

D00001275 Rev2.3

Flexible & Interoperable
Data Transfer (FIT)
Protocol

Page 2 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this publication may
be reproduced or transmitted in any form or by any means including electronic storage, reproduction, execution or
transmission without the prior written consent of Dynastream Innovations Inc. The recipient of this document by its
retention and use agrees to respect the copyright of the information contained herein.

The information contained in this document is subject to change without notice and should not be construed as a
commitment by Dynastream Innovations Inc. unless such commitment is expressly given in a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure of the Dynastream product could create a situation
where personal injury or death may occur. If you use the Products for such unintended and unauthorized applications, you
do so at your own risk and you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Dynastream was negligent regarding the design or manufacture of the Product.

©2014 Dynastream Innovations Inc. All Rights Reserved.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 3 of 45

thisisant.com

Revision History

Revision Effective Date Description

1.0 May 2010 Initial Release
1.1 March 2011 Updated License
1.2 April 2011 Updated File Header Information

Corrected Compressed Timestamp header description
1.3 April 2012 Corrected minor errors in documentation (omissions, typos, incorrect data)
1.4 February 2013 Updated template

Updated agreement
Clarified global profile usage
Clarified FIT basetype definitions

1.5 February 2014 Clarified Arrays
Clarified Subfields
Clarified Common Fields
Updated template

1.6 May 2014 Clarified Components
1.7 August 2014 Clarified Scale/Offset Usage
1.8 October 2015 Added chained FIT files

Added Plugin Framework
1.9 April 2016 Added Developer Data
2.0 May 2016 Release for FIT 2.0

Corrected Errors in Developer Data
2.1 June 2016 VirbX Plugin

Corrected some Typos
2.2 August 2016 Add Invalid Values for 64-bit integer types

Add Description of Native Overrides in Developer Data
2.3 November 2016 Clarify Native Overrides in Developer Data

Page 4 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Table of Contents

1 Introduction ... 8
2 Related Documents .. 9
3 Overview of the FIT File Protocol .. 10

3.1 FIT Profiles .. 10
3.1.1 Global Profile ... 11
3.1.2 Product Profile ... 11

3.2 FIT File Protocol ... 12
3.3 FIT File Structure.. 13

3.3.1 File Header .. 13
3.3.2 CRC ... 14
3.3.3 Data Records ... 15
3.3.4 Chained FIT files .. 16

4 Record Format ... 17
4.1 Record Header Byte .. 17

4.1.1 Normal Header ... 17
4.1.2 Compressed Timestamp Header .. 19

4.2 Record Content .. 22
4.2.1 Definition Message ... 22
4.2.2 Data Message .. 27

4.3 FIT File Example ... 28
4.3.1 Record 1 (definition message: ‘file_id’ (mesg_num = 0x00)) .. 29
4.3.2 Record 2 (data message: ‘file_id’ (local msg type = 0)).. 29
4.3.3 Record 3 (definition message: ‘dev_data_id’ (mesg_num = 0xCF)) ... 29
4.3.4 Record 4 (data message: ‘dev_data_id’ (local msg type = 0)) .. 30
4.3.5 Record 5 (definition message: ‘field_description’ (mesg_num = 0xCE)) .. 30
4.3.6 Record 6 (data message: ‘field_description’ (local msg type = 0)) .. 30
4.3.7 Record 7 (definition message: ‘record’ (mesg_num = 0x14)) ... 30
4.3.8 Record 8 (data message: ‘record’ (local msg type = 0)) ... 31
4.3.9 Record 9 (data message: ‘record’ (local msg type = 0)) ... 31
4.3.10 Record 10 (data message: ‘record’ (local msg type = 0)) ... 31

4.4 Scale/Offset ... 33
4.5 Dynamic Fields ... 34
4.6 Components ... 35
4.7 Common Fields (Field#, Field Name, Field Type).. 36

4.7.1 Message Index (Field # = 254, message_index, message_index) ... 36
4.7.2 Timestamp (Field # = 253, timestamp, date_time) .. 36
4.7.3 Part Index (Field # = 250, part_index, uint32) .. 36

4.8 Best Practices ... 37

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 5 of 45

thisisant.com

4.8.1 File ID Messages .. 37
4.8.2 Defining Data Messages ... 37
4.8.3 Re-defining Local Message Types .. 38

5 FIT Message Conversion ... 39
5.1 Compatibility .. 40
5.2 Common FIT File Applications ... 40

6 Plugin Framework ... 40
6.1 Plugin Architecture ... 40
6.2 Plugin Example (HR) ... 42
6.3 Three D Sensor Adjustment Plugin Explanation and Example .. 43

Page 6 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

List of Figures

Figure 1-1. Data flow between devices using FIT protocol .. 8
Figure 3-1. Basic FIT File components ... 10
Figure 3-2. Components of Global and Product FIT Profiles .. 10
Figure 3-3. FIT message, field and base type structure .. 11
Figure 3-4. Overview of the FIT File protocol ... 12
Figure 3-5. (a) The FIT file structure (b) Data Record types ... 13
Figure 3-6. Definition message assigns Global FIT message to local message 0 .. 15
Figure 3-7. Chained FIT files ... 16
Figure 4-1. Normal Headers: example definition and data messages... 19
Figure 4-2. Compressed Timestamp Header Example ... 21
Figure 4-3. Definition Message Structure ... 22
Figure 4-4. Definition Message with Developer Data Structure .. 22
Figure 4-5. Data Message Structure .. 27
Figure 4-6. Definition and data message example .. 28
Figure 4-7. Sample Dynamic Fields in the 'Event' Message ... 34
Figure 4-8. Example Components in the 'Event' Message ... 35
Figure 4-9. Example Component Expansion ... 36
Figure 4-10. Best Practice for Defining Data Messages. .. 37
Figure 4-11. Redefining local message type within a single FIT file ... 38
Figure 5-1. Conversion of a FIT message .. 39
Figure 6-1 Plugin Architecture Block Diagram .. 41

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 7 of 45

thisisant.com

List of Tables

Table 3-1. Byte Description of File Header ... 14
Table 4-1. Normal Header Bit Field Description .. 17
Table 4-2. Compressed Timestamp Header Bit Field Description ... 19
Table 4-3. Definition Message Contents ... 23
Table 4-4. Field Definition Contents .. 23
Table 4-5. Base Type Bit Field .. 24
Table 4-6. FIT Base Types and Invalid Values ... 24
Table 4-7 – Developer Field Description .. 25
Table 4-8 - Developer Data ID Message .. 25
Table 4-9 - Field Description Messages .. 25
Table 4-10. Example Field Featuring Both Scale and Offset .. 33
Table 4-11. Altitude Field Value Encoding .. 33
Table 5-1. Common FIT File Types .. 40

Page 8 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

1 Introduction
The Flexible and Interoperable Data Transfer (FIT) protocol is a format designed specifically for the storing and sharing of
data that originates from sport, fitness and health devices. It is specifically designed to be compact, interoperable and
extensible. This document will describe the FIT file structure and interpretation.

The FIT protocol defines a set of data storage templates (FIT messages) that can be used to store information such as user
profiles and activity data in files. Any FIT-compliant device can interpret a FIT file from any other FIT-compliant device. A
software development kit (SDK) is provided to generate code and libraries specific to a product’s requirements. The SDK
enables efficient use of a binary format at the embedded level, to significantly reduce the development effort and allow for
rapid product development.

