Permalink
2637 lines (2190 sloc) 91.9 KB
# -*- coding: utf-8 -*-
# Copyright 2011 Tomo Krajina
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
GPX related stuff
"""
import logging as mod_logging
import math as mod_math
import collections as mod_collections
import copy as mod_copy
import datetime as mod_datetime
from . import utils as mod_utils
from . import geo as mod_geo
from . import gpxfield as mod_gpxfield
# GPX date format to be used when writing the GPX output:
DATE_FORMAT = '%Y-%m-%dT%H:%M:%SZ'
# GPX date format(s) used for parsing. The T between date and time and Z after
# time are allowed, too:
DATE_FORMATS = [
'%Y-%m-%d %H:%M:%S',
'%Y-%m-%d %H:%M:%S.%f',
#'%Y-%m-%d %H:%M:%S%z',
#'%Y-%m-%d %H:%M:%S.%f%z',
]
# Used in smoothing, sum must be 1:
SMOOTHING_RATIO = (0.4, 0.2, 0.4)
# When computing stopped time -- this is the minimum speed between two points,
# if speed is less than this value -- we'll assume it is zero
DEFAULT_STOPPED_SPEED_THRESHOLD = 1
# Fields used for all point elements (route point, track point, waypoint):
GPX_10_POINT_FIELDS = [
mod_gpxfield.GPXField('latitude', attribute='lat', type=mod_gpxfield.FLOAT_TYPE, mandatory=True),
mod_gpxfield.GPXField('longitude', attribute='lon', type=mod_gpxfield.FLOAT_TYPE, mandatory=True),
mod_gpxfield.GPXField('elevation', 'ele', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE),
mod_gpxfield.GPXField('magnetic_variation', 'magvar', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('geoid_height', 'geoidheight', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
mod_gpxfield.GPXField('link', 'url'),
mod_gpxfield.GPXField('link_text', 'urlname'),
mod_gpxfield.GPXField('symbol', 'sym'),
mod_gpxfield.GPXField('type'),
mod_gpxfield.GPXField('type_of_gpx_fix', 'fix', possible=('none', '2d', '3d', 'dgps', 'pps',)),
mod_gpxfield.GPXField('satellites', 'sat', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXField('horizontal_dilution', 'hdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('vertical_dilution', 'vdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('position_dilution', 'pdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('age_of_dgps_data', 'ageofdgpsdata', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('dgps_id', 'dgpsid'),
]
GPX_11_POINT_FIELDS = [
mod_gpxfield.GPXField('latitude', attribute='lat', type=mod_gpxfield.FLOAT_TYPE, mandatory=True),
mod_gpxfield.GPXField('longitude', attribute='lon', type=mod_gpxfield.FLOAT_TYPE, mandatory=True),
mod_gpxfield.GPXField('elevation', 'ele', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE),
mod_gpxfield.GPXField('magnetic_variation', 'magvar', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('geoid_height', 'geoidheight', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
'link',
mod_gpxfield.GPXField('link', attribute='href'),
mod_gpxfield.GPXField('link_text', tag='text'),
mod_gpxfield.GPXField('link_type', tag='type'),
'/link',
mod_gpxfield.GPXField('symbol', 'sym'),
mod_gpxfield.GPXField('type'),
mod_gpxfield.GPXField('type_of_gpx_fix', 'fix', possible=('none', '2d', '3d', 'dgps', 'pps',)),
mod_gpxfield.GPXField('satellites', 'sat', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXField('horizontal_dilution', 'hdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('vertical_dilution', 'vdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('position_dilution', 'pdop', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('age_of_dgps_data', 'ageofdgpsdata', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('dgps_id', 'dgpsid'),
mod_gpxfield.GPXExtensionsField('extensions'),
]
# GPX1.0 track points have two more fields after time
# Note that this is not true for GPX1.1
GPX_TRACK_POINT_FIELDS = GPX_10_POINT_FIELDS[:4] \
+ [ \
mod_gpxfield.GPXField('course', type=mod_gpxfield.FLOAT_TYPE), \
mod_gpxfield.GPXField('speed', type=mod_gpxfield.FLOAT_TYPE) \
] \
+ GPX_10_POINT_FIELDS[4:]
# When possible, the result of various methods are named tuples defined here:
TimeBounds = mod_collections.namedtuple(
'TimeBounds',
('start_time', 'end_time'))
MovingData = mod_collections.namedtuple(
'MovingData',
('moving_time', 'stopped_time', 'moving_distance', 'stopped_distance', 'max_speed'))
UphillDownhill = mod_collections.namedtuple(
'UphillDownhill',
('uphill', 'downhill'))
MinimumMaximum = mod_collections.namedtuple(
'MinimumMaximum',
('minimum', 'maximum'))
NearestLocationData = mod_collections.namedtuple(
'NearestLocationData',
('location', 'track_no', 'segment_no', 'point_no'))
PointData = mod_collections.namedtuple(
'PointData',
('point', 'distance_from_start', 'track_no', 'segment_no', 'point_no'))
class GPXException(Exception):
"""
Exception used for invalid GPX files. Is is used when the XML file is
valid but something is wrong with the GPX data.
"""
pass
class GPXBounds:
gpx_10_fields = gpx_11_fields = [
mod_gpxfield.GPXField('min_latitude', attribute='minlat', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('max_latitude', attribute='maxlat', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('min_longitude', attribute='minlon', type=mod_gpxfield.FLOAT_TYPE),
mod_gpxfield.GPXField('max_longitude', attribute='maxlon', type=mod_gpxfield.FLOAT_TYPE),
]
__slots__ = ('min_latitude', 'max_latitude', 'min_longitude', 'max_longitude')
def __init__(self, min_latitude=None, max_latitude=None, min_longitude=None, max_longitude=None):
self.min_latitude = min_latitude
self.max_latitude = max_latitude
self.min_longitude = min_longitude
self.max_longitude = max_longitude
def __iter__(self):
return (self.min_latitude, self.max_latitude, self.min_longitude, self.max_longitude,).__iter__()
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
class GPXXMLSyntaxException(GPXException):
"""
Exception used when the the XML syntax is invalid.
The __cause__ can be a minidom or lxml exception (See http://www.python.org/dev/peps/pep-3134/).
