki/Mutex
http://rosettacode.org/wiki/Mutual_recursion
http://rosettacode.org/wiki/N-queens_problem
http://rosettacode.org/wiki/Named_parameters
http://rosettacode.org/wiki/Narcissist
http://rosettacode.org/wiki/Natural_sorting
http://rosettacode.org/wiki/Non-continuous_subsequences
http://rosettacode.org/wiki/Non-decimal_radices/Convert
http://rosettacode.org/wiki/Non-decimal_radices/Input
http://rosettacode.org/wiki/Non-decimal_radices/Output
http://rosettacode.org/wiki/Nth_root
http://rosettacode.org/wiki/Null_object
http://rosettacode.org/wiki/Number_names
http://rosettacode.org/wiki/Number_reversal_game
http://rosettacode.org/wiki/Numeric_error_propagation
http://rosettacode.org/wiki/Numerical_integration
http://rosettacode.org/wiki/Object_serialization

1332 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Odd Word Problem
http://rosettacode.org/wiki/Odd word problem
Old Lady Swallowed A Fly
http://rosettacode.org/wiki/Old lady swallowed a fly
One Of N Lines In A File

http://rosettacode.org/wiki/One of n lines in a file
One-Dimensional Cellular Automata
http://rosettacode.org/wiki/One-dimensional cellular automata
Opengl

http://rosettacode.org/wiki/OpenGL
Optional Parameters
http://rosettacode.org/wiki/Optional parameters
Order Two Numerical Lists
http://rosettacode.org/wiki/Order two numerical lists
Ordered Partitions

http://rosettacode.org/wiki/Ordered Partitions
Ordered Words
http://rosettacode.org/wiki/Ordered words
Palindrome Detection
http://rosettacode.org/wiki/Palindrome detection
Pangram Checker

http://rosettacode.org/wiki/Pangram checker
Parallel Calculations
http://rosettacode.org/wiki/Parallel calculations
Parametric Polymorphism
http://rosettacode.org/wiki/Parametric polymorphism
Parametrized Sql Statement

http://rosettacode.org/wiki/Parametrized SQL statement
Parse An Ip Address
http://rosettacode.org/wiki/Parse an IP Address
Parse Command-Line Arguments

http://rosettacode.org/wiki/Parse command-line arguments
Parse Ebnf
http://rosettacode.org/wiki/Parse EBNF
Parsing/Rpn Calculator Algorithm

http://rosettacode.org/wiki/Parsing/RPN calculator algorithm
Parsing/Rpn To Infix Conversion
http://rosettacode.org/wiki/Parsing/RPN to infix conversion
Parsing/Shunting-Yard Algorithm

http://rosettacode.org/wiki/Parsing/Shunting-yard algorithm
Partial Function Application
http://rosettacode.org/wiki/Partial function application

http://rosettacode.org/wiki/Odd_word_problem
http://rosettacode.org/wiki/Old_lady_swallowed_a_fly
http://rosettacode.org/wiki/One_of_n_lines_in_a_file
http://rosettacode.org/wiki/One-dimensional_cellular_automata
http://rosettacode.org/wiki/OpenGL
http://rosettacode.org/wiki/Optional_parameters
http://rosettacode.org/wiki/Order_two_numerical_lists
http://rosettacode.org/wiki/Ordered_Partitions
http://rosettacode.org/wiki/Ordered_words
http://rosettacode.org/wiki/Palindrome_detection
http://rosettacode.org/wiki/Pangram_checker
http://rosettacode.org/wiki/Parallel_calculations
http://rosettacode.org/wiki/Parametric_polymorphism
http://rosettacode.org/wiki/Parametrized_SQL_statement
http://rosettacode.org/wiki/Parse_an_IP_Address
http://rosettacode.org/wiki/Parse_command-line_arguments
http://rosettacode.org/wiki/Parse_EBNF
http://rosettacode.org/wiki/Parsing/RPN_calculator_algorithm
http://rosettacode.org/wiki/Parsing/RPN_to_infix_conversion
http://rosettacode.org/wiki/Parsing/Shunting-yard_algorithm
http://rosettacode.org/wiki/Partial_function_application

B Links to original Rosetta Code Tasks 1333

Table B.1: Task URI’s (cont.)

Task \ URI
Pascal%27s Triangle

http://rosettacode.org/wiki/Pascal%27s triangle
Pascal%27s Triangle/Puzzle
http://rosettacode.org/wiki/Pascal%27s triangle/Puzzle
Pattern Matching
http://rosettacode.org/wiki/Pattern matching
Percentage Difference Between Images

http://rosettacode.org/wiki/Percentage difference between images
Perfect Numbers
http://rosettacode.org/wiki/Perfect numbers
Permutation Test

http://rosettacode.org/wiki/Permutation test
Permutations
http://rosettacode.org/wiki/Permutations
Permutations/Derangements
http://rosettacode.org/wiki/Permutations/Derangements
Pi
http://rosettacode.org/wiki/Pi
Pick Random Element

http://rosettacode.org/wiki/Pick random element
Pinstripe/Printer
http://rosettacode.org/wiki/Pinstripe/Printer
Play Recorded Sounds
http://rosettacode.org/wiki/Play recorded sounds
Playing Cards