The following example use case illustrates how the FIT protocol is used to transfer personal monitoring information acquired
during exercise to an internet database (Figure 1-1):

1. ANT+ Sensors measure parameters such as heart rate and running speed

2. Data is broadcast in real time, using interoperable ANT+ data formats

3. Session events and real time activity data is collected and saved into a FIT file on a display device

4. The FIT file is transferred to the PC using ANT File Share (ANT-FS)

The FIT data may be used directly on the PC or transferred to internet applications

Figure 1-1. Data flow between devices using FIT protocol

After the initial wireless sensor data is collected, the FIT protocol provides a consistent format allowing all devices in the
subsequent chain to share and use the data.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 9 of 45

thisisant.com

The FIT file protocol was designed to provide:

x Interoperability of device data across various device platforms

x Scalability from small embedded targets to large web databases

x Forward compatibility, allowing the protocol to grow and retain existing functionality

x Automated compatibility across platforms of different native endianness

The FIT file protocol consists of:

x A file structure

x A global list of FIT messages and FIT, fields together with their defined data types

x Software Development Kit (SDK) to configure target products and generate the necessary FIT code and libraries

2 Related Documents
The following supplementary documentation and files are provided in the SDK:

x FIT File Types Document

x FIT Global Messages and Fields (Profile .xls)

x FIT code generator

x FIT to CSV Conversion Tool

x Reference code examples

x Example FIT files

The following application note(s) provide documentation on certain advanced features of the SDK:

x AN18 FIT Globs

Many FIT applications will involve the ANT-FS protocol to facilitate the wireless transfer of FIT files. For further information
regarding ANT-FS and related details for transferring FIT files specifically, refer to the following documents:

x ANT File Share (ANT-FS) Technology

Page 10 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

3 Overview of the FIT File Protocol
A FIT file contains a series of records that, in turn, contain a header and content. The record content is either a definition
message that is used to specify upcoming data, or a data message that contains a series of data-filled fields (Figure 3-1).
The FIT protocol defines the type and content of messages, the data format of each message’s field, and methods of
compressing data (if applicable).

Figure 3-1. Basic FIT File components

3.1 FIT Profiles
There are two types of FIT profiles: global and product. All available FIT messages are outlined in the Global FIT Profile.
This is then broken down into smaller subset, Product Profiles, outlining product-specific FIT messages (Figure 3-2).

Figure 3-2. Components of Global and Product FIT Profiles

Each profile consists of system configuration information, defined FIT messages and fields, base data types, and FIT data
types (Figure 3-2).

header Data Data Data Data Data

header Data Data Data

header Definition MessageRecord m :

Record n :

Record o :

Field 1

Field 1

Field 2 Field 3 Field 4 Field 5

Field 2 Field 3

. . .
. . .

Global Profile
Available System
Configurations

ALL defined
FIT Message Fields

ALL defined
FIT Messages

Product_1 Profile

Product Configuration

FIT Message Fields
(used in product_1)

FIT Messages
(used in product_1)

ALL defined
base & FIT Data Types

base & FIT Data Types
(used in product_1)

Product_2 Profile

Product Configuration

FIT Message Fields
(used in product_2)

FIT Messages
(used in product_2)

base & FIT Data Types
(used in product_2)

. . .

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 11 of 45

thisisant.com

3.1.1 Global Profile
The Global FIT Profile is maintained by Dynastream and consists of the complete collection of available system
configurations, FIT messages, fields and data types as described below:

x System Configuration: Describes system parameters such as byte endianness and alignment. The FIT protocol
supports multiple system configurations

x FIT Messages: define the FIT fields contained within each FIT message

x FIT Message Fields: define the base type and format of data within each FIT field

x FIT Types: describe the FIT field as a specific type of FIT variable (unsigned char, signed short, etc)

New configurations, messages and data types may be added as new versions of the SDK are released. Users should not
modify existing definitions found in the global profile. Additions may be requested by contacting Dynastream at
www.thisisant.com.

The relationships between FIT messages, fields and base types are illustrated in Figure 3-3.

Figure 3-3. FIT message, field and base type structure

3.1.2 Product Profile
Not all messages defined in the global FIT profile will be relevant to a particular application. A Product Profile is an
application specific subset of the Global Profile that defines only the necessary data messages in the configuration of the
product’s architecture (Figure 3-2). An SDK is provided to allow the developer to select the desired system configuration
and relevant data messages and then generate application specific FIT code.

Custom messages may be defined in the manufacturer specific message range (0xFF00-0xFFFE). Information contained in
manufacturer specific messages will not in general be interoperable, since other applications will not have knowledge of
them.

Two different FIT devices may use different product profiles or versions of the complete Global Profile. This may result in
one device receiving a FIT message that it does not recognize. When this occurs, the FIT file is maintained in its entirety
and any unrecognized messages are simply ignored by the decoder without interrupting the operation of the receiving
device, or causing any errors. Similarly, if a device does not receive data that it may expect, it will simply fill those fields
with an invalid value rather than creating errors. In this way, the FIT protocol will ensure compatibility across devices that
may not have the exact same profiles implemented. These compatibility processes are discussed in more detail in later
sections.

Time field data format/base type
e.g. date_time

date_time: uint32 representing seconds since UTC
00:00 Dec 31 1989

FIT message:
e.g. record

FIT Field:
e.g. time

Base Type:
e.g date_time

Field 1
e.g. speed

Field 2
e.g distance

Field 3
e.g. time

Field 4
e.g. cadence

Page 12 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

3.2 FIT File Protocol
The FIT protocol defines the process for which profiles are implemented and files are transferred. Figure 3-4 provides an
overview of the FIT process. Typically, ANT+ broadcast data is collected by a display device. The display device would then
encode the data into the FIT file format according to its product profile (i.e. product profile 1). The FIT file is then
transferred to another device which would then decode the received files according to its own implemented product profile
(i.e. product profile 2).

Figure 3-4. Overview of the FIT File protocol

Incoming data such as settings, events and sensor data are written into FIT message fields according to the formats
defined by the device’s product profiles. The FIT encoding process is optimized, such that only valid fields are written to the
file. The file can then be transferred to another FIT device. When the data is used by the receiving device, it is decoded
according to its implemented product profiles, which relate the received FIT messages to the global FIT message list. The
decoded values will then be passed as structures or objects to the application.

The SDK code will resolve native endianness, reconstruct timestamp information and fill all message fields appropriately. If
there is a difference in profile version between the two devices, any missing data will be set to invalid or default values as
defined in the FIT protocol, and any unknown messages or data will be ignored. The FIT file is maintained in its original
form for transfer to other devices, if desired.

Encoding Device Decoding Device

FIT Decode

 - Resolve Endianness
 - Reconstruct Timestamps
 - Fill all message fields
 - Unknown data ignored
 - Missing data fields set to
 “invalid” values

File
Transfer

FIT File

FIT File

Header
FIT Version, Size

Data Records

(FIT Messages)

CRC16

Structure or Object

Other FIT Devices

Application

Incoming Data:

Settings, events,
sensor data

FIT Encode

Compress data

Product Profile 1

Device specific
FIT messages

Product Profile 2

Device specific
FIT messages

File
Transfer

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 13 of 45

thisisant.com

3.3 FIT File Structure
All FIT files have the same structure which consists of a File Header, a main Data Records section that contains the encoded
FIT messages, followed by a 2 byte CRC (Figure 3-5.a).

Figure 3-5. (a) The FIT file structure (b) Data Record types

3.3.1 File Header
The file header provides information about the FIT File. The minimum size of the file header is 12 bytes including protocol
and profile version numbers, the amount of data contained in the file and data type signature. The 12 byte header is
considered legacy, using the 14 byte header is preferred. The header size should always be decoded before attempting to
interpret a FIT file, Dynastream may extend the header as necessary. Computing the CRC is optional when using a 14 byte
file header, it is permissible to set it to 0x0000. Including the CRC in the file header allows the CRC of the file to be
computed as the file is being written when the amount of data to be contained in the file is not known.

Table 3-1 outlines the FIT file header format.

FIT File

Header
(14 bytes)

Data Records

- Definition Messages
- Data Messages

(varying length)

CRC
(2 bytes)

Normal
Header Definition Message

Normal
Header Data Message

Time Offset
Header Data Message

Record Header
(1 byte)

Record Content
(varying size)

(a) (b)

Page 14 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Table 3-1. Byte Description of File Header

Byte Parameter Description Size
(Bytes)

0 Header Size Indicates the length of this file header including header size. Minimum
size is 12. This may be increased in future to add additional optional
information.