"""
def __init__(self, message, original_exception):
GPXException.__init__(self, message)
self.__cause__ = original_exception
class GPXWaypoint(mod_geo.Location):
gpx_10_fields = GPX_10_POINT_FIELDS
gpx_11_fields = GPX_11_POINT_FIELDS
__slots__ = ('latitude', 'longitude', 'elevation', 'time',
'magnetic_variation', 'geoid_height', 'name', 'comment',
'description', 'source', 'link', 'link_text', 'symbol',
'type', 'type_of_gpx_fix', 'satellites',
'horizontal_dilution', 'vertical_dilution',
'position_dilution', 'age_of_dgps_data', 'dgps_id',
'link_type', 'extensions')
def __init__(self, latitude=None, longitude=None, elevation=None, time=None,
name=None, description=None, symbol=None, type=None,
comment=None, horizontal_dilution=None, vertical_dilution=None,
position_dilution=None):
mod_geo.Location.__init__(self, latitude, longitude, elevation)
self.latitude = latitude
self.longitude = longitude
self.elevation = elevation
self.time = time
self.magnetic_variation = None
self.geoid_height = None
self.name = name
self.comment = comment
self.description = description
self.source = None
self.link = None
self.link_text = None
self.link_type = None
self.symbol = symbol
self.type = type
self.type_of_gpx_fix = None
self.satellites = None
self.horizontal_dilution = horizontal_dilution
self.vertical_dilution = vertical_dilution
self.position_dilution = position_dilution
self.age_of_dgps_data = None
self.dgps_id = None
self.extensions = None
def __str__(self):
return '[wpt{%s}:%s,%s@%s]' % (self.name, self.latitude, self.longitude, self.elevation)
def __repr__(self):
representation = '%s, %s' % (self.latitude, self.longitude)
for attribute in 'elevation', 'time', 'name', 'description', 'symbol', 'type', 'comment', \
'horizontal_dilution', 'vertical_dilution', 'position_dilution':
value = getattr(self, attribute)
if value is not None:
representation += ', %s=%s' % (attribute, repr(value))
return 'GPXWaypoint(%s)' % representation
def get_max_dilution_of_precision(self):
"""
Only care about the max dop for filtering, no need to go into too much detail
"""
return max(self.horizontal_dilution, self.vertical_dilution, self.position_dilution)
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
class GPXRoutePoint(mod_geo.Location):
gpx_10_fields = GPX_10_POINT_FIELDS
gpx_11_fields = GPX_11_POINT_FIELDS
__slots__ = ('latitude', 'longitude', 'elevation', 'time',
'magnetic_variation', 'geoid_height', 'name', 'comment',
'description', 'source', 'link', 'link_text', 'symbol',
'type', 'type_of_gpx_fix', 'satellites',
'horizontal_dilution', 'vertical_dilution',
'position_dilution', 'age_of_dgps_data', 'dgps_id',
'link_type', 'extensions')
def __init__(self, latitude=None, longitude=None, elevation=None, time=None, name=None,
description=None, symbol=None, type=None, comment=None,
horizontal_dilution=None, vertical_dilution=None,
position_dilution=None):
mod_geo.Location.__init__(self, latitude, longitude, elevation)
self.latitude = latitude
self.longitude = longitude
self.elevation = elevation
self.time = time
self.magnetic_variation = None
self.geoid_height = None
self.name = name
self.comment = comment
self.description = description
self.source = None
self.link = None
self.link_text = None
self.symbol = symbol
self.type = type
self.type_of_gpx_fix = None
self.satellites = None
self.horizontal_dilution = horizontal_dilution
self.vertical_dilution = vertical_dilution
self.position_dilution = position_dilution
self.age_of_dgps_data = None
self.dgps_id = None
self.link_type = None
self.extensions = None
def __str__(self):
return '[rtept{%s}:%s,%s@%s]' % (self.name, self.latitude, self.longitude, self.elevation)
def __repr__(self):
representation = '%s, %s' % (self.latitude, self.longitude)
for attribute in 'elevation', 'time', 'name', 'description', 'symbol', 'type', 'comment', \
'horizontal_dilution', 'vertical_dilution', 'position_dilution':
value = getattr(self, attribute)
if value is not None:
representation += ', %s=%s' % (attribute, repr(value))
return 'GPXRoutePoint(%s)' % representation
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
class GPXRoute:
gpx_10_fields = [
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
mod_gpxfield.GPXField('link', 'url'),
mod_gpxfield.GPXField('link_text', 'urlname'),
mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXComplexField('points', tag='rtept', classs=GPXRoutePoint, is_list=True),
]
gpx_11_fields = [
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
'link',
mod_gpxfield.GPXField('link', attribute='href'),
mod_gpxfield.GPXField('link_text', tag='text'),
mod_gpxfield.GPXField('link_type', tag='type'),
'/link',
mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXField('type'),
mod_gpxfield.GPXExtensionsField('extensions'),
mod_gpxfield.GPXComplexField('points', tag='rtept', classs=GPXRoutePoint, is_list=True),
]
__slots__ = ('name', 'comment', 'description', 'source', 'link',
'link_text', 'number', 'points', 'link_type', 'type',
'extensions')
def __init__(self, name=None, description=None, number=None):
self.name = name
self.comment = None
self.description = description
self.source = None
self.link = None
self.link_text = None
self.number = number
self.points = []
self.link_type = None
self.type = None
self.extensions = None
def remove_elevation(self):
""" Removes elevation data from route """
for point in self.points:
point.remove_elevation()
def length(self):
"""
Computes length (2-dimensional) of route.
Returns:
-----------
length: float
Length returned in meters
"""
return mod_geo.length_2d(self.points)
def get_center(self):
"""
Get the center of the route.
Returns
-------
center: Location
latitude: latitude of center in degrees
longitude: longitude of center in degrees
elevation: not calculated here
"""
if not self.points:
return None
if not self.points:
return None
sum_lat = 0.
sum_lon = 0.
n = 0.
for point in self.points:
n += 1.
sum_lat += point.latitude
sum_lon += point.longitude
if not n:
return mod_geo.Location(float(0), float(0))
return mod_geo.Location(latitude=sum_lat / n, longitude=sum_lon / n)
def walk(self, only_points=False):
"""
Generator for iterating over route points
Parameters
----------
only_points: boolean
Only yield points (no index yielded)
Yields
------
point: GPXRoutePoint
A point in the GPXRoute
point_no: int
Not included in yield if only_points is true
"""
for point_no, point in enumerate(self.points):
if only_points:
yield point
else:
yield point, point_no
def get_points_no(self):
"""
Get the number of points in route.
Returns
----------
num_points : integer
Number of points in route
"""
return len(self.points)
def move(self, location_delta):
"""
Moves each point in the route.
Parameters
----------
location_delta: LocationDelta
LocationDelta to move each point
"""
for route_point in self.points:
route_point.move(location_delta)
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
def __repr__(self):
representation = ''
for attribute in 'name', 'description', 'number':
value = getattr(self, attribute)
if value is not None:
representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value))
representation += '%spoints=[%s])' % (', ' if representation else '', '...' if self.points else '')
return 'GPXRoute(%s)' % representation
class GPXTrackPoint(mod_geo.Location):
gpx_10_fields = GPX_TRACK_POINT_FIELDS
gpx_11_fields = GPX_11_POINT_FIELDS
__slots__ = ('latitude', 'longitude', 'elevation', 'time', 'course',
'speed', 'magnetic_variation', 'geoid_height', 'name',
'comment', 'description', 'source', 'link', 'link_text',
'symbol', 'type', 'type_of_gpx_fix', 'satellites',
'horizontal_dilution', 'vertical_dilution',
'position_dilution', 'age_of_dgps_data', 'dgps_id',
'link_type', 'extensions')
def __init__(self, latitude=None, longitude=None, elevation=None, time=None, symbol=None, comment=None,
horizontal_dilution=None, vertical_dilution=None, position_dilution=None, speed=None,
name=None):
mod_geo.Location.__init__(self, latitude, longitude, elevation)
self.latitude = latitude
self.longitude = longitude
self.elevation = elevation
self.time = time
self.course = None
self.speed = speed
self.magnetic_variation = None
self.geoid_height = None
self.name = name
self.comment = comment
self.description = None
self.source = None
self.link = None
self.link_text = None
self.link_type = None
self.symbol = symbol
self.type = None
self.type_of_gpx_fix = None
self.satellites = None
self.horizontal_dilution = horizontal_dilution
self.vertical_dilution = vertical_dilution
self.position_dilution = position_dilution
self.age_of_dgps_data = None
self.dgps_id = None
self.extensions = None
def __repr__(self):
representation = '%s, %s' % (self.latitude, self.longitude)
for attribute in 'elevation', 'time', 'symbol', 'comment', 'horizontal_dilution', \
'vertical_dilution', 'position_dilution', 'speed', 'name':
value = getattr(self, attribute)
if value is not None:
representation += ', %s=%s' % (attribute, repr(value))
return 'GPXTrackPoint(%s)' % representation
def adjust_time(self, delta):
"""
Adjusts the time of the point by the specified delta
Parameters
----------
delta : datetime.timedelta
Positive time delta will adjust time into the future
Negative time delta will adjust time into the past
"""
if self.time:
self.time += delta
def remove_time(self):
""" Will remove time metadata. """
self.time = None
def time_difference(self, track_point):
"""
Get time difference between specified point and this point.