http://rosettacode.org/wiki/Playing cards
Plot Coordinate Pairs
http://rosettacode.org/wiki/Plot coordinate pairs
Pointers And References
http://rosettacode.org/wiki/Pointers and references
Polymorphic Copy

http://rosettacode.org/wiki/Polymorphic copy
Polymorphism
http://rosettacode.org/wiki/Polymorphism
Polynomial Long Division
http://rosettacode.org/wiki/Polynomial long division
Power Set

http://rosettacode.org/wiki/Power set
Pragmatic Directives
http://rosettacode.org/wiki/Pragmatic directives
Price Fraction
http://rosettacode.org/wiki/Price fraction

http://rosettacode.org/wiki/Pascal%27s_triangle
http://rosettacode.org/wiki/Pascal%27s_triangle/Puzzle
http://rosettacode.org/wiki/Pattern_matching
http://rosettacode.org/wiki/Percentage_difference_between_images
http://rosettacode.org/wiki/Perfect_numbers
http://rosettacode.org/wiki/Permutation_test
http://rosettacode.org/wiki/Permutations
http://rosettacode.org/wiki/Permutations/Derangements
http://rosettacode.org/wiki/Pi
http://rosettacode.org/wiki/Pick_random_element
http://rosettacode.org/wiki/Pinstripe/Printer
http://rosettacode.org/wiki/Play_recorded_sounds
http://rosettacode.org/wiki/Playing_cards
http://rosettacode.org/wiki/Plot_coordinate_pairs
http://rosettacode.org/wiki/Pointers_and_references
http://rosettacode.org/wiki/Polymorphic_copy
http://rosettacode.org/wiki/Polymorphism
http://rosettacode.org/wiki/Polynomial_long_division
http://rosettacode.org/wiki/Power_set
http://rosettacode.org/wiki/Pragmatic_directives
http://rosettacode.org/wiki/Price_fraction

1334 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Primality By Trial Division

http://rosettacode.org/wiki/Primality by trial division
Prime Decomposition
http://rosettacode.org/wiki/Prime decomposition
Priority Queue
http://rosettacode.org/wiki/Priority queue
Probabilistic Choice

http://rosettacode.org/wiki/Probabilistic choice
Program Name
http://rosettacode.org/wiki/Program name
Program Termination
http://rosettacode.org/wiki/Program termination
Pythagorean Triples

http://rosettacode.org/wiki/Pythagorean triples
Quaternion Type
http://rosettacode.org/wiki/Quaternion type
Queue/Definition
http://rosettacode.org/wiki/Queue/Definition
Queue/Usage

http://rosettacode.org/wiki/Queue/Usage
Quine
http://rosettacode.org/wiki/Quine
Random Number Generator (Device)
http://rosettacode.org/wiki/Random number generator (device)
Random Number Generator (Included)

http://rosettacode.org/wiki/Random number generator (included)
Random Numbers
http://rosettacode.org/wiki/Random numbers
Range Expansion

http://rosettacode.org/wiki/Range expansion
Range Extraction
http://rosettacode.org/wiki/Range extraction
Rate Counter
http://rosettacode.org/wiki/Rate counter
Ray-Casting Algorithm

http://rosettacode.org/wiki/Ray-casting algorithm
Read A Configuration File
http://rosettacode.org/wiki/Read a configuration file
Read A File Line By Line

http://rosettacode.org/wiki/Read a file line by line
Read A Specific Line From A File
http://rosettacode.org/wiki/Read a specific line from a file

http://rosettacode.org/wiki/Primality_by_trial_division
http://rosettacode.org/wiki/Prime_decomposition
http://rosettacode.org/wiki/Priority_queue
http://rosettacode.org/wiki/Probabilistic_choice
http://rosettacode.org/wiki/Program_name
http://rosettacode.org/wiki/Program_termination
http://rosettacode.org/wiki/Pythagorean_triples
http://rosettacode.org/wiki/Quaternion_type
http://rosettacode.org/wiki/Queue/Definition
http://rosettacode.org/wiki/Queue/Usage
http://rosettacode.org/wiki/Quine
http://rosettacode.org/wiki/Random_number_generator_(device)
http://rosettacode.org/wiki/Random_number_generator_(included)
http://rosettacode.org/wiki/Random_numbers
http://rosettacode.org/wiki/Range_expansion
http://rosettacode.org/wiki/Range_extraction
http://rosettacode.org/wiki/Rate_counter
http://rosettacode.org/wiki/Ray-casting_algorithm
http://rosettacode.org/wiki/Read_a_configuration_file
http://rosettacode.org/wiki/Read_a_file_line_by_line
http://rosettacode.org/wiki/Read_a_specific_line_from_a_file

B Links to original Rosetta Code Tasks 1335

Table B.1: Task URI’s (cont.)