1

1 Protocol Version Protocol version number as provided in SDK 1
2 Profile Version LSB Profile version number as provided in SDK 2
3 Profile Version MSB
4 Data Size LSB Length of the Data Records section in bytes

Does not include Header or CRC
4

5 Data Size
6 Data Size
7 Data Size MSB
8 Data Type Byte[0] ASCII values for “.FIT”. A FIT binary file opened with a text editor will

contain a readable “.FIT” in the first line.
4

9 Data Type Byte[1]
10 Data Type Byte[2]
11 Data Type Byte[3]
12 CRC LSB Contains the value of the CRC (see section 3.3.2) of Bytes 0 through

11, or may be set to 0x0000.
This field is optional.

2
13 CRC MSB

3.3.2 CRC
The final 2 bytes of a FIT file contain a 16 bit CRC in little endian format. The CRC is computed as follows:

FIT_UINT16 FitCRC_Get16(FIT_UINT16 crc, FIT_UINT8 byte)
{
 static const FIT_UINT16 crc_table[16] =
 {
 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401,
 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400
 };
 FIT_UINT16 tmp;

 // compute checksum of lower four bits of byte
 tmp = crc_table[crc & 0xF];
 crc = (crc >> 4) & 0x0FFF;
 crc = crc ^ tmp ^ crc_table[byte & 0xF];

 // now compute checksum of upper four bits of byte
 tmp = crc_table[crc & 0xF];
 crc = (crc >> 4) & 0x0FFF;
 crc = crc ^ tmp ^ crc_table[(byte >> 4) & 0xF];

 return crc;
}

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 15 of 45

thisisant.com

3.3.3 Data Records
The data records in the FIT file are the main content and purpose of the FIT protocol. There are two kinds of data records:

Definition Messages – define the upcoming data messages. A definition message will define a local message type and
associate it to a specific FIT message, and then designate the byte alignment and field contents of the upcoming data
message.

Data Messages – contain a local message type and populated data fields in the format described by the preceding
definition message. The definition message and its associated data messages will have matching local message types. There
are two types of data message:

x Normal Data Message

x Compressed Timestamp Data Message

These messages will be further explained in section 4. All records contain a 1 byte Record Header that indicates whether the
Record Content is a definition message, a normal data message or a compressed timestamp data message (Figure 3-5.b).
The lengths of the records vary in size depending on the number and size of fields within them.

All data messages are handled locally, and the definition messages are used to associate local data message types to the
global FIT message profile. For example, a definition message may specify that data messages of local message type 0 are
Global FIT ‘lap’ messages (Figure 3-6). The definition message also specifies which of the ‘lap’ fields are included in the data
messages (start_time, start_position_lat, start_position_long, end_position_lat, end_position_long), and the format of the
data in those fields. As a result, data messages can be optimized to contain only data, and the local message type is
referenced in the header. Data messages are referenced to local message type.

Figure 3-6. Definition message assigns Global FIT message to local message 0

lap message_index
timestamp
event
event_type
start_time
start_position_lat
start_position_long
end_position_lat
end_position_long

253
0
1
2
3
4
5
6
7

Global FIT Profile

. .
 .

. .
 .

Definintion Message

Data Message

Local Msg 0 assigned to:
Global FIT message “lap”
start_time, start_position_lat,
start_position_long, end_position_lat

Local Msg 0:
start_time, start_position_lat,
start_position_long, end_position_lat

FIT File

FIT
msg

FIT
fields

Page 16 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

3.3.4 Chained FIT files
The FIT protocol allows for multiple FIT files to be chained together in a single FIT file. Each FIT file in the chain must be a
properly formatted FIT file (header, data records, CRC).

Figure 3-7. Chained FIT files Figure 3-7. Chained FIT files

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 17 of 45

thisisant.com

4 Record Format
A FIT record consists of two parts: a Record Header and the Record Content. The record header indicates whether the
record content contains a definition message, a normal data message or a compressed timestamp data message. The
record header also has a Local Message Type field that references the local message in the data record to its global FIT
message.

4.1 Record Header Byte
The Record Header is a one byte bit field. There are actually two types of record header: normal header and compressed
timestamp header. The header type is indicated in the most significant bit (msb) of the record header. The normal header
identifies whether the record is a definition or data message, and identifies the local message type. A compressed
timestamp header is a special compressed header that may also be used with some local data messages to allow a
compressed time format.

4.1.1 Normal Header
A value of 0 in Bit 7 of the record header indicates that this is a Normal Header. The bit field description for a normal
header is shown below in Table 4-1.

Table 4-1. Normal Header Bit Field Description

Bit Value Description

7 0 Normal Header
6 0 or 1 Message Type

1: Definition Message
0: Data Message

5 0 (default) Message Type Specific
4 0 Reserved

0 - 3 0 - 15 Local Message Type

4.1.1.1 Message Type
The message type indicates whether the record contains a definition or data message.

4.1.1.2 Message Type Specific
The value in bit 5 of a normal header changes based on if we are writing a Definition or Data Message

4.1.1.2.1 Definition

If the bit is set the message contains extended definitions for developer data. The details of developer data are highlighted
in section 4.2.1.5.

4.1.1.2.2 Data

Reserved in data messages and should be set to 0.

4.1.1.3 Data Message Header

4.1.1.4 Local Message Type
The Local Message Type is used to create an association between the definition message, data message and the FIT
message in the Global FIT Profile.

Page 18 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Definition Message: In a definition message, the local message type is assigned to a Global FIT Message Number
(mesg_num) relating the local messages to their respective FIT messages

Data Message: The local message type associates a data message to its respective definition message, and hence, its'
global FIT message. A data message will follow the format as specified in its definition message of matching local message
type.

Local Message Types can be redefined within a single FIT file, please refer to section 4.8.3 for best practices when
using a single local message type for different records.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 19 of 45

thisisant.com

Example:

Figure 4-1 shows an example of using data records with normal headers to designate definition and respective data
messages for recording FIT ‘record’ and ‘lap’ messages.

Figure 4-1. Normal Headers: example definition and data messages

4.1.2 Compressed Timestamp Header
The compressed timestamp header is a special form of record header that allows some timestamp information to be placed
within the record header, rather than within the record content. In applicable use cases, this allows data to be recorded
without the need of a 4 byte timestamp in every data record. The bit field description of a compressed timestamp header is
shown in Table 4-2 below.

Table 4-2. Compressed Timestamp Header Bit Field Description

Bit Value Description

7 1 Compressed Timestamp Header

5 – 6 0 - 3 Local Message Type

0 - 4 0 - 31 Time Offset (seconds)

Note this type of record header is used for a data message only.

Page 20 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.1.2.1 Local Message Type
In order to compress the header, only 2 bits are allocated for the local message type. As a result, the use of this special
header is restricted to local message types 0-3, and cannot be used for local message types 4-15. The local message type
can be redefined within a single FIT file, please refer to section 4.8.3 for more details.

4.1.2.2 Time Offset
The five least significant bits (lsb) of the header represent the compressed timestamp, in seconds, from a fixed time
reference. The time resolution is not configurable. The fixed time reference is provided in the form of any FIT message
containing a full, four byte timestamp recorded prior to the use of the compressed timestamp header (see example). The
5-bit time offset rolls over every 32 seconds; hence, it is necessary that any two consecutive compressed timestamp records
be measured less than 32 seconds apart.

The actual timestamp value is determined by concatenating the most significant 27 bits of the previous timestamp value
and the 5 bit value of the time offset field. Rollover must be taken into account such that:

If Time Offset >= (Previous Timestamp)&0x0000001F (i.e. offset value is greater than least significant 5 bits of
previous timestamp):

Timestamp = (Previous timestamp)&0xFFFFFFE0 + Time Offset

If Time Offset < (Previous Timestamp)&0x0000001F (i.e. offset is less than least significant 5 bits of previous
timestamp):

Timestamp = (Previous timestamp)&0xFFFFFFE0 + Time Offset + 0x20

The addition of 0x20 accounts for the rollover event

Refer to Figure 4-2 for an example of using compressed timestamp headers. In this example, local message type 0 is used
to define a message containing a both a timestamp field and multiple data fields (Record 1). Local message type 1 defines a
message containing only data fields (Record 2).