Parameters
----------
track_point : GPXTrackPoint
Returns
----------
time_difference : float
Time difference returned in seconds
"""
if not self.time or not track_point or not track_point.time:
return None
time_1 = self.time
time_2 = track_point.time
if time_1 == time_2:
return 0
if time_1 > time_2:
delta = time_1 - time_2
else:
delta = time_2 - time_1
return mod_utils.total_seconds(delta)
def speed_between(self, track_point):
"""
Compute the speed between specified point and this point.
NOTE: This is a computed speed, not the GPXTrackPoint speed that comes
the GPX file.
Parameters
----------
track_point : GPXTrackPoint
Returns
----------
speed : float
Speed returned in meters/second
"""
if not track_point:
return None
seconds = self.time_difference(track_point)
length = self.distance_3d(track_point)
if not length:
length = self.distance_2d(track_point)
if not seconds or length is None:
return None
return length / float(seconds)
def __str__(self):
return '[trkpt:%s,%s@%s@%s]' % (self.latitude, self.longitude, self.elevation, self.time)
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
class GPXTrackSegment:
gpx_10_fields = [
mod_gpxfield.GPXComplexField('points', tag='trkpt', classs=GPXTrackPoint, is_list=True),
]
gpx_11_fields = [
mod_gpxfield.GPXComplexField('points', tag='trkpt', classs=GPXTrackPoint, is_list=True),
mod_gpxfield.GPXExtensionsField('extensions'),
]
__slots__ = ('points', 'extensions', )
def __init__(self, points=None):
self.points = points if points else []
self.extensions = None
def simplify(self, max_distance=None):
"""
Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
"""
if not max_distance:
max_distance = 10
self.points = mod_geo.simplify_polyline(self.points, max_distance)
def reduce_points(self, min_distance):
"""
Reduces the number of points in the track segment. Segment points will
be updated in place.
Parameters
----------
min_distance : float
The minimum separation in meters between points
"""
reduced_points = []
for point in self.points:
if reduced_points:
distance = reduced_points[-1].distance_3d(point)
if distance >= min_distance:
reduced_points.append(point)
else:
# Leave first point:
reduced_points.append(point)
self.points = reduced_points
def _find_next_simplified_point(self, pos, max_distance):
for candidate in range(pos + 1, len(self.points) - 1):
for i in range(pos + 1, candidate):
d = mod_geo.distance_from_line(self.points[i],
self.points[pos],
self.points[candidate])
if d > max_distance:
return candidate - 1
return None
def adjust_time(self, delta):
"""
Adjusts the time of all points in the segment by the specified delta
Parameters
----------
delta : datetime.timedelta
Positive time delta will adjust point times into the future
Negative time delta will adjust point times into the past
"""
for track_point in self.points:
track_point.adjust_time(delta)
def remove_time(self):
""" Removes time data for all points in the segment. """
for track_point in self.points:
track_point.remove_time()
def remove_elevation(self):
""" Removes elevation data for all points in the segment. """
for track_point in self.points:
track_point.remove_elevation()
def length_2d(self):
"""
Computes 2-dimensional length (meters) of segment (only latitude and
longitude, no elevation).
Returns
----------
length : float
Length returned in meters
"""
return mod_geo.length_2d(self.points)
def length_3d(self):
"""
Computes 3-dimensional length of segment (latitude, longitude, and
elevation).
Returns
----------
length : float
Length returned in meters
"""
return mod_geo.length_3d(self.points)
def move(self, location_delta):
"""
Moves each point in the segment.
Parameters
----------
location_delta: LocationDelta object
Delta (distance/angle or lat/lon offset to apply each point in the
segment
"""
for track_point in self.points:
track_point.move(location_delta)
def walk(self, only_points=False):
"""
Generator for iterating over segment points
Parameters
----------
only_points: boolean
Only yield points (no index yielded)
Yields
------
point: GPXTrackPoint
A point in the sement
point_no: int
Not included in yield if only_points is true
"""
for point_no, point in enumerate(self.points):
if only_points:
yield point
else:
yield point, point_no
def get_points_no(self):
"""
Gets the number of points in segment.
Returns
----------
num_points : integer
Number of points in segment
"""
if not self.points:
return 0
return len(self.points)
def split(self, point_no):
"""
Splits the segment into two parts. If one of the split segments is
empty it will not be added in the result. The segments will be split
in place.
Parameters
----------
point_no : integer
The index of the track point in the segment to split
"""
part_1 = self.points[:point_no + 1]
part_2 = self.points[point_no + 1:]
return GPXTrackSegment(part_1), GPXTrackSegment(part_2)
def join(self, track_segment):
""" Joins with another segment """
self.points += track_segment.points
def remove_point(self, point_no):
""" Removes a point specificed by index from the segment """
if point_no < 0 or point_no >= len(self.points):
return
part_1 = self.points[:point_no]
part_2 = self.points[point_no + 1:]
self.points = part_1 + part_2
def get_moving_data(self, stopped_speed_threshold=None):
"""
Return a tuple of (moving_time, stopped_time, moving_distance,
stopped_distance, max_speed) that may be used for detecting the time
stopped, and max speed. Not that those values are not absolutely true,
because the "stopped" or "moving" information aren't saved in the segment.
Because of errors in the GPS recording, it may be good to calculate
them on a reduced and smoothed version of the track.
Parameters
----------
stopped_speed_threshold : float
speeds (km/h) below this threshold are treated as if having no
movement. Default is 1 km/h.
Returns
----------
moving_data : MovingData : named tuple
moving_time : float
time (seconds) of segment in which movement was occuring
stopped_time : float
time (seconds) of segment in which no movement was occuring
stopped_distance : float
distance (meters) travelled during stopped times
moving_distance : float
distance (meters) travelled during moving times
max_speed : float
Maximum speed (m/s) during the segment.