Task \ URI
Read Entire File

http://rosettacode.org/wiki/Read entire file
Real Constants And Functions
http://rosettacode.org/wiki/Real constants and functions
Record Sound
http://rosettacode.org/wiki/Record sound
Reduced Row Echelon Form

http://rosettacode.org/wiki/Reduced row echelon form
Regular Expressions
http://rosettacode.org/wiki/Regular expressions
Remote Agent/Agent Interface

http://rosettacode.org/wiki/Remote agent/Agent interface
Remote Agent/Agent Logic
http://rosettacode.org/wiki/Remote agent/Agent logic
Remote Agent/Simulation

http://rosettacode.org/wiki/Remote agent/Simulation
Remove Duplicate Elements
http://rosettacode.org/wiki/Remove duplicate elements
Remove Lines From A File

http://rosettacode.org/wiki/Remove lines from a file
Rename A File
http://rosettacode.org/wiki/Rename a file
Rendezvous
http://rosettacode.org/wiki/Rendezvous
Repeat A String

http://rosettacode.org/wiki/Repeat a string
Respond To An Unknown Method Call
http://rosettacode.org/wiki/Respond to an unknown method call
Return Multiple Values

http://rosettacode.org/wiki/Return multiple values
Reverse A String
http://rosettacode.org/wiki/Reverse a string
Rock-Paper-Scissors
http://rosettacode.org/wiki/Rock-paper-scissors
Roman Numerals/Decode

http://rosettacode.org/wiki/Roman numerals/Decode
Roman Numerals/Encode
http://rosettacode.org/wiki/Roman numerals/Encode
Roots Of A Function
http://rosettacode.org/wiki/Roots of a function
Roots Of A Quadratic Function

http://rosettacode.org/wiki/Roots of a quadratic function

http://rosettacode.org/wiki/Read_entire_file
http://rosettacode.org/wiki/Real_constants_and_functions
http://rosettacode.org/wiki/Record_sound
http://rosettacode.org/wiki/Reduced_row_echelon_form
http://rosettacode.org/wiki/Regular_expressions
http://rosettacode.org/wiki/Remote_agent/Agent_interface
http://rosettacode.org/wiki/Remote_agent/Agent_logic
http://rosettacode.org/wiki/Remote_agent/Simulation
http://rosettacode.org/wiki/Remove_duplicate_elements
http://rosettacode.org/wiki/Remove_lines_from_a_file
http://rosettacode.org/wiki/Rename_a_file
http://rosettacode.org/wiki/Rendezvous
http://rosettacode.org/wiki/Repeat_a_string
http://rosettacode.org/wiki/Respond_to_an_unknown_method_call
http://rosettacode.org/wiki/Return_multiple_values
http://rosettacode.org/wiki/Reverse_a_string
http://rosettacode.org/wiki/Rock-paper-scissors
http://rosettacode.org/wiki/Roman_numerals/Decode
http://rosettacode.org/wiki/Roman_numerals/Encode
http://rosettacode.org/wiki/Roots_of_a_function
http://rosettacode.org/wiki/Roots_of_a_quadratic_function

1336 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Roots Of Unity
http://rosettacode.org/wiki/Roots of unity
Rosetta Code/Count Examples

http://rosettacode.org/wiki/Rosetta Code/Count examples
Rosetta Code/Find Unimplemented Tasks
http://rosettacode.org/wiki/Rosetta Code/Find unimplemented tasks
Rosetta Code/Fix Code Tags

http://rosettacode.org/wiki/Rosetta Code/Fix code tags
Rosetta Code/Rank Languages By Popularity

http://rosettacode.org/wiki/Rosetta Code/Rank languages by popularity
Rot-13
http://rosettacode.org/wiki/Rot-13
Rsa Code
http://rosettacode.org/wiki/RSA code
Run As A Daemon Or Service

http://rosettacode.org/wiki/Run as a daemon or service
Run-Length Encoding
http://rosettacode.org/wiki/Run-length encoding
Runtime Evaluation

http://rosettacode.org/wiki/Runtime evaluation
Runtime Evaluation/In An Environment
http://rosettacode.org/wiki/Runtime evaluation/In an environment
S-Expressions

http://rosettacode.org/wiki/S-Expressions
Safe Addition
http://rosettacode.org/wiki/Safe addition
Scope Modifiers
http://rosettacode.org/wiki/Scope modifiers
Scripted Main
http://rosettacode.org/wiki/Scripted main
Search A List

http://rosettacode.org/wiki/Search a list
Secure Temporary File
http://rosettacode.org/wiki/Secure temporary file
Sedols
http://rosettacode.org/wiki/SEDOLs
Self-Describing Numbers

http://rosettacode.org/wiki/Self-describing numbers
Self-Referential Sequence
http://rosettacode.org/wiki/Self-referential sequence
Send An Unknown Method Call