Record 3 is a data message which includes a timestamp value of 0xXXXXXX3B. For the purpose of this example, the values
of the upper 3 bytes do not change and are set as 0xXX ‘don’t care’ values.

Record 4 is a data message using a compressed timestamp header. As the Time Offset value is the same as the 5 least
significant bits of the previous timestamp, the calculated timestamp for record 4 is 0xXXXXXX3B.

Record 5 is another data message using a compressed timestamp header. The Time Offset value is greater than the 5 least
significant bits of the previous timestamp by 2 seconds, so the calculated timestamp for record 5 becomes 0xXXXXXX3D.

Record 6 Time Offset value is 00010, which is smaller than the 5 least significant bits of the previous timestamp (5 lsb of
0xXXXXXX3D is 11101), indicating a rollover event has occurred. Therefore, the timestamp becomes 0xXXXXXX42.

Similarly, record 7 shows an increase in time of 3 seconds and the timestamp becomes 0xXXXXXX45, and record 8 shows a
rollover event resulting in a timestamp of 0xXXXXXX61.

Finally, if a new data message containing a timestamp is recorded (i.e. record 9), then this becomes the new time reference
for any subsequent compressed timestamp data records, such as records 10 and 11.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 21 of 45

thisisant.com

Figure 4-2. Compressed Timestamp Header Example

Record 1:

Record 2:

Record 4:

Local Message Type

Normal Header

0 1 0 0 0 0 0 0

Record Header
(1 byte)

Record Content
(varying size)

0 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

Timestamp

Time Offset

Compressed Timestamp Header

1 0 1 1 1 1 0 1

Record 3:

0 1 0 0 0 0 0 1

Record 5:

1 0 1 0 0 0 1 0 Record 6:

Local Message Type
Definition Message

Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

Normal Header

Local Message Type
Data Message

0xXXXXXX3B Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

timestamp
0xXXXXXX3B

Resultant timestamp
0xXXXXXX3D

Resultant timestamp
0xXXXXXX42

1 0 1 0 0 1 0 1 Record 7: Field 1 Field 2 Etc... Resultant timestamp
0xXXXXXX45

1 0 1 0 0 0 0 1Record 8: Field 1 Field 2 Etc... Resultant timestamp
0xXXXXXX61

Record 10:

Local Message Type

0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 0

Time Offset

Compressed Timestamp Header

1 0 1 0 0 0 0 1

Record 9:

Record 11:

Normal Header

Local Message Type
Data Message

0xXXXXXX63 Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

Field 1 Field 2 Etc...

Resultant timestamp
0xXXXXXX72

Resultant timestamp
0xXXXXXX81

Page 22 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.2 Record Content
The record content contains one of two messages:

x Definition Message: describes the architecture, format, and fields of upcoming data messages

x Data Message: contains data that is formatted according to a preceding definition message

Definition and data messages are associated through the local message type. A data message must always be specified by a
definition message before it can be used in a FIT file. If a data message is sent without first being defined, it will cause a
decode error and the data will not be interpreted. Definition messages are used by the conversion tools to interpret
subsequent data messages contained in a FIT file. For more details see best practices in section 4.8.

4.2.1 Definition Message
The definition message is used to create an association between the local message type contained in the record header,
and a Global Message Number (mesg_num) that relates to the global FIT message.

Although 1 byte is available for the number of fields and 1 byte is available for the field size, no single
message may be defined that is larger than 255 bytes.

Figure 4-3. Definition Message Structure

Definition messages are extended to include additional Developer Field Definitions if the Developer Data flag is set in the
record header.

Figure 4-4. Definition Message with Developer Data Structure

Record
Header

Architecture
(1 byte)

Reserved
(1 byte)

Global Message Number
(2 bytes)

of Fields
(1 byte)

FIELD DEFINITIONS
(3 bytes/field)

. . .

. . .
Fixed Content: 5 Bytes Variable Content

Record Content

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 23 of 45

thisisant.com

The record contents of a definition message are outlined in Table 4-3 below.

Table 4-3. Definition Message Contents

Byte Description Length Value

0 Reserved 1 Byte 0
1 Architecture 1 Byte Architecture Type

0: Definition and Data Messages are Little Endian
1: Definition and Data Message are Big Endian

2-3 Global
Message
Number

2 Bytes 0:65535 – Unique to each message
*Endianness of this 2 Byte value is defined in the Architecture byte

4 Fields 1 Byte Number of fields in the Data Message
5 –

 4 + Fields * 3
Field

Definition
3 Bytes

(per Field)
See Field Definition Contents (Table 4-4)

5 + Fields * 3 # Developer
Fields

1 Byte Number of Self Descriptive fields in the Data Message
(Only if Developer Data Flag is set)

6 + Fields * 3 -
END

Developer
Field

Definition

3 bytes
(per Field)

See Developer Data Field Definition Contents (Table 4-7)

4.2.1.1 Architecture Type
The Architecture Type describes whether the system architecture is big or little endian. All data in the related definition and
upcoming data message will follow this format.

4.2.1.2 Global Message Number
The Global Message Number relates to the Global FIT Message. For example, the Global FIT Message ‘Record’ has the
global message number ‘20’. All Global Message Numbers are found in the mesg_num base type defined in the SDK.

4.2.1.3 Fields
Fields defines the number of FIT fields that will be included in the data message. For example, if a given FIT message had
10 defined FIT fields, the application may only choose to send 4 of those FIT fields in the data message. In this case, the
Fields byte would be set to ‘4’. All FIT messages and their respective fields are listed in the global FIT profile.

4.2.1.4 Field Definition
The Field Definition bytes are used to specify which FIT fields of the global FIT message are to be included in the upcoming
data message in this instance. Any subsequent data messages of a particular local message type are considered to be
using the format described by the definition message of matching local message type. All FIT messages and their respective
FIT fields are listed in the global FIT profile. Each Field Definition consists of 3 bytes as detailed in Table 4-4. Refer to
Figure 4-6 for an example definition message.

Table 4-4. Field Definition Contents

Byte Name Description

0 Field Definition Number Defined in the Global FIT profile for the specified FIT message
1 Size Size (in bytes) of the specified FIT message’s field
2 Base Type Base type of the specified FIT message’s field

Page 24 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.2.1.4.1 Field Definition Number

The Field Definition Number uniquely identifies a specific FIT field of the given FIT message. The field definition numbers
for each global FIT message are provided in the SDK. 255 represents an invalid field number.

4.2.1.4.2 Size

The Size indicates the size of the defined field in bytes. The size may be a multiple of the underlying FIT Base Type size
indicating the field contains multiple elements represented as an array.

4.2.1.4.3 Base Type

Base Type describes the FIT field as a specific type of FIT variable (unsigned char, signed short, etc). This allows the FIT
decoder to appropriately handle invalid or unknown data of this type. The format of the base type bit field is shown below
in Table 4-5. All available Base Types are fully defined in the fit.h file included in the SDK and as listed in Error! Reference
source not found..

Table 4-5. Base Type Bit Field

Bit Name Description

7 Endian Ability 0 - for single byte data
1 - if base type has endianness (i.e. base type is 2 or more bytes)

5-6 Reserved Reserved
0-4 Base Type Number Number assigned to Base Type (provided in SDK)

When the decoder encounters unknown or invalid data, it will assign an invalid value according to the designated base type.
Base type numbers (bits 0:4) and their invalid values can also be found in the fit.h file provided in the SDK and as listed in
Error! Reference source not found. below.