"""
if not stopped_speed_threshold:
stopped_speed_threshold = DEFAULT_STOPPED_SPEED_THRESHOLD
moving_time = 0.
stopped_time = 0.
moving_distance = 0.
stopped_distance = 0.
speeds_and_distances = []
for i in range(1, len(self.points)):
previous = self.points[i - 1]
point = self.points[i]
# Won't compute max_speed for first and last because of common GPS
# recording errors, and because smoothing don't work well for those
# points:
if point.time and previous.time:
timedelta = point.time - previous.time
if point.elevation and previous.elevation:
distance = point.distance_3d(previous)
else:
distance = point.distance_2d(previous)
seconds = mod_utils.total_seconds(timedelta)
speed_kmh = 0
if seconds > 0:
# TODO: compute treshold in m/s instead this to kmh every time:
speed_kmh = (distance / 1000.) / (mod_utils.total_seconds(timedelta) / 60. ** 2)
#print speed, stopped_speed_threshold
if speed_kmh <= stopped_speed_threshold:
stopped_time += mod_utils.total_seconds(timedelta)
stopped_distance += distance
else:
moving_time += mod_utils.total_seconds(timedelta)
moving_distance += distance
if distance and moving_time:
speeds_and_distances.append((distance / mod_utils.total_seconds(timedelta), distance, ))
max_speed = None
if speeds_and_distances:
max_speed = mod_geo.calculate_max_speed(speeds_and_distances)
return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed)
def get_time_bounds(self):
"""
Gets the time bound (start and end) of the segment.
returns
----------
time_bounds : TimeBounds named tuple
start_time : datetime
Start time of the first segment in track
end time : datetime
End time of the last segment in track
"""
start_time = None
end_time = None
for point in self.points:
if point.time:
if not start_time:
start_time = point.time
if point.time:
end_time = point.time
return TimeBounds(start_time, end_time)
def get_bounds(self):
"""
Gets the latitude and longitude bounds of the segment.
Returns
----------
bounds : Bounds named tuple
min_latitude : float
Minimum latitude of segment in decimal degrees [-90, 90]
max_latitude : float
Maxium latitude of segment in decimal degrees [-90, 90]
min_longitude : float
Minium longitude of segment in decimal degrees [-180, 180]
max_longitude : float
Maxium longitude of segment in decimal degrees [-180, 180]
"""
min_lat = None
max_lat = None
min_lon = None
max_lon = None
for point in self.points:
if min_lat is None or point.latitude < min_lat:
min_lat = point.latitude
if max_lat is None or point.latitude > max_lat:
max_lat = point.latitude
if min_lon is None or point.longitude < min_lon:
min_lon = point.longitude
if max_lon is None or point.longitude > max_lon:
max_lon = point.longitude
return GPXBounds(min_lat, max_lat, min_lon, max_lon)
def get_speed(self, point_no):
"""
Computes the speed at the specified point index.
Parameters
----------
point_no : integer
index of the point used to compute speed
Returns
----------
speed : float
Speed returned in m/s
"""
point = self.points[point_no]
previous_point = None
next_point = None
if 0 < point_no < len(self.points):
previous_point = self.points[point_no - 1]
if 0 < point_no < len(self.points) - 1:
next_point = self.points[point_no + 1]
#mod_logging.debug('previous: %s' % previous_point)
#mod_logging.debug('next: %s' % next_point)
speed_1 = point.speed_between(previous_point)
speed_2 = point.speed_between(next_point)
if speed_1:
speed_1 = abs(speed_1)
if speed_2:
speed_2 = abs(speed_2)
if speed_1 and speed_2:
return (speed_1 + speed_2) / 2.
if speed_1:
return speed_1
return speed_2
def add_elevation(self, delta):
"""
Adjusts elevation data for segment.
Parameters
----------
delta : float
Elevation delta in meters to apply to track
"""
mod_logging.debug('delta = %s' % delta)
if not delta:
return
for track_point in self.points:
if track_point.elevation is not None:
track_point.elevation += delta
def add_missing_data(self, get_data_function, add_missing_function):
"""
Calculate missing data.
Parameters
----------
get_data_function : object
Returns the data from point
add_missing_function : void
Function with the following arguments: array with points with missing data, the point before them (with data),
the point after them (with data), and distance ratios between points in the interval (the sum of distances ratios
will be 1)
"""
if not get_data_function:
raise GPXException('Invalid get_data_function: %s' % get_data_function)
if not add_missing_function:
raise GPXException('Invalid add_missing_function: %s' % add_missing_function)
# Points (*without* data) between two points (*with* data):
interval = []
# Point (*with* data) before and after the interval:
start_point = None
previous_point = None
for track_point in self.points:
data = get_data_function(track_point)
if data is None and previous_point:
if not start_point:
start_point = previous_point
interval.append(track_point)
else:
if interval:
distances_ratios = self._get_interval_distances_ratios(interval,
start_point, track_point)
add_missing_function(interval, start_point, track_point,
distances_ratios)
start_point = None
interval = []
previous_point = track_point
def _get_interval_distances_ratios(self, interval, start, end):
assert start, start
assert end, end
assert interval, interval
assert len(interval) > 0, interval
distances = []
distance_from_start = 0
previous_point = start
for point in interval:
distance_from_start += float(point.distance_3d(previous_point))
distances.append(distance_from_start)
previous_point = point
from_start_to_end = distances[-1] + interval[-1].distance_3d(end)
assert len(interval) == len(distances)
return list(map(
lambda distance: (distance / from_start_to_end) if from_start_to_end else 0,
distances))
def get_duration(self):
"""
Calculates duration or track segment
Returns
-------
duration: float
Duration in seconds
"""
if not self.points or len(self.points) < 2:
return 0
# Search for start:
first = self.points[0]
if not first.time:
first = self.points[1]
last = self.points[-1]
if not last.time:
last = self.points[-2]
if not last.time or not first.time:
mod_logging.debug('Can\'t find time')
return None
if last.time < first.time:
mod_logging.debug('Not enough time data')
return None
return mod_utils.total_seconds(last.time - first.time)
def get_uphill_downhill(self):
"""
Calculates the uphill and downhill elevation climbs for the track
segment. If elevation for some points is not found those are simply
ignored.
Returns
-------
uphill_downhill: UphillDownhill named tuple
uphill: float
Uphill elevation climbs in meters
downhill: float
Downhill elevation descent in meters
"""
if not self.points:
return UphillDownhill(0, 0)
elevations = list(map(lambda point: point.elevation, self.points))
uphill, downhill = mod_geo.calculate_uphill_downhill(elevations)
return UphillDownhill(uphill, downhill)
def get_elevation_extremes(self):
"""
Calculate elevation extremes of track segment
Returns
-------
min_max_elevation: MinimumMaximum named tuple
minimum: float
Minimum elevation in meters
maximum: float
Maximum elevation in meters
"""
if not self.points:
return MinimumMaximum(None, None)
elevations = map(lambda location: location.elevation, self.points)
elevations = filter(lambda elevation: elevation is not None, elevations)
elevations = list(elevations)
if len(elevations) == 0:
return MinimumMaximum(None, None)
return MinimumMaximum(min(elevations), max(elevations))
def get_location_at(self, time):
"""
Gets approx. location at given time. Note that, at the moment this
method returns an instance of GPXTrackPoint in the future -- this may
be a mod_geo.Location instance with approximated latitude, longitude
and elevation!