http://rosettacode.org/wiki/Send an unknown method call

http://rosettacode.org/wiki/Roots_of_unity
http://rosettacode.org/wiki/Rosetta_Code/Count_examples
http://rosettacode.org/wiki/Rosetta_Code/Find_unimplemented_tasks
http://rosettacode.org/wiki/Rosetta_Code/Fix_code_tags
http://rosettacode.org/wiki/Rosetta_Code/Rank_languages_by_popularity
http://rosettacode.org/wiki/Rot-13
http://rosettacode.org/wiki/RSA_code
http://rosettacode.org/wiki/Run_as_a_daemon_or_service
http://rosettacode.org/wiki/Run-length_encoding
http://rosettacode.org/wiki/Runtime_evaluation
http://rosettacode.org/wiki/Runtime_evaluation/In_an_environment
http://rosettacode.org/wiki/S-Expressions
http://rosettacode.org/wiki/Safe_addition
http://rosettacode.org/wiki/Scope_modifiers
http://rosettacode.org/wiki/Scripted_main
http://rosettacode.org/wiki/Search_a_list
http://rosettacode.org/wiki/Secure_temporary_file
http://rosettacode.org/wiki/SEDOLs
http://rosettacode.org/wiki/Self-describing_numbers
http://rosettacode.org/wiki/Self-referential_sequence
http://rosettacode.org/wiki/Send_an_unknown_method_call

B Links to original Rosetta Code Tasks 1337

Table B.1: Task URI’s (cont.)

Task \ URI
Send Email
http://rosettacode.org/wiki/Send email
Sequence Of Non-Squares
http://rosettacode.org/wiki/Sequence of non-squares
Set

http://rosettacode.org/wiki/Set
Set Consolidation
http://rosettacode.org/wiki/Set consolidation
Seven-Sided Dice From Five-Sided Dice
http://rosettacode.org/wiki/Seven-sided dice from five-sided dice
Sha-1

http://rosettacode.org/wiki/SHA-1
Shell One-Liner
http://rosettacode.org/wiki/Shell one-liner
Short-Circuit Evaluation
http://rosettacode.org/wiki/Short-circuit evaluation
Show The Epoch
http://rosettacode.org/wiki/Show the epoch
Sierpinski Carpet

http://rosettacode.org/wiki/Sierpinski carpet
Sierpinski Triangle
http://rosettacode.org/wiki/Sierpinski triangle
Sierpinski Triangle/Graphical

http://rosettacode.org/wiki/Sierpinski triangle/Graphical
Sieve Of Eratosthenes
http://rosettacode.org/wiki/Sieve of Eratosthenes
Simple Database

http://rosettacode.org/wiki/Simple database
Simple Windowed Application
http://rosettacode.org/wiki/Simple windowed application
Simulate Input/Keyboard

http://rosettacode.org/wiki/Simulate input/Keyboard
Simulate Input/Mouse
http://rosettacode.org/wiki/Simulate input/Mouse
Singleton
http://rosettacode.org/wiki/Singleton
Singly-Linked List/Element Definition

http://rosettacode.org/wiki/Singly-linked list/Element definition
Singly-Linked List/Element Insertion

http://rosettacode.org/wiki/Singly-linked list/Element insertion
Singly-Linked List/Traversal
http://rosettacode.org/wiki/Singly-linked list/Traversal

http://rosettacode.org/wiki/Send_email
http://rosettacode.org/wiki/Sequence_of_non-squares
http://rosettacode.org/wiki/Set
http://rosettacode.org/wiki/Set_consolidation
http://rosettacode.org/wiki/Seven-sided_dice_from_five-sided_dice
http://rosettacode.org/wiki/SHA-1
http://rosettacode.org/wiki/Shell_one-liner
http://rosettacode.org/wiki/Short-circuit_evaluation
http://rosettacode.org/wiki/Show_the_epoch
http://rosettacode.org/wiki/Sierpinski_carpet
http://rosettacode.org/wiki/Sierpinski_triangle
http://rosettacode.org/wiki/Sierpinski_triangle/Graphical
http://rosettacode.org/wiki/Sieve_of_Eratosthenes
http://rosettacode.org/wiki/Simple_database
http://rosettacode.org/wiki/Simple_windowed_application
http://rosettacode.org/wiki/Simulate_input/Keyboard
http://rosettacode.org/wiki/Simulate_input/Mouse
http://rosettacode.org/wiki/Singleton
http://rosettacode.org/wiki/Singly-linked_list/Element_definition
http://rosettacode.org/wiki/Singly-linked_list/Element_insertion
http://rosettacode.org/wiki/Singly-linked_list/Traversal

1338 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Sleep

http://rosettacode.org/wiki/Sleep
Sockets
http://rosettacode.org/wiki/Sockets
Sokoban
http://rosettacode.org/wiki/Sokoban
Sort An Array Of Composite Structures
http://rosettacode.org/wiki/Sort an array of composite structures
Sort An Integer Array

http://rosettacode.org/wiki/Sort an integer array
Sort Disjoint Sublist
http://rosettacode.org/wiki/Sort disjoint sublist
Sort Stability
http://rosettacode.org/wiki/Sort stability
Sort Using A Custom Comparator

http://rosettacode.org/wiki/Sort using a custom comparator
Sorting Algorithms/Bead Sort
http://rosettacode.org/wiki/Sorting algorithms/Bead sort
Sorting Algorithms/Bogosort

http://rosettacode.org/wiki/Sorting algorithms/Bogosort
Sorting Algorithms/Bubble Sort
http://rosettacode.org/wiki/Sorting algorithms/Bubble sort
Sorting Algorithms/Cocktail Sort