Table 4-6. FIT Base Types and Invalid Values

Base

Type

Endian

Ability

Base

 Type

Field

Type

Name

Invalid Value Size

(Bytes)

Comment

0 0 0x00 enum 0xFF 1
1 0 0x01 sint8 0x7F 1 2's complement format
2 0 0x02 uint8 0xFF 1
3 1 0x83 sint16 0x7FFF 2 2's complement format
4 1 0x84 uint16 0xFFFF 2
5 1 0x85 sint32 0x7FFFFFFF 4 2's complement format
6 1 0x86 uint32 0xFFFFFFFF 4
7 0 0x07 string 0x00 1 Null terminated string encoded in

UTF-8 format
8 1 0x88 float32 0xFFFFFFFF 4
9 1 0x89 float64 0xFFFFFFFFFFFFFFFF 8
10 0 0x0A uint8z 0x00 1
11 1 0x8B uint16z 0x0000 2
12 1 0x8C uint32z 0x00000000 4
13 0 0x0D byte 0xFF 1 Array of bytes. Field is invalid if all

bytes are invalid.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 25 of 45

thisisant.com

14 1 0x8E sint64 0x7FFFFFFFFFFFFFFF 8 2’s complement format

15 1 0x8F uint64 0xFFFFFFFFFFFFFFFF 8

16 1 0x90 uint64z 0x0000000000000000 8

4.2.1.5 Developer Data Field Description
Developer data fields allow for files to define the meaning of data without requiring changes to the FIT profile being used.
Rather than having information like Field Name, Units, and Base Type encoded into the profile this information is included in
2 special global messages that act as meta-data for the decode process. The developer data field description is used to map
data within a data message to the appropriate meta-data.

Table 4-7 – Developer Field Description

Byte Name Description

0 Field Number Maps to the field_definition_number of a field_description Message
1 Size Size (in bytes) of the specified FIT message’s field
2 Developer Data Index Maps to the developer_data_index of a developer_data_id Message

4.2.1.5.1 Developer Data ID Messages

Developer data ID messages are used to uniquely identify developer data field sources, a FIT file can contain data for up to
255 unique developers. These messages must occur before any related field description messages.

Table 4-8 - Developer Data ID Message

Name Type Size Description

application_id uint8 16 16-byte identifier for the developer
developer_data_index uint8 1 Developer Data Index that maps to this Message.

4.2.1.5.2 Field Description Messages

Field description messages define the meaning of data within a dev field, a FIT file can contain up to 255 unique fields per
developer. These messages must occur in the file before any related data is added.

Table 4-9 - Field Description Messages

Name Type Size Description

developer_data_index uint8 1 Index of the developer that this message maps to
field_definition_number uint8 1 Field Number that maps to this message

fit_base_type_id uint8 1 Base type of the field
field_name string 64 Name of the field

units string 16 Units associated with the field
native_field_num uint8 1 Equivalent native field number

Page 26 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.2.1.5.2.1 Native Field Num Details

The native_field_num field is used to indicate that a field can be considered equivalent to the corresponding field_number in
the message that the developer data is included in. This field can be used to indicate to data consumers that the developer
considers its data to be the same as native data.

Developer Fields that override native FIT fields shall preserve the units defined for that field in the Profile.xlsx document.
Scaling and offset defined in Profile.xlsx for the native data fields shall not be applied to the developer data field. Instead,
the developer data field shall be logged with full precision and resolution using the appropriate base data type.

For example, if overriding total_hemoglobin_conc in the record message, which has a scaling of 100, the developer data
field should be logged as a float (to keep two decimal places of precision).

Developer fields will be written to the FIT file in such a way that decoders do not need to manipulate them in any way.
Decoders that are consuming developer data should not trust that developer data is logged correctly. It is still strongly
recommended to do some basic data verification before attempting to display it.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 27 of 45

thisisant.com

ss

4.2.2 Data Message
Once a global FIT message has been associated to a local message type, and the format of the FIT fields defined, data
messages may be written to the FIT file. Definition messages have a minimum length of 8 bytes, excluding the record
header; however, data messages can be very compact.

Figure 4-5. Data Message Structure

A data message must start with a normal or compressed timestamp header indicating its local message type, and the record
content must be formatted according to the definition message of matching local message type.

Record
Header

Data Fields
(Number and Format specified in the Definition Message)

Variable Content

Record Content

Page 28 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.3 FIT File Example
The example in Figure 4-6 shows a simple FIT activity file containing the 14-byte file header, data records, custom
developer data and 2 byte CRC.

Figure 4-6. Definition and data message example

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 29 of 45

thisisant.com

4.3.1 Record 1 (definition message: ‘file_id’ (mesg_num = 0x00))
Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:

x Little Endian

x Global Message Number 0 identifies FIT ‘file_id’ message

x The FIT file_id fields that will be included in the associated data message are:

o Field Definition Number: 0 (type); Size: 1 byte; Base Type: 0 (enum)

o Field Definition Number: 1 (manufacturer); Size: 2 bytes; Base Type: 132 (uint16)

o Field Definition Number: 2 (product); Size: 2 bytes; Base Type: 132 (uint16)

o Field Definition Number: 3 (serial number); Size: 4 bytes; Base Type: 140 (uint32z)

o Field Definition Number: 4 (time_created); Size: 4 bytes; Base Type: 134 (uint32)

Global Message Number is found in the mesg_num type of the FIT protocol

Field Definition Numbers for each FIT message are found in the FIT profile provided in the SDK. Size and Base Type
definitions are located in the fit.h file in the SDK, or as listed in Error! Reference source not found..

4.3.2 Record 2 (data message: ‘file_id’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘file_id’ message

x Included Fields and Data:

o type: 4* (activity file)

o manufacturer: 15* (Dynastream)

o product: 22

o serial number: 1234

o time_created: 621463080 (~14 Aug 2009)

 * These values are defined in the FIT protocol

4.3.3 Record 3 (definition message: ‘dev_data_id’ (mesg_num = 0xCF))
Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:

x Little Endian

x Global Message Number 207 identifies FIT ‘dev_data_id’ message

x The FIT file_id fields that will be included in the associated data message are:

o Field Definition Number: 1 (app_id); Size: 16 bytes; Base Type: 13 (byte)

o Field Definition Number: 3 (dev_data_index); Size: 1 byte; Base Type: 2 (uint8)

Page 30 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.3.4 Record 4 (data message: ‘dev_data_id’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘dev_data_id’ message

x Included Fields and Data:

o app_id: [44, 1, 22, 2, 3, 1, 15, 1, 2, 12, 31, 41, 1, 2, 1, 88, 12, 13, 12, 22]

o dev_data_idx: 0

4.3.5 Record 5 (definition message: ‘field_description’ (mesg_num = 0xCE))
Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:

x Little Endian

x Global Message Number 206 identifies FIT ‘field_description’ message

x The FIT file_id fields that will be included in the associated data message are:

o Field Definition Number: 0 (dev_data_idx); Size: 1 byte; Base Type: 2 (uint8)

o Field Definition Number: 1 (field_def_num); Size: 1 byte; Base Type: 2 (uint8)

o Field Definition Number: 2 (base_type_id); Size: 1 byte; Base Type: 2 (uint8)

o Field Definition Number: 3 (field_name); Size: 64 byte; Base Type: 7 (string)

o Field Definition Number: 8 (units); Size: 16 byte; Base Type: 7 (string)

4.3.6 Record 6 (data message: ‘field_description’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘field_description’ message

x Included Fields and Data:

o dev_data_idx: 0

o field_def_num: 0

o base_type_id: 1 (sint8)

o field_name: “doughnuts_earned”

o units: “doughnuts”

4.3.7 Record 7 (definition message: ‘record’ (mesg_num = 0x14))
Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:

x Little Endian

x Includes Custom Developer Data

x Global Message Number 20 identifies FIT ‘record’ message

x The FIT record fields that will be included in the associated data message are:

o Field Definition Number: 3 (heart_rate); Size: 1 byte; Base Type: 2 (uint8)

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 31 of 45

thisisant.com

o Field Definition Number: 4 (cadence); Size: 1 bytes; Base Type: 2 (uint8)

o Field Definition Number: 5 (distance); Size: 4 bytes; Base Type: 134 (uint32)

o Field Definition Number: 6 (speed); Size: 2 bytes; Base Type: 132 (uint16)

x The Developer data that will be included in the associated messages are:

o Field Number: 0; Size: 1 bytes; Developer Data Index: 0

� Mapping the Dev Data Index and Field Number to previous dev_data_id and field_description
messages, indicates that this field is doughnuts_earned

Global Message Number is found in the mesg_num type of the FIT protocol

Field Definition Numbers for each FIT message are found in the FIT profile provided in the SDK. Size and Base Type
definitions are located in the fit.h file in the SDK, or as listed in or as listed in Error! Reference source not found..