"""
if not self.points:
return None
if not time:
return None
first_time = self.points[0].time
last_time = self.points[-1].time
if not first_time and not last_time:
mod_logging.debug('No times for track segment')
return None
if not first_time <= time <= last_time:
mod_logging.debug('Not in track (search for:%s, start:%s, end:%s)' % (time, first_time, last_time))
return None
for point in self.points:
if point.time and time <= point.time:
# TODO: If between two points -- approx position!
# return mod_geo.Location(point.latitude, point.longitude)
return point
def get_nearest_location(self, location):
""" Return the (location, track_point_no) on this track segment """
if not self.points:
return None, None
result = None
current_distance = None
result_track_point_no = None
for i in range(len(self.points)):
track_point = self.points[i]
if not result:
result = track_point
else:
distance = track_point.distance_2d(location)
#print current_distance, distance
if not current_distance or distance < current_distance:
current_distance = distance
result = track_point
result_track_point_no = i
return result, result_track_point_no
def smooth(self, vertical=True, horizontal=False, remove_extremes=False):
""" "Smooths" the elevation graph. Can be called multiple times. """
if len(self.points) <= 3:
return
elevations = []
latitudes = []
longitudes = []
for point in self.points:
elevations.append(point.elevation)
latitudes.append(point.latitude)
longitudes.append(point.longitude)
avg_distance = 0
avg_elevation_delta = 1
if remove_extremes:
# compute the average distance between two points:
distances = []
elevations_delta = []
for i in range(len(self.points))[1:]:
distances.append(self.points[i].distance_2d(self.points[i - 1]))
elevation_1 = self.points[i].elevation
elevation_2 = self.points[i - 1].elevation
if elevation_1 is not None and elevation_2 is not None:
elevations_delta.append(abs(elevation_1 - elevation_2))
if distances:
avg_distance = 1.0 * sum(distances) / len(distances)
if elevations_delta:
avg_elevation_delta = 1.0 * sum(elevations_delta) / len(elevations_delta)
# If The point moved more than this number * the average distance between two
# points -- then is a candidate for deletion:
# TODO: Make this a method parameter
remove_2d_extremes_threshold = 1.75 * avg_distance
remove_elevation_extremes_threshold = avg_elevation_delta * 5 # TODO: Param
new_track_points = [self.points[0]]
for i in range(len(self.points))[1:-1]:
new_point = None
point_removed = False
if vertical and elevations[i - 1] and elevations[i] and elevations[i + 1]:
old_elevation = self.points[i].elevation
new_elevation = SMOOTHING_RATIO[0] * elevations[i - 1] + \
SMOOTHING_RATIO[1] * elevations[i] + \
SMOOTHING_RATIO[2] * elevations[i + 1]
if not remove_extremes:
self.points[i].elevation = new_elevation
if remove_extremes:
# The point must be enough distant to *both* neighbours:
d1 = abs(old_elevation - elevations[i - 1])
d2 = abs(old_elevation - elevations[i + 1])
#print d1, d2, remove_2d_extremes_threshold
# TODO: Remove extremes threshold is meant only for 2D, elevation must be
# computed in different way!
if min(d1, d2) < remove_elevation_extremes_threshold and abs(old_elevation - new_elevation) < remove_2d_extremes_threshold:
new_point = self.points[i]
else:
#print 'removed elevation'
point_removed = True
else:
new_point = self.points[i]
else:
new_point = self.points[i]
if horizontal:
old_latitude = self.points[i].latitude
new_latitude = SMOOTHING_RATIO[0] * latitudes[i - 1] + \
SMOOTHING_RATIO[1] * latitudes[i] + \
SMOOTHING_RATIO[2] * latitudes[i + 1]
old_longitude = self.points[i].longitude
new_longitude = SMOOTHING_RATIO[0] * longitudes[i - 1] + \
SMOOTHING_RATIO[1] * longitudes[i] + \
SMOOTHING_RATIO[2] * longitudes[i + 1]
if not remove_extremes:
self.points[i].latitude = new_latitude
self.points[i].longitude = new_longitude
# TODO: This is not ideal.. Because if there are points A, B and C on the same
# line but B is very close to C... This would remove B (and possibly) A even though
# it is not an extreme. This is the reason for this algorithm:
d1 = mod_geo.distance(latitudes[i - 1], longitudes[i - 1], None, latitudes[i], longitudes[i], None)
d2 = mod_geo.distance(latitudes[i + 1], longitudes[i + 1], None, latitudes[i], longitudes[i], None)
d = mod_geo.distance(latitudes[i - 1], longitudes[i - 1], None, latitudes[i + 1], longitudes[i + 1], None)
#print d1, d2, d, remove_extremes
if d1 + d2 > d * 1.5 and remove_extremes:
d = mod_geo.distance(old_latitude, old_longitude, None, new_latitude, new_longitude, None)
#print "d, threshold = ", d, remove_2d_extremes_threshold
if d < remove_2d_extremes_threshold:
new_point = self.points[i]
else:
#print 'removed 2d'
point_removed = True
else:
new_point = self.points[i]
if new_point and not point_removed:
new_track_points.append(new_point)
new_track_points.append(self.points[- 1])
#print 'len=', len(new_track_points)
self.points = new_track_points
def has_times(self):
"""
Returns if points in this segment contains timestamps.
The first point, the last point, and 75% of the points must have times
for this method to return true.
"""
if not self.points:
return True
# ... or otherwise one empty track segment would change the entire
# track's "has_times" status!
found = 0
for track_point in self.points:
if track_point.time:
found += 1
return len(self.points) > 2 and float(found) / float(len(self.points)) > .75
def has_elevations(self):
"""
Returns if points in this segment contains elevation.
The first point, the last point, and at least 75% of the points must
have elevation for this method to return true.
"""
if not self.points:
return True
# ... or otherwise one empty track segment would change the entire
# track's "has_times" status!
found = 0
for track_point in self.points:
if track_point.elevation:
found += 1
return len(self.points) > 2 and float(found) / float(len(self.points)) > .75
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
def __repr__(self):
return 'GPXTrackSegment(points=[%s])' % ('...' if self.points else '')
def clone(self):
return mod_copy.deepcopy(self)
class GPXTrack:
gpx_10_fields = [
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
mod_gpxfield.GPXField('link', 'url'),
mod_gpxfield.GPXField('link_text', 'urlname'),
mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXComplexField('segments', tag='trkseg', classs=GPXTrackSegment, is_list=True),
]
gpx_11_fields = [
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('comment', 'cmt'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('source', 'src'),
'link',
mod_gpxfield.GPXField('link', attribute='href'),
mod_gpxfield.GPXField('link_text', tag='text'),
mod_gpxfield.GPXField('link_type', tag='type'),
'/link',
mod_gpxfield.GPXField('number', type=mod_gpxfield.INT_TYPE),
mod_gpxfield.GPXField('type'),
mod_gpxfield.GPXExtensionsField('extensions'),
mod_gpxfield.GPXComplexField('segments', tag='trkseg', classs=GPXTrackSegment, is_list=True),
]
__slots__ = ('name', 'comment', 'description', 'source', 'link',
'link_text', 'number', 'segments', 'link_type', 'type',
'extensions')
def __init__(self, name=None, description=None, number=None):
self.name = name
self.comment = None
self.description = description
self.source = None
self.link = None
self.link_text = None
self.number = number
self.segments = []
self.link_type = None
self.type = None
self.extensions = None
def simplify(self, max_distance=None):
"""
Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
"""
for segment in self.segments:
segment.simplify(max_distance=max_distance)
def reduce_points(self, min_distance):
"""
Reduces the number of points in the track. Segment points will be
updated in place.