http://rosettacode.org/wiki/Sorting algorithms/Cocktail sort
Sorting Algorithms/Comb Sort
http://rosettacode.org/wiki/Sorting algorithms/Comb sort
Sorting Algorithms/Counting Sort

http://rosettacode.org/wiki/Sorting algorithms/Counting sort
Sorting Algorithms/Gnome Sort
http://rosettacode.org/wiki/Sorting algorithms/Gnome sort
Sorting Algorithms/Heapsort

http://rosettacode.org/wiki/Sorting algorithms/Heapsort
Sorting Algorithms/Insertion Sort
http://rosettacode.org/wiki/Sorting algorithms/Insertion sort
Sorting Algorithms/Merge Sort

http://rosettacode.org/wiki/Sorting algorithms/Merge sort
Sorting Algorithms/Pancake Sort
http://rosettacode.org/wiki/Sorting algorithms/Pancake sort
Sorting Algorithms/Permutation Sort

http://rosettacode.org/wiki/Sorting algorithms/Permutation sort
Sorting Algorithms/Quicksort
http://rosettacode.org/wiki/Sorting algorithms/Quicksort

http://rosettacode.org/wiki/Sleep
http://rosettacode.org/wiki/Sockets
http://rosettacode.org/wiki/Sokoban
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
http://rosettacode.org/wiki/Sort_an_integer_array
http://rosettacode.org/wiki/Sort_disjoint_sublist
http://rosettacode.org/wiki/Sort_stability
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
http://rosettacode.org/wiki/Sorting_algorithms/Bead_sort
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
http://rosettacode.org/wiki/Sorting_algorithms/Comb_sort
http://rosettacode.org/wiki/Sorting_algorithms/Counting_sort
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort

B Links to original Rosetta Code Tasks 1339

Table B.1: Task URI’s (cont.)

Task \ URI
Sorting Algorithms/Radix Sort

http://rosettacode.org/wiki/Sorting algorithms/Radix sort
Sorting Algorithms/Selection Sort
http://rosettacode.org/wiki/Sorting algorithms/Selection sort
Sorting Algorithms/Shell Sort

http://rosettacode.org/wiki/Sorting algorithms/Shell sort
Sorting Algorithms/Sleep Sort
http://rosettacode.org/wiki/Sorting algorithms/Sleep sort
Sorting Algorithms/Stooge Sort

http://rosettacode.org/wiki/Sorting algorithms/Stooge sort
Sorting Algorithms/Strand Sort
http://rosettacode.org/wiki/Sorting algorithms/Strand sort
Soundex

http://rosettacode.org/wiki/Soundex
Special Characters
http://rosettacode.org/wiki/Special characters
Special Variables
http://rosettacode.org/wiki/Special variables
Speech Synthesis
http://rosettacode.org/wiki/Speech synthesis
Spiral Matrix

http://rosettacode.org/wiki/Spiral matrix
Stable Marriage Problem
http://rosettacode.org/wiki/Stable marriage problem
Stack
http://rosettacode.org/wiki/Stack
Stack Traces
http://rosettacode.org/wiki/Stack traces
Stair-Climbing Puzzle

http://rosettacode.org/wiki/Stair-climbing puzzle
Standard Deviation
http://rosettacode.org/wiki/Standard deviation
Start From A Main Routine

http://rosettacode.org/wiki/Start from a main routine
State Name Puzzle
http://rosettacode.org/wiki/State name puzzle
Statistics/Basic
http://rosettacode.org/wiki/Statistics/Basic
Stem-And-Leaf Plot

http://rosettacode.org/wiki/Stem-and-leaf plot
Straddling Checkerboard
http://rosettacode.org/wiki/Straddling checkerboard

http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
http://rosettacode.org/wiki/Sorting_algorithms/Strand_sort
http://rosettacode.org/wiki/Soundex
http://rosettacode.org/wiki/Special_characters
http://rosettacode.org/wiki/Special_variables
http://rosettacode.org/wiki/Speech_synthesis
http://rosettacode.org/wiki/Spiral_matrix
http://rosettacode.org/wiki/Stable_marriage_problem
http://rosettacode.org/wiki/Stack
http://rosettacode.org/wiki/Stack_traces
http://rosettacode.org/wiki/Stair-climbing_puzzle
http://rosettacode.org/wiki/Standard_deviation
http://rosettacode.org/wiki/Start_from_a_main_routine
http://rosettacode.org/wiki/State_name_puzzle
http://rosettacode.org/wiki/Statistics/Basic
http://rosettacode.org/wiki/Stem-and-leaf_plot
http://rosettacode.org/wiki/Straddling_checkerboard