4.3.8 Record 8 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘record’ message

x Included Fields and Data:

o heart_rate : 140 (bpm)

o cadence: 88 (rpm)

o distance: 510 (cm)

o speed: 2800 (mm/s)

o doughnuts_earned: 1 (doughnut)

4.3.9 Record 9 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘record’ message

x Included Fields and Data:

o heart_rate : 143 (bpm)

o cadence: 90 (rpm)

o distance: 2080 (cm)

o speed: 2920 (mm/s)

o doughnuts_earned: 1 (doughnut)

4.3.10 Record 10 (data message: ‘record’ (local msg type = 0))
Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

x Little Endian, FIT ‘record’ message

Page 32 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

x Included Fields and Data:

o heart_rate : 144 (bpm)

o cadence: 92 (rpm)

o distance: 3710 (cm)

o speed: 3050 (mm/s)

o doughnuts_earned: 1 (doughnut)

Note that in this example, the fields are defined in the order of increasing field number. This does not have to be the case.
Field definitions do not need to be in the order of increasing field number, however, the order the fields are recorded in
data message MUST follow the order they are defined in the definition message.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 33 of 45

thisisant.com

4.4 Scale/Offset
The FIT SDK supports applying a scale or offset to binary fields. This allows efficient representation of values within a
particular range and provides a convenient method for representing floating point values in integer systems. A scale or
offset may be specified in the FIT profile for binary fields (sint/uint etc.) only. When specified, the binary quantity is
divided by the scale factor and then the offset is subtracted, yielding a floating point quantity. The field access
functions within the SDK automatically handle this conversion. If no scale and offset are specified, the field is interpreted as
the underlying type and no extra conversion is necessary.

 Table 4-10. Example Field Featuring Both Scale and Offset

Field Type Scale Offset Units

altitude uint16 5 500 m

Table 4-11. Altitude Field Value Encoding

Quantity Value Field
Value

(Decimal)

Field
Value
(Hex)

Height of
Aconcagua

6960.8m 37304 0x91B8

Minimum Value -500.0m 0 0x0000
Maximum Value 12606.8m 65534 0xFFFE

Page 34 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.5 Dynamic Fields
The interpretation of some message fields depends on the value of another previously defined field. This is called a Dynamic
Field. For example, field #3 of the 'event' message is 'data' and is a dynamic field. If the 'event' field is equal to 'battery'
then 'data' is interpreted as 'battery level'. Similarly, if 'event' is 'fitness_equipment' then 'data' is interpreted as
'fitness_equipment_state'.

Figure 4-7. Sample Dynamic Fields in the 'Event' Message

These alternate field interpretations (e.g. ‘battery_level’ and ‘fitness_equipment_state’) are known as subfields and differ
somewhat from regular fields. They have no field number (‘Field Def #’ as shown in the figure above); instead, the field
number of the main field (e.g. ‘data’) always applies. Subfields must have one or more reference field and reference value
combinations. When the reference field contains the reference value, the field shall be interpreted using the properties
(name, scale, type etc.) of the subfield rather than the main field. Reference fields must be of integer type, floating point
reference values are not supported. If none of the reference field/ value combinations are true then the field is interpreted
as usual (as ‘data’ in this example). Subfields may be of different type or size so long as each subfield is not larger than the
main field. Care must be taken to define reference field/value combinations that are unambiguous for each desired
subfield.

Subfields may contain components. The FIT protocol supports nested components meaning subfields may contain
components that are also subfields.

The advantage of dynamic fields is that their use allows the interpretation of a field to change, without the usual
prerequisite to write a new message definition. This optimizes the size of a file.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 35 of 45

thisisant.com

4.6 Components
Components are a way of compressing one or more fields into a bit field expressed in a single containing field. This can
allow some space saving/compression. On decode the SDK will automatically create new field objects and extract the data
from the containing field. A destination field of the same name must be defined for every component in the containing field
but is not included in the message, it will be automatically generated by the decoder. The destination field can itself contain
components requiring expansion.

Figure 4-8. Example Components in the 'Event' Message

As shown in Figure 4-8, the subfield ‘gear_change_data’ contains four components (‘rear_gear_num’, ‘rear_gear’,
‘front_gear_num’ and ‘front_gear’). This means when the subfield is encountered in an event message (i.e. if ‘event’ is
‘front_gear_change’ or ‘rear_gear_change’, see Section 4.4 for discussion of Subfields) the data is expanded into the four
destination fields of the same name.

The ‘bits’ property is used to specify the format of the data in the containing field; N bits of data are right shifted from the
containing field to generate the data for the destination field. Therefore all low order bits of the containing field must be
contiguous component data. Extra undefined high order bits will be ignored by the decoder. The decoder will continue
gracefully if the containing field is smaller than expected (i.e. it runs out of bits). The maximum value for ‘bits’ is 32. Even
though containing fields are often a byte array, ‘bits’ need not be a multiple of 8. The decoder will correctly access
successive array elements in the containing field in order to retrieve sufficient bits (for example to extract 16 bits from a
containing field of basetype byte[]).

Page 36 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Scale and offset must be specified for all components even if these are 1 and 0. However, scale and offset will not be
applied to destination fields with types of string or enum.

Figure 4-9. Example Component Expansion

Figure 4-9 further demonstrates component expansion. During decode the decoder encounters an event message with 3
fields in the FIT source. Since there are 4 components defined for the active subfield (gear_change_data) these fields are
generated and populated with data from the containing field in accordance with the 'bits' property. The message object
sent to the OnMesg handler will contain 7 fields.

4.7 Common Fields (Field#, Field Name, Field Type)
Certain fields are common across all FIT messages. These fields have a reserved field number that is also common across
all FIT messages (including in the manufacturer specific space).

4.7.1 Message Index (Field # = 254, message_index, message_index)
This field allows messages to be indexed with a common method.

The SDK C code provides a FIT_LookupMessage function that returns the location of a message in a file by specifying the
global message number and message index. The message index field also contains a bit to indicate a selected message.
For example, the active user profile could be selected by setting the selected bit in the message index. Note,
message_index fields must be recorded sequentially (i.e. numbered starting from 0 and incremented in steps of 1).

Message index can be used to refer to a previously defined record. For example, the user_profile message has a
message_index field. Multiple user_profile messages may be recorded using the message_index field. The blood_pressure
message has a user_profile_index field that relates back to the user_profile_message. For example, if the blood_pressure
message has a user_profile_index =1, this will correspond to the user_profile message that has message_index=1.

4.7.2 Timestamp (Field # = 253, timestamp, date_time)
Timestamp is a common UTC timestamp field for all FIT messages. This field may be used in combination with the
compressed timestamp header.

4.7.3 Part Index (Field # = 250, part_index, uint32)
Part index acts as a sequence number and is used to order multi-part data. Each group of multi-part data must start with
part_index 0 and each message increments by one. When part_index 0 is encountered again it indicates the start of a new
multi-part block.

Event Mesg 0x29BB0940

timestamp event

42 0x27010E08

data
(gear_change_data)

0x29BB0940

timestamp event

42 0x27010E08

data
(gear_change_data)

rear_gear_num

0x08

rear_gear

0x0E 0x01

front_gear

0x27

front_gear_num

Event Mesg
After
Component
Expansion

8bits

8bits

8bits
8bits

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 37 of 45

thisisant.com

4.8 Best Practices
To properly encode/decode FIT files, the following MUST be included:

x FIT File header

x Data Record 1: file_id Definition Message

x Data Record 2: file_id Data Message

x Data Records: Ensure appropriate definition messages are included in the FIT file prior to recording any associated
data messages. Note field definitions do not need to be in the order of increasing field number, however, the
order the fields are recorded in a data message MUST follow the order they are defined in the definition message

x 2 Byte CRC

4.8.1 File ID Messages
The purpose of the ‘file_id’ message is to uniquely identify the file in a global system. The fields in the data message may
include file type, manufacturer, product, serial number, time created and file number depending on the FIT file type.