Parameters
----------
min_distance : float
The minimum separation in meters between points
"""
for segment in self.segments:
segment.reduce_points(min_distance)
def adjust_time(self, delta):
"""
Adjusts the time of all segments in the track by the specified delta
Parameters
----------
delta : datetime.timedelta
Positive time delta will adjust time into the future
Negative time delta will adjust time into the past
"""
for segment in self.segments:
segment.adjust_time(delta)
def remove_time(self):
""" Removes time data for all points in all segments of track. """
for segment in self.segments:
segment.remove_time()
def remove_elevation(self):
""" Removes elevation data for all points in all segments of track. """
for segment in self.segments:
segment.remove_elevation()
def remove_empty(self):
""" Removes empty segments in track """
result = []
for segment in self.segments:
if len(segment.points) > 0:
result.append(segment)
self.segments = result
def length_2d(self):
"""
Computes 2-dimensional length (meters) of track (only latitude and
longitude, no elevation). This is the sum of the 2D length of all
segments.
Returns
----------
length : float
Length returned in meters
"""
length = 0
for track_segment in self.segments:
d = track_segment.length_2d()
if d:
length += d
return length
def get_time_bounds(self):
"""
Gets the time bound (start and end) of the track.
Returns
----------
time_bounds : TimeBounds named tuple
start_time : datetime
Start time of the first segment in track
end time : datetime
End time of the last segment in track
"""
start_time = None
end_time = None
for track_segment in self.segments:
point_start_time, point_end_time = track_segment.get_time_bounds()
if not start_time and point_start_time:
start_time = point_start_time
if point_end_time:
end_time = point_end_time
return TimeBounds(start_time, end_time)
def get_bounds(self):
"""
Gets the latitude and longitude bounds of the track.
Returns
----------
bounds : Bounds named tuple
min_latitude : float
Minimum latitude of track in decimal degrees [-90, 90]
max_latitude : float
Maxium latitude of track in decimal degrees [-90, 90]
min_longitude : float
Minium longitude of track in decimal degrees [-180, 180]
max_longitude : float
Maxium longitude of track in decimal degrees [-180, 180]
"""
min_lat = None
max_lat = None
min_lon = None
max_lon = None
for track_segment in self.segments:
bounds = track_segment.get_bounds()
if not mod_utils.is_numeric(min_lat) or (bounds.min_latitude and bounds.min_latitude < min_lat):
min_lat = bounds.min_latitude
if not mod_utils.is_numeric(max_lat) or (bounds.max_latitude and bounds.max_latitude > max_lat):
max_lat = bounds.max_latitude
if not mod_utils.is_numeric(min_lon) or (bounds.min_longitude and bounds.min_longitude < min_lon):
min_lon = bounds.min_longitude
if not mod_utils.is_numeric(max_lon) or (bounds.max_longitude and bounds.max_longitude > max_lon):
max_lon = bounds.max_longitude
return GPXBounds(min_lat, max_lat, min_lon, max_lon)
def walk(self, only_points=False):
"""
Generator used to iterates through track
Parameters
----------
only_point s: boolean
Only yield points while walking
Yields
----------
point : GPXTrackPoint
Point in the track
segment_no : integer
Index of segment containint point. This is suppressed if only_points
is True.
point_no : integer
Index of point. This is suppressed if only_points is True.
"""
for segment_no, segment in enumerate(self.segments):
for point_no, point in enumerate(segment.points):
if only_points:
yield point
else:
yield point, segment_no, point_no
def get_points_no(self):
"""
Get the number of points in all segments in the track.
Returns
----------
num_points : integer
Number of points in track
"""
result = 0
for track_segment in self.segments:
result += track_segment.get_points_no()
return result
def length_3d(self):
"""
Computes 3-dimensional length of track (latitude, longitude, and
elevation). This is the sum of the 3D length of all segments.
Returns
----------
length : float
Length returned in meters
"""
length = 0
for track_segment in self.segments:
d = track_segment.length_3d()
if d:
length += d
return length
def split(self, track_segment_no, track_point_no):
"""
Splits one of the segments in the track in two parts. If one of the
split segments is empty it will not be added in the result. The
segments will be split in place.
Parameters
----------
track_segment_no : integer
The index of the segment to split
track_point_no : integer
The index of the track point in the segment to split
"""
new_segments = []
for i in range(len(self.segments)):
segment = self.segments[i]
if i == track_segment_no:
segment_1, segment_2 = segment.split(track_point_no)
if segment_1:
new_segments.append(segment_1)
if segment_2:
new_segments.append(segment_2)
else:
new_segments.append(segment)
self.segments = new_segments
def join(self, track_segment_no, track_segment_no_2=None):
"""
Joins two segments of this track. The segments will be split in place.
Parameters
----------
track_segment_no : integer
The index of the first segment to join
track_segment_no_2 : integer
The index of second segment to join. If track_segment_no_2 is not
provided,the join will be with the next segment after
track_segment_no.
"""
if not track_segment_no_2:
track_segment_no_2 = track_segment_no + 1
if track_segment_no_2 >= len(self.segments):
return
new_segments = []
for i in range(len(self.segments)):
segment = self.segments[i]
if i == track_segment_no:
second_segment = self.segments[track_segment_no_2]
segment.join(second_segment)
new_segments.append(segment)
elif i == track_segment_no_2:
# Nothing, it is already joined
pass
else:
new_segments.append(segment)
self.segments = new_segments
def get_moving_data(self, stopped_speed_threshold=None):
"""
Return a tuple of (moving_time, stopped_time, moving_distance,
stopped_distance, max_speed) that may be used for detecting the time
stopped, and max speed. Not that those values are not absolutely true,
because the "stopped" or "moving" information aren't saved in the track.
Because of errors in the GPS recording, it may be good to calculate
them on a reduced and smoothed version of the track.
Parameters
----------
stopped_speed_threshold : float
speeds (km/h) below this threshold are treated as if having no
movement. Default is 1 km/h.
Returns
----------
moving_data : MovingData : named tuple
moving_time : float
time (seconds) of track in which movement was occuring
stopped_time : float
time (seconds) of track in which no movement was occuring
stopped_distance : float
distance (meters) travelled during stopped times
moving_distance : float
distance (meters) travelled during moving times
max_speed : float
Maximum speed (m/s) during the track.
"""
moving_time = 0.
stopped_time = 0.
moving_distance = 0.
stopped_distance = 0.
max_speed = 0.
for segment in self.segments:
track_moving_time, track_stopped_time, track_moving_distance, track_stopped_distance, track_max_speed = segment.get_moving_data(stopped_speed_threshold)
moving_time += track_moving_time
stopped_time += track_stopped_time
moving_distance += track_moving_distance
stopped_distance += track_stopped_distance
if track_max_speed is not None and track_max_speed > max_speed:
max_speed = track_max_speed
return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed)
def add_elevation(self, delta):
"""
Adjusts elevation data for track.
Parameters
----------
delta : float
Elevation delta in meters to apply to track
"""
for track_segment in self.segments:
track_segment.add_elevation(delta)
def add_missing_data(self, get_data_function, add_missing_function):
for track_segment in self.segments:
track_segment.add_missing_data(get_data_function, add_missing_function)
def move(self, location_delta):
"""
Moves each point in the track.