1340 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
String Case
http://rosettacode.org/wiki/String case
String Concatenation

http://rosettacode.org/wiki/String concatenation
String Interpolation (Included)
http://rosettacode.org/wiki/String interpolation (included)
String Length

http://rosettacode.org/wiki/String length
Strip A Set Of Characters From A String
http://rosettacode.org/wiki/Strip a set of characters from a string
Strip Block Comments

http://rosettacode.org/wiki/Strip block comments
Strip Comments From A String
http://rosettacode.org/wiki/Strip comments from a string
Strip Control Codes And Extended Characters From A String

http://rosettacode.org/wiki/Strip control codes and extended characters from a string
Strip Whitespace From A String/Top And Tail

http://rosettacode.org/wiki/Strip whitespace from a string/Top and tail
Subset Sum Problem
http://rosettacode.org/wiki/Subset sum problem
Substring

http://rosettacode.org/wiki/Substring
Substring/Top And Tail
http://rosettacode.org/wiki/Substring/Top and tail
Subtractive Generator
http://rosettacode.org/wiki/Subtractive generator
Sudoku
http://rosettacode.org/wiki/Sudoku
Sum And Product Of An Array

http://rosettacode.org/wiki/Sum and product of an array
Sum Digits Of An Integer
http://rosettacode.org/wiki/Sum digits of an integer
Sum Of A Series

http://rosettacode.org/wiki/Sum of a series
Sum Of Squares
http://rosettacode.org/wiki/Sum of squares
Symmetric Difference
http://rosettacode.org/wiki/Symmetric difference
Synchronous Concurrency

http://rosettacode.org/wiki/Synchronous concurrency
System Time
http://rosettacode.org/wiki/System time

http://rosettacode.org/wiki/String_case
http://rosettacode.org/wiki/String_concatenation
http://rosettacode.org/wiki/String_interpolation_(included)
http://rosettacode.org/wiki/String_length
http://rosettacode.org/wiki/Strip_a_set_of_characters_from_a_string
http://rosettacode.org/wiki/Strip_block_comments
http://rosettacode.org/wiki/Strip_comments_from_a_string
http://rosettacode.org/wiki/Strip_control_codes_and_extended_characters_from_a_string
http://rosettacode.org/wiki/Strip_whitespace_from_a_string/Top_and_tail
http://rosettacode.org/wiki/Subset_sum_problem
http://rosettacode.org/wiki/Substring
http://rosettacode.org/wiki/Substring/Top_and_tail
http://rosettacode.org/wiki/Subtractive_generator
http://rosettacode.org/wiki/Sudoku
http://rosettacode.org/wiki/Sum_and_product_of_an_array
http://rosettacode.org/wiki/Sum_digits_of_an_integer
http://rosettacode.org/wiki/Sum_of_a_series
http://rosettacode.org/wiki/Sum_of_squares
http://rosettacode.org/wiki/Symmetric_difference
http://rosettacode.org/wiki/Synchronous_concurrency
http://rosettacode.org/wiki/System_time

B Links to original Rosetta Code Tasks 1341

Table B.1: Task URI’s (cont.)

Task \ URI
Table Creation
http://rosettacode.org/wiki/Table creation
Table Creation/Postal Addresses

http://rosettacode.org/wiki/Table creation/Postal addresses
Take Notes On The Command Line
http://rosettacode.org/wiki/Take notes on the command line
Terminal Control/Clear The Screen

http://rosettacode.org/wiki/Terminal control/Clear the screen
Terminal Control/Coloured Text
http://rosettacode.org/wiki/Terminal control/Coloured text
Terminal Control/Cursor Movement

http://rosettacode.org/wiki/Terminal control/Cursor movement
Terminal Control/Cursor Positioning

http://rosettacode.org/wiki/Terminal control/Cursor positioning
Terminal Control/Dimensions
http://rosettacode.org/wiki/Terminal control/Dimensions
Terminal Control/Display An Extended Character

http://rosettacode.org/wiki/Terminal control/Display an extended character
Terminal Control/Hiding The Cursor

http://rosettacode.org/wiki/Terminal control/Hiding the cursor
Terminal Control/Inverse Video
http://rosettacode.org/wiki/Terminal control/Inverse video
Terminal Control/Preserve Screen

http://rosettacode.org/wiki/Terminal control/Preserve screen
Terminal Control/Ringing The Terminal Bell

http://rosettacode.org/wiki/Terminal control/Ringing the terminal bell
Terminal Control/Unicode Output

http://rosettacode.org/wiki/Terminal control/Unicode output
Ternary Logic
http://rosettacode.org/wiki/Ternary logic
Test A Function
http://rosettacode.org/wiki/Test a function
Text Processing/1

http://rosettacode.org/wiki/Text processing/1
Text Processing/2
http://rosettacode.org/wiki/Text processing/2
Text Processing/Max Licenses In Use

http://rosettacode.org/wiki/Text processing/Max licenses in use
Thiele%27s Interpolation Formula

http://rosettacode.org/wiki/Thiele%27s interpolation formula
Tic-Tac-Toe
http://rosettacode.org/wiki/Tic-tac-toe