4.8.2 Defining Data Messages
A data message must always be specified by a definition message prior to recording any data. Once a data message has
been properly defined, the FIT file can be properly decoded. Even if a device’s implemented profile does not include all of
the FIT messages or fields contained in the FIT file, it will be decoded without error: unrecognized data will be ignored, and
any expected values not included will be assigned invalid values. If a data message is recorded without an appropriate
definition message, an error will occur.

Often, multiple data messages of the exact same format are recorded. In this case, it is best practice to use a single
definition message for all data messages; rather than recording a definition message for each data message. For example,
in Figure 4-10, two types of data messages are being recorded: lap and record messages. The FIT file on the left contains a
definition message for each data message. Although technically correct, this method of recording data is sub optimal;
instead, define the lap and record messages once at the beginning of the file, followed by all lap and record messages as
shown in the FIT file on the right.

Figure 4-10. Best Practice for Defining Data Messages.

Definition_Message_1 (Lap)

Data_Message_1 (Lap)

Definition_Message_2 (Record)

Data_Message_2 (Record)

Definition_Message_1 (Lap)

Data_Message_1 (Lap)

Definition_Message_2 (Record)

Data_Message_2 (Record)

…

FIT File

Definition_Message_1 (Lap)

Definition_Message_2 (Record)

Data_Message_1 (Lap)

Data_Message_2 (Record)

Data_Message_1 (Lap)

Data_Message_2 (Record)

…

FIT File

Correct (not optimal) Best Practice

Page 38 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

4.8.3 Re-defining Local Message Types
Local message types can be redefined within a single FIT file. Figure 4-6, for example, shows a FIT file using a single local
message type (i.e. 0) to record both the ‘file_id’ and ‘record’ data. Note that this FIT file contains the same data that was
recorded in section 4.3. The number of local message types used in a file should be minimized in order to minimize the RAM
required to decode the file. For example, embedded devices may only support decoding data from local message type 0.
The advantage of using multiple local message types is the file size is optimized because new definition messages are not
required to interleave different message types. Multiple local message types should be avoided in file types such as settings
where messages of the same type can be grouped together.

Care must be taken when redefining local message types. If data message formats are recorded without the
new definition message, unpredictable results will occur and may cause the decoder to fail.

Figure 4-11. Redefining local message type within a single FIT file

00000000 144 92 3710 3050

00000000 143 90 2080 2920

00000000 140 88 510 2800

01000000 0 0 20 4 3 4 5 61 2 1 2 4 134 2 132

01000000 0 0 0 5 0 1 2 3 41 0 2 132 2 132 4 140 4 134

14 Byte Header

2 Byte CRC

File Header:

Record 1:

Record 2:

Record 3:

Record 4:

Record 5:

Record 6:

CRC:

Record Header Record Content

00000000 4 15 22 1234 621463080

Definition Message
Local Msg Type 0

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 39 of 45

thisisant.com

5 FIT Message Conversion
Reference C, C++ and Java code for both embedded and PC conversions of FIT files are available in the provided SDK. The
FIT protocol is fully backwards compatible, ensuring that devices with different versions of the FIT protocol can share files.
The conversion tool handles all conversion-related issues such as differences in device architecture (big endian vs. little
endian), and differences in messages between devices which have different versions of the FIT protocol.

Figure 5-1 takes the example given in section 4.3 and shows how an incoming message is encoded according to the
device’s implemented Product Profile and added to the FIT file. In this case, the data corresponding to Record 5 of the
previous example is used.

Figure 5-1. Conversion of a FIT message

In this simplified example, Device_A’s implemented product profile includes the FIT ‘record’ message and its heart_rate,
cadence, distance and speed FIT fields. The incoming data is formatted and encoded according to the product profile and
added to the FIT file. When all records have been added and the FIT file is complete, it is ready for transfer.

Device_B, on the other hand, has a slightly different implemented product profile that still includes the FIT ‘record’
message; however, this profile has a different set of FIT fields defined. Device_A and Device_B both have the heart_rate,
cadence and distance FIT fields, but Device_A includes speed, whereas Device_B includes grade and power data. As FIT is
fully compatible across different versions of global and product FIT profiles, the protocol will automatically account for these
differences.

As illustrated in Figure 5-1, Device_B receives the FIT file, and the decoder will interpret and decode the information it
recognizes (i.e. heart_rate, cadence, distance), ignore data it does not recognize (i.e. speed), and populate the remaining
FIT fields with invalid values according to its base type (i.e. grade and power). In this way, the FIT file is maintained and
can be transferred again in its original form, unrecognized or missing data is processed by Device_B without causing errors,
and the resultant information is passed in the form of a C structure or object to Device_B’s application for further use.

Encoded Record 5:

Implemented
Product Profile

Decoded Record 5:

Received Encoded
Record 5:

heart_rate:
cadence:
distance:
speed:

140
88

510
2800

heart_rate:
cadence:
distance:
grade:
power

140
88

510
0xFFFF
0x7FFF

heart_rate:
cadence:
distance:
grade:
power

uint8
uint8
uint32
uint16
sint16

heart_rate:
cadence:
distance:
speed:

140
88

510
2800

Implemented
Product Profile

heart_rate:
cadence:
distance:
speed:

uint8
uint8
uint32
uint16

Incoming Measured
Data:

heart_rate:
cadence:
distance:
speed:

140 bpm
88 rpm
510 cm
280 m/s

File
Transfer

FIT File

FIT File

Header

Data Records

(FIT Msgs)

CRC
Application

DEVICE_A DEVICE_B

FIT message: record

FIT Fields:

FIT message: record

FIT Fields:

Page 40 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

5.1 Compatibility
The FIT protocol is designed for extensibility. The software development code provided is designed to maintain
compatibility as FIT files are transferred between systems. For compatibility between systems to be maintained, the FIT
profile must be strictly adhered to. There is built in flexibility for system architectures. Endian architecture is described in
each message definition and automatically handled within the FIT SDK.

5.2 Common FIT File Applications
Certain applications of FIT files lead to a natural grouping of messages based on purpose. Refer to the FIT File Types
Description document for more details on the common message groupings and methods for best practice of the following
file types:

Table 5-1. Common FIT File Types

FIT File Type Purpose

Settings Describes a user’s parameters such as Age, Weight, and Height

Activity Records data and events from an active session

Workout Records data describing a workout’s parameters such as target rates and durations

Blood Pressure Provides summary data from a blood pressure device

Weight Provides summary data from a weight scale device

6 Plugin Framework
As of version 16.30 the FIT SDK now supports manipulating FIT files before the output is pushed to the end-application.
This allows the developer to add a layer of pre-processing before the consumer of the data gets messages and definitions in
its listener call-backs.

6.1 Plugin Architecture
The new plugin architecture allows for developers to perform pre-processing on FIT data before the final output is returned
to the application’s subscribed listeners. A new MesgBroadcaster was created called the BufferedMesgBroadcaster which
receives the messages from the decoder as they are processed by invoking the Run() method. Multiple plugins can be
registered to a BufferedMesgBroadcaster and when messages come in they are dispatched to the OnIncomingMesg()
handler in the plugin. Once the decoder finishes the Run() function completes. The consumer application will then call the
Broadcast() method on the BufferedMesgBroadcaster. The broadcast method causes the plugins to process each individual
message and once processed they are sent to the application’s registered listeners.

The new plugin framework is implemented in C++, C#, and Java with very similar Application Programming Interfaces. The
SDK includes the “Heart Rate to Record” Plugin which allows applications to process Garmin’s HRM-Tri “hr” messages and
appends the heart rate values into the appropriate record message.