Parameters
----------
location_delta: LocationDelta object
Delta (distance/angle or lat/lon offset to apply each point in each
segment of the track
"""
for track_segment in self.segments:
track_segment.move(location_delta)
def get_duration(self):
"""
Calculates duration or track
Returns
-------
duration: float
Duration in seconds or None if any time data is missing
"""
if not self.segments:
return 0
result = 0
for track_segment in self.segments:
duration = track_segment.get_duration()
if duration or duration == 0:
result += duration
elif duration is None:
return None
return result
def get_uphill_downhill(self):
"""
Calculates the uphill and downhill elevation climbs for the track.
If elevation for some points is not found those are simply ignored.
Returns
-------
uphill_downhill: UphillDownhill named tuple
uphill: float
Uphill elevation climbs in meters
downhill: float
Downhill elevation descent in meters
"""
if not self.segments:
return UphillDownhill(0, 0)
uphill = 0
downhill = 0
for track_segment in self.segments:
current_uphill, current_downhill = track_segment.get_uphill_downhill()
uphill += current_uphill
downhill += current_downhill
return UphillDownhill(uphill, downhill)
def get_location_at(self, time):
"""
Gets approx. location at given time. Note that, at the moment this
method returns an instance of GPXTrackPoint in the future -- this may
be a mod_geo.Location instance with approximated latitude, longitude
and elevation!
"""
result = []
for track_segment in self.segments:
location = track_segment.get_location_at(time)
if location:
result.append(location)
return result
def get_elevation_extremes(self):
"""
Calculate elevation extremes of track
Returns
-------
min_max_elevation: MinimumMaximum named tuple
minimum: float
Minimum elevation in meters
maximum: float
Maximum elevation in meters
"""
if not self.segments:
return MinimumMaximum(None, None)
elevations = []
for track_segment in self.segments:
(_min, _max) = track_segment.get_elevation_extremes()
if _min is not None:
elevations.append(_min)
if _max is not None:
elevations.append(_max)
if len(elevations) == 0:
return MinimumMaximum(None, None)
return MinimumMaximum(min(elevations), max(elevations))
def get_center(self):
"""
Get the center of the route.
Returns
-------
center: Location
latitude: latitude of center in degrees
longitude: longitude of center in degrees
elevation: not calculated here
"""
if not self.segments:
return None
sum_lat = 0
sum_lon = 0
n = 0
for track_segment in self.segments:
for point in track_segment.points:
n += 1.
sum_lat += point.latitude
sum_lon += point.longitude
if not n:
return mod_geo.Location(float(0), float(0))
return mod_geo.Location(latitude=sum_lat / n, longitude=sum_lon / n)
def smooth(self, vertical=True, horizontal=False, remove_extremes=False):
""" See: GPXTrackSegment.smooth() """
for track_segment in self.segments:
track_segment.smooth(vertical, horizontal, remove_extremes)
def has_times(self):
""" See GPXTrackSegment.has_times() """
if not self.segments:
return None
result = True
for track_segment in self.segments:
result = result and track_segment.has_times()
return result
def has_elevations(self):
""" Returns true if track data has elevation for all segments """
if not self.segments:
return None
result = True
for track_segment in self.segments:
result = result and track_segment.has_elevations()
return result
def get_nearest_location(self, location):
""" Returns (location, track_segment_no, track_point_no) for nearest location on track """
if not self.segments:
return None
result = None
distance = None
result_track_segment_no = None
result_track_point_no = None
for i in range(len(self.segments)):
track_segment = self.segments[i]
nearest_location, track_point_no = track_segment.get_nearest_location(location)
nearest_location_distance = None
if nearest_location:
nearest_location_distance = nearest_location.distance_2d(location)
if not distance or nearest_location_distance < distance:
if nearest_location:
distance = nearest_location_distance
result = nearest_location
result_track_segment_no = i
result_track_point_no = track_point_no
return result, result_track_segment_no, result_track_point_no
def clone(self):
return mod_copy.deepcopy(self)
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
def __repr__(self):
representation = ''
for attribute in 'name', 'description', 'number':
value = getattr(self, attribute)
if value is not None:
representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value))
representation += '%ssegments=%s' % (', ' if representation else '', repr(self.segments))
return 'GPXTrack(%s)' % representation
class GPX:
gpx_10_fields = [
mod_gpxfield.GPXField('version', attribute=True),
mod_gpxfield.GPXField('creator', attribute=True),
mod_gpxfield.GPXField('name'),
mod_gpxfield.GPXField('description', 'desc'),
mod_gpxfield.GPXField('author_name', 'author'),
mod_gpxfield.GPXField('author_email', 'email'),
mod_gpxfield.GPXField('link', 'url'),
mod_gpxfield.GPXField('link_text', 'urlname'),
mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE),
mod_gpxfield.GPXField('keywords'),
mod_gpxfield.GPXComplexField('bounds', classs=GPXBounds),
mod_gpxfield.GPXComplexField('waypoints', classs=GPXWaypoint, tag='wpt', is_list=True),
mod_gpxfield.GPXComplexField('routes', classs=GPXRoute, tag='rte', is_list=True),
mod_gpxfield.GPXComplexField('tracks', classs=GPXTrack, tag='trk', is_list=True),
]
gpx_11_fields = [
mod_gpxfield.GPXField('version', attribute=True),
mod_gpxfield.GPXField('creator', attribute=True),
'metadata',
mod_gpxfield.GPXField('name', 'name'),
mod_gpxfield.GPXField('description', 'desc'),
'author',
mod_gpxfield.GPXField('author_name', 'name'),
mod_gpxfield.GPXEmailField('author_email', 'email'),
'link',
mod_gpxfield.GPXField('author_link', attribute='href'),
mod_gpxfield.GPXField('author_link_text', tag='text'),
mod_gpxfield.GPXField('author_link_type', tag='type'),
'/link',
'/author',
'copyright',
mod_gpxfield.GPXField('copyright_author', attribute='author'),
mod_gpxfield.GPXField('copyright_year', tag='year'),
mod_gpxfield.GPXField('copyright_license', tag='license'),
'/copyright',
'link',
mod_gpxfield.GPXField('link', attribute='href'),
mod_gpxfield.GPXField('link_text', tag='text'),
mod_gpxfield.GPXField('link_type', tag='type'),
'/link',
mod_gpxfield.GPXField('time', type=mod_gpxfield.TIME_TYPE),
mod_gpxfield.GPXField('keywords'),
mod_gpxfield.GPXComplexField('bounds', classs=GPXBounds),
mod_gpxfield.GPXExtensionsField('metadata_extensions', tag='extensions'),
'/metadata',
mod_gpxfield.GPXComplexField('waypoints', classs=GPXWaypoint, tag='wpt', is_list=True),
mod_gpxfield.GPXComplexField('routes', classs=GPXRoute, tag='rte', is_list=True),
mod_gpxfield.GPXComplexField('tracks', classs=GPXTrack, tag='trk', is_list=True),
mod_gpxfield.GPXExtensionsField('extensions'),
]
__slots__ = ('version', 'creator', 'name', 'description', 'author_name',
'author_email', 'link', 'link_text', 'time', 'keywords',
'bounds', 'waypoints', 'routes', 'tracks', 'author_link',
'author_link_text', 'author_link_type', 'copyright_author',
'copyright_year', 'copyright_license', 'link_type',
'metadata_extensions', 'extensions')
def __init__(self):
self.version = None
self.creator = None
self.name = None
self.description = None
self.link = None
self.link_text = None
self.link_type = None
self.time = None
self.keywords = None
self.bounds = None
self.author_name = None
self.author_email = None
self.author_link = None
self.author_link_text = None
self.author_link_type = None
self.copyright_author = None
self.copyright_year = None
self.copyright_license = None
self.metadata_extensions = None
self.extensions = None
self.waypoints = []
self.routes = []
self.tracks = []
def simplify(self, max_distance=None):
"""
Simplify using the Ramer-Douglas-Peucker algorithm: http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
"""
for track in self.tracks:
track.simplify(max_distance=max_distance)
def reduce_points(self, max_points_no=None, min_distance=None):
"""
Reduces the number of points. Points will be updated in place.