http://rosettacode.org/wiki/Table_creation
http://rosettacode.org/wiki/Table_creation/Postal_addresses
http://rosettacode.org/wiki/Take_notes_on_the_command_line
http://rosettacode.org/wiki/Terminal_control/Clear_the_screen
http://rosettacode.org/wiki/Terminal_control/Coloured_text
http://rosettacode.org/wiki/Terminal_control/Cursor_movement
http://rosettacode.org/wiki/Terminal_control/Cursor_positioning
http://rosettacode.org/wiki/Terminal_control/Dimensions
http://rosettacode.org/wiki/Terminal_control/Display_an_extended_character
http://rosettacode.org/wiki/Terminal_control/Hiding_the_cursor
http://rosettacode.org/wiki/Terminal_control/Inverse_video
http://rosettacode.org/wiki/Terminal_control/Preserve_screen
http://rosettacode.org/wiki/Terminal_control/Ringing_the_terminal_bell
http://rosettacode.org/wiki/Terminal_control/Unicode_output
http://rosettacode.org/wiki/Ternary_logic
http://rosettacode.org/wiki/Test_a_function
http://rosettacode.org/wiki/Text_processing/1
http://rosettacode.org/wiki/Text_processing/2
http://rosettacode.org/wiki/Text_processing/Max_licenses_in_use
http://rosettacode.org/wiki/Thiele%27s_interpolation_formula
http://rosettacode.org/wiki/Tic-tac-toe

1342 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Time A Function
http://rosettacode.org/wiki/Time a function
Tokenize A String

http://rosettacode.org/wiki/Tokenize a string
Top Rank Per Group
http://rosettacode.org/wiki/Top rank per group
Topological Sort
http://rosettacode.org/wiki/Topological sort
Towers Of Hanoi

http://rosettacode.org/wiki/Towers of Hanoi
Trabb Pardo%e2%80%93knuth Algorithm
http://rosettacode.org/wiki/Trabb Pardo%E2%80%93Knuth algorithm
Tree Traversal

http://rosettacode.org/wiki/Tree traversal
Trigonometric Functions
http://rosettacode.org/wiki/Trigonometric functions
Truncatable Primes
http://rosettacode.org/wiki/Truncatable primes
Truncate A File

http://rosettacode.org/wiki/Truncate a file
Truth Table
http://rosettacode.org/wiki/Truth table
Unbias A Random Generator
http://rosettacode.org/wiki/Unbias a random generator
Undefined Values

http://rosettacode.org/wiki/Undefined values
Unicode Strings
http://rosettacode.org/wiki/Unicode strings
Unicode Variable Names
http://rosettacode.org/wiki/Unicode variable names
Update A Configuration File

http://rosettacode.org/wiki/Update a configuration file
Url Decoding
http://rosettacode.org/wiki/URL decoding
Url Encoding
http://rosettacode.org/wiki/URL encoding
Use Another Language To Call A Function

http://rosettacode.org/wiki/Use another language to call a function
User Input/Graphical
http://rosettacode.org/wiki/User input/Graphical
User Input/Text

http://rosettacode.org/wiki/User input/Text

http://rosettacode.org/wiki/Time_a_function
http://rosettacode.org/wiki/Tokenize_a_string
http://rosettacode.org/wiki/Top_rank_per_group
http://rosettacode.org/wiki/Topological_sort
http://rosettacode.org/wiki/Towers_of_Hanoi
http://rosettacode.org/wiki/Trabb_Pardo%E2%80%93Knuth_algorithm
http://rosettacode.org/wiki/Tree_traversal
http://rosettacode.org/wiki/Trigonometric_functions
http://rosettacode.org/wiki/Truncatable_primes
http://rosettacode.org/wiki/Truncate_a_file
http://rosettacode.org/wiki/Truth_table
http://rosettacode.org/wiki/Unbias_a_random_generator
http://rosettacode.org/wiki/Undefined_values
http://rosettacode.org/wiki/Unicode_strings
http://rosettacode.org/wiki/Unicode_variable_names
http://rosettacode.org/wiki/Update_a_configuration_file
http://rosettacode.org/wiki/URL_decoding
http://rosettacode.org/wiki/URL_encoding
http://rosettacode.org/wiki/Use_another_language_to_call_a_function
http://rosettacode.org/wiki/User_input/Graphical
http://rosettacode.org/wiki/User_input/Text

B Links to original Rosetta Code Tasks 1343

Table B.1: Task URI’s (cont.)

Task \ URI
Van Der Corput Sequence
http://rosettacode.org/wiki/Van der Corput sequence
Variable Size/Get
http://rosettacode.org/wiki/Variable size/Get
Variable Size/Set

http://rosettacode.org/wiki/Variable size/Set
Variable-Length Quantity
http://rosettacode.org/wiki/Variable-length quantity
Variables
http://rosettacode.org/wiki/Variables
Variadic Function

http://rosettacode.org/wiki/Variadic function
Vector Products
http://rosettacode.org/wiki/Vector products
Verify Distribution Uniformity/Naive

http://rosettacode.org/wiki/Verify distribution uniformity/Naive
Vigen%c3%a8re Cipher
http://rosettacode.org/wiki/Vigen%C3%A8re cipher
Walk A Directory/Non-Recursively

http://rosettacode.org/wiki/Walk a directory/Non-recursively
Walk A Directory/Recursively
http://rosettacode.org/wiki/Walk a directory/Recursively
Web Scraping

http://rosettacode.org/wiki/Web scraping
Window Creation
http://rosettacode.org/wiki/Window creation
Window Creation/X11
http://rosettacode.org/wiki/Window creation/X11
Window Management