There is a block diagram below showing the new pieces introduced in this SDK to support plugins and shows the differences
needed in the application code to get started using plugins. The example is based on the C++ implementation.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 41 of 45

thisisant.com

Application/M
esg

Listeners

Plugin(s)
//H

andle M
essages

O
nIncom

ingM
esg();

//H
andle Broadcast event

O
nBroadcast();

M
esgBroadcaster

//Adds M
esg-specific listener

AddListener();

//Rem
oves M

esg-specific listener
Rem

oveListener();

//H
andles incom

ing M
esgs, sends

to respective listeners
O

nM
esg();

//H
andles incom

ing M
esg

D
efinitions, sends to respective

listeners
O

nM
esgD

efinition();

BufferedM
esgBroadcaster

(extends M
esgBroadcaster)

//Register a plugin
RegisterM

esgBroadcastPlugin();

//Iterates over stored m
essages

received in O
nM

esg() and
Broadcasts them

 to Application/
M

esgListeners
Broadcast();

//H
andles m

essages received
from

 D
ecoder (before

Application gets them
)

O
nM

esg();

D
ecoder

Existing
Functionality

N
ew

 Functionality

Class listener :
fit::D

eviceInfoM
esgListener{

O
nM

esg(fit::D
eviceInfoM

esg
m

esg){
//H

andle m
essage

}
} //class listener

static void M
ain()

{
M

esgBroadcaster
broadcaster;

Listener listener;
File file;

//Add Listeners
broadcaster.AddListener((fit::
D

eviceInfoM
esgListener)&

list
ener);

//Process the file (decode)
broadcaster.Run(file);

}//M
ain

Class listener :
fit::D

eviceInfoM
esgListener{

O
nM

esg(fit::D
eviceInfoM

esg
m

esg){
//H

andle m
essage

}
} //class listener

static void M
ain()

{
BufferedM

esgBroadcaster
broadcaster;

Listener listener;
TestPlugin plugin;

File file;

//Register Plugin
Broadcaster.RegisterM

esgBro
adcastPlugin(&

plugin);
//Add Listeners

broadcaster.AddListener((fit::
D

eviceInfoM
esgListener)&

list
ener);

//Process the file (in decoder)
broadcaster.Run(file);

//Broadcast the m
essages

broadcaster.Broadcast();
}//M

ain

Figu
re

 6
-1

 P
lu

gin
 A

rch
ite

ctu
re

 B
lo

ck D
iagram

Page 42 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

6.2 Plugin Example (HR)
A good example of a plugin is the one that was created to parse Compressed Heart Rate data into many record messages.
It takes a message like:

Hr Mesg:
x filtered_bpm:72|69|67|67|67|69|70|70 Units: bpm
x event_timestamp_12: 204|3|118|10|91|233|246|129|85|204|40|197 Units: none
x (Generated through Component Expansion) event_timestamp:

45544.950000|45545.840000|45546.760000|45547.640000|45548.490000|45549.340000|45550.200000|45551.0
80000 Units: seconds

And converts it into multiple record messages shown below:

Record Mesg:

x timestamp: 799247263 Units: seconds
x heart_rate: 67 Units: bpm

Record Mesg:
x timestamp: 799247264 Units: seconds
x heart_rate: 67 Units: bpm

Record Mesg:
x timestamp: 799247266 Units: seconds
x heart_rate: 69 Units: bpm

Record Mesg:
x timestamp: 799247267 Units: seconds
x heart_rate: 70 Units: bpm

Record Mesg:
x timestamp: 799247268 Units: seconds
x heart_rate: 70 Units: bpm

So the plugin pre-processes all of the HR messages in a file, and maps the timestamps back to record messages and adds
the heart rate values to the appropriate record messages.

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 43 of 45

thisisant.com

6.3 Three D Sensor Adjustment Plugin Explanation and Example

Input:

Calibration message:

x Calibration Factor: Used to convert the data samples from counts to the desired units (i.e. deg/s, g, G, etc.)
x Calibration Divisor: The denominator of the calibration factor. Used to convert the data samples from counts to the

desired units (i.e. deg/s, g, G, etc.)
x Level Shift: The applied shift, in counts, that was used to achieve a positive-valued measurement in the ADC

conversion
x Offset Calibration: This is determined in the factory and when combined with a free floating accelerometer or a

non-spinning gyroscope should produce a sample close to zero.
x Orientation Matrix: Can support values from + √3 and – √3, which allows for mounting sensors at many different

angles and defers adjusting the data until more processing power is available
x Sensor Type: The sensor type is an enum value used to indicate which sensor the calibration message is for.

(Accelerometer = 0, Gyroscope = 1, Magnetometer = 2, Barometer= 3, Invalid =255)

Data message:

x X, Y, and Z are the raw 3-axis sensor measurements. These values are limited to 16-bit accuracy and 30 samples
per message.

Calibration Adjustment:

*Note that the orientation matrix is a row major representation of a three by three matrix

Output:

The Three D Sensor Adjustment Plugin does the calibration adjustment and adds the calibrated values to the data message
under the appropriate fields.

Page 44 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.3

 thisisant.com

Example:

The Three D Sensor Adjustment Plugin was created to adjust the X, Y, and Z data points generated by the sensors
(Accelerometer, Gyroscope, and Magnetometer) and convert them to the desired units. It takes messages that look like:

three_d_sensor_calibration Message:

x timestamp: 3 Units: s
x calibration_factor: 5 Units: deg/s
x calibration_divisor: 82 Units: counts
x level_shift: 32768
x offset_cal: 22|13|34
x orientation_matrix: 0|-1|0|0|0|-1|1|0|0
x sensor_type: 1

gyroscope_data Message:

x timestamp: 3 Units: s
x sample_time_offset: 0|100|200|300|400|500|600|700 Units: ms
x gyro_x: 32592|32242|32411|32646|32724|33000|32536|32950 Units: counts
x gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts
x gyro_z: 33059|32190|33183|33085|32645|32928|33008|32785 Units: counts
x timestamp_ms: 658 Units: ms

And alters the data message to look like:

gyroscope_data Message:

x timestamp: 3 Units: s
x sample_time_offset: 0|100|200|300|400|500|600|700 Units: ms
x gyro_x: 32592|32242|32411|32646|32724|33000|32536|32950 Units: counts
x gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts
x gyro_z: 33059|32190|33183|33085|32645|32928|33008|32785 Units: counts
x timestamp_ms: 658 Units: ms
x calibrated_gyro_x: -0.2439024|6.829268|-15.67073|2.256098|22.31707|2.378049|9.45122|11.76829 Units: deg/s
x calibrated_gyro_y: -15.67073|37.31707|-23.23171|-17.2561|9.573171|-7.682927|-12.56098|1.036585 Units:

deg/s
x calibrated_gyro_z: -12.07317|-33.41463|-23.10976|-8.780488|-4.02439|12.80488|-15.4878|9.756098 Units:

deg/s

 Flexible and Interoperable Data Transfer Protocol Rev 2.3 Page 45 of 45

thisisant.com

Illustration:

gyroscope_data Message:

timestamp: 3 s
sample_time_offset: 0 ms
gyro_x: 32592 counts
gyro_y: 32785 counts
gyro_z: 33059 counts
timestamp_ms: 658 ms
calibrated_gyro_x:
calibrated_gyro_y:
calibrated_gyro_z:

Three D Sensor
Adjustment Plugin

three_d_sensor_calibration
Message:

timestamp: 3 s
calibration_factor: 5 deg/s
calibration_divisor: 82 counts
level_shift: 32768
offset_cal: 22|13|34
orientation_matrix: 0|-1|0|0|0|-1|1|0|0
sensor_type: 1

gyroscope_data Message:

timestamp: 3 s
sample_time_offset: 0 ms
gyro_x: 32592 counts
gyro_y: 32785 counts
gyro_z: 33059 counts
timestamp_ms: 658 ms
calibrated_gyro_x: -0.2439024 deg/s
calibrated_gyro_y: -15.67073 deg/s
calibrated_gyro_z: -12.07317 deg/s