http://rosettacode.org/wiki/Window management
Wireworld
http://rosettacode.org/wiki/Wireworld
Word Wrap
http://rosettacode.org/wiki/Word wrap
Write Float Arrays To A Text File

http://rosettacode.org/wiki/Write float arrays to a text file
Write To Windows Event Log
http://rosettacode.org/wiki/Write to Windows event log
Xiaolin Wu%27s Line Algorithm

http://rosettacode.org/wiki/Xiaolin Wu%27s line algorithm
Xml/Dom Serialization
http://rosettacode.org/wiki/XML/DOM serialization

http://rosettacode.org/wiki/Van_der_Corput_sequence
http://rosettacode.org/wiki/Variable_size/Get
http://rosettacode.org/wiki/Variable_size/Set
http://rosettacode.org/wiki/Variable-length_quantity
http://rosettacode.org/wiki/Variables
http://rosettacode.org/wiki/Variadic_function
http://rosettacode.org/wiki/Vector_products
http://rosettacode.org/wiki/Verify_distribution_uniformity/Naive
http://rosettacode.org/wiki/Vigen%C3%A8re_cipher
http://rosettacode.org/wiki/Walk_a_directory/Non-recursively
http://rosettacode.org/wiki/Walk_a_directory/Recursively
http://rosettacode.org/wiki/Web_scraping
http://rosettacode.org/wiki/Window_creation
http://rosettacode.org/wiki/Window_creation/X11
http://rosettacode.org/wiki/Window_management
http://rosettacode.org/wiki/Wireworld
http://rosettacode.org/wiki/Word_wrap
http://rosettacode.org/wiki/Write_float_arrays_to_a_text_file
http://rosettacode.org/wiki/Write_to_Windows_event_log
http://rosettacode.org/wiki/Xiaolin_Wu%27s_line_algorithm
http://rosettacode.org/wiki/XML/DOM_serialization

1344 B Links to original Rosetta Code Tasks

Table B.1: Task URI’s (cont.)

Task \ URI
Xml/Input
http://rosettacode.org/wiki/XML/Input
Xml/Output

http://rosettacode.org/wiki/XML/Output
Xml/Xpath
http://rosettacode.org/wiki/XML/XPath
Y Combinator
http://rosettacode.org/wiki/Y combinator
Yahoo! Search Interface
http://rosettacode.org/wiki/Yahoo! search interface
Yin And Yang

http://rosettacode.org/wiki/Yin and yang
Zebra Puzzle
http://rosettacode.org/wiki/Zebra puzzle
Zig-Zag Matrix
http://rosettacode.org/wiki/Zig-zag matrix

http://rosettacode.org/wiki/XML/Input
http://rosettacode.org/wiki/XML/Output
http://rosettacode.org/wiki/XML/XPath
http://rosettacode.org/wiki/Y_combinator
http://rosettacode.org/wiki/Yahoo!_search_interface
http://rosettacode.org/wiki/Yin_and_yang
http://rosettacode.org/wiki/Zebra_puzzle
http://rosettacode.org/wiki/Zig-zag_matrix

	Part I Ninety-Nine Lisp Problems
	Ninety-Nine Lisp Problems

	Part II Rosetta Code
	Rosetta Code Tasks starting with Numbers
	Rosetta Code Tasks starting with A
	Rosetta Code Tasks starting with B
	Rosetta Code Tasks starting with C
	Rosetta Code Tasks starting with D
	Rosetta Code Tasks starting with E
	Rosetta Code Tasks starting with F
	Rosetta Code Tasks starting with G
	Rosetta Code Tasks starting with H
	Rosetta Code Tasks starting with I
	Rosetta Code Tasks starting with J
	Rosetta Code Tasks starting with K
	Rosetta Code Tasks starting with L
	Rosetta Code Tasks starting with M
	Rosetta Code Tasks starting with N
	Rosetta Code Tasks starting with O
	Rosetta Code Tasks starting with P
	Rosetta Code Tasks starting with Q
	Rosetta Code Tasks starting with R
	Rosetta Code Tasks starting with S
	Rosetta Code Tasks starting with T
	Rosetta Code Tasks starting with U
	Rosetta Code Tasks starting with V
	Rosetta Code Tasks starting with W
	Rosetta Code Tasks starting with X
	Rosetta Code Tasks starting with Y
	Rosetta Code Tasks starting with Z

	Part III Function Reference
	Symbols starting with A
	Symbols starting with B
	Symbols starting with C
	Symbols starting with D
	Symbols starting with E
	Symbols starting with F
	Symbols starting with G
	Symbols starting with H
	Symbols starting with I
	Symbols starting with J
	Symbols starting with K
	Symbols starting with L
	Symbols starting with M
	Symbols starting with N
	Symbols starting with O
	Symbols starting with P
	Symbols starting with Q
	Symbols starting with R
	Symbols starting with S
	Symbols starting with T
	Symbols starting with U
	Symbols starting with V
	Symbols starting with W
	Symbols starting with X
	Symbols starting with Y
	Symbols starting with Z

	Part IV Appendix
	GNU Free Documentation License
	Links to original Rosetta Code Tasks