Parameters
----------
max_points : int
The maximum number of points to include in the GPX
min_distance : float
The minimum separation in meters between points
"""
if max_points_no is None and min_distance is None:
raise ValueError("Either max_point_no or min_distance must be supplied")
if max_points_no is not None and max_points_no < 2:
raise ValueError("max_points_no must be greater than or equal to 2")
points_no = len(list(self.walk()))
if max_points_no is not None and points_no <= max_points_no:
# No need to reduce points only if no min_distance is specified:
if not min_distance:
return
length = self.length_3d()
min_distance = min_distance or 0
max_points_no = max_points_no or 1000000000
min_distance = max(min_distance, mod_math.ceil(length / float(max_points_no)))
for track in self.tracks:
track.reduce_points(min_distance)
# TODO
mod_logging.debug('Track reduced to %s points' % self.get_track_points_no())
def adjust_time(self, delta):
"""
Adjusts the time of all points in all of the segments of all tracks by
the specified delta.
Parameters
----------
delta : datetime.timedelta
Positive time delta will adjust times into the future
Negative time delta will adjust times into the past
"""
if self.time:
self.time += delta
for track in self.tracks:
track.adjust_time(delta)
def remove_time(self):
""" Removes time data. """
for track in self.tracks:
track.remove_time()
def remove_elevation(self, tracks=True, routes=False, waypoints=False):
""" Removes elevation data. """
if tracks:
for track in self.tracks:
track.remove_elevation()
if routes:
for route in self.routes:
route.remove_elevation()
if waypoints:
for waypoint in self.waypoints:
waypoint.remove_elevation()
def get_time_bounds(self):
"""
Gets the time bounds (start and end) of the GPX file.
Returns
----------
time_bounds : TimeBounds named tuple
start_time : datetime
Start time of the first segment in track
end time : datetime
End time of the last segment in track
"""
start_time = None
end_time = None
for track in self.tracks:
track_start_time, track_end_time = track.get_time_bounds()
if not start_time:
start_time = track_start_time
if track_end_time:
end_time = track_end_time
return TimeBounds(start_time, end_time)
def get_bounds(self):
"""
Gets the latitude and longitude bounds of the GPX file.
Returns
----------
bounds : Bounds named tuple
min_latitude : float
Minimum latitude of track in decimal degrees [-90, 90]
max_latitude : float
Maxium latitude of track in decimal degrees [-90, 90]
min_longitude : float
Minium longitude of track in decimal degrees [-180, 180]
max_longitude : float
Maxium longitude of track in decimal degrees [-180, 180]
"""
min_lat = None
max_lat = None
min_lon = None
max_lon = None
for track in self.tracks:
bounds = track.get_bounds()
if not mod_utils.is_numeric(min_lat) or bounds.min_latitude < min_lat:
min_lat = bounds.min_latitude
if not mod_utils.is_numeric(max_lat) or bounds.max_latitude > max_lat:
max_lat = bounds.max_latitude
if not mod_utils.is_numeric(min_lon) or bounds.min_longitude < min_lon:
min_lon = bounds.min_longitude
if not mod_utils.is_numeric(max_lon) or bounds.max_longitude > max_lon:
max_lon = bounds.max_longitude
return GPXBounds(min_lat, max_lat, min_lon, max_lon)
def get_points_no(self):
"""
Get the number of points in all segments of all track.
Returns
----------
num_points : integer
Number of points in GPX
"""
result = 0
for track in self.tracks:
result += track.get_points_no()
return result
def refresh_bounds(self):
"""
Compute bounds and reload min_latitude, max_latitude, min_longitude
and max_longitude properties of this object
"""
bounds = self.get_bounds()
self.bounds = bounds
def smooth(self, vertical=True, horizontal=False, remove_extremes=False):
""" See GPXTrackSegment.smooth(...) """
for track in self.tracks:
track.smooth(vertical=vertical, horizontal=horizontal, remove_extremes=remove_extremes)
def remove_empty(self):
""" Removes segments, routes """
routes = []
for route in self.routes:
if len(route.points) > 0:
routes.append(route)
self.routes = routes
for track in self.tracks:
track.remove_empty()
def get_moving_data(self, stopped_speed_threshold=None):
"""
Return a tuple of (moving_time, stopped_time, moving_distance, stopped_distance, max_speed)
that may be used for detecting the time stopped, and max speed. Not that those values are not
absolutely true, because the "stopped" or "moving" information aren't saved in the track.
Because of errors in the GPS recording, it may be good to calculate them on a reduced and
smoothed version of the track. Something like this:
cloned_gpx = gpx.clone()
cloned_gpx.reduce_points(2000, min_distance=10)
cloned_gpx.smooth(vertical=True, horizontal=True)
cloned_gpx.smooth(vertical=True, horizontal=False)
moving_time, stopped_time, moving_distance, stopped_distance, max_speed_ms = cloned_gpx.get_moving_data
max_speed_kmh = max_speed_ms * 60. ** 2 / 1000.
Experiment with your own variations to get the values you expect.
Max speed is in m/s.
"""
moving_time = 0.
stopped_time = 0.
moving_distance = 0.
stopped_distance = 0.
max_speed = 0.
for track in self.tracks:
track_moving_time, track_stopped_time, track_moving_distance, track_stopped_distance, track_max_speed = track.get_moving_data(stopped_speed_threshold)
moving_time += track_moving_time
stopped_time += track_stopped_time
moving_distance += track_moving_distance
stopped_distance += track_stopped_distance
if track_max_speed > max_speed:
max_speed = track_max_speed
return MovingData(moving_time, stopped_time, moving_distance, stopped_distance, max_speed)
def split(self, track_no, track_segment_no, track_point_no):
"""
Splits one of the segments of a track in two parts. If one of the
split segments is empty it will not be added in the result. The
segments will be split in place.
Parameters
----------
track_no : integer
The index of the track to split
track_segment_no : integer
The index of the segment to split
track_point_no : integer
The index of the track point in the segment to split
"""
track = self.tracks[track_no]
track.split(track_segment_no=track_segment_no, track_point_no=track_point_no)
def length_2d(self):
"""
Computes 2-dimensional length of the GPX file (only latitude and
longitude, no elevation). This is the sum of 3D length of all segments
in all tracks.
Returns
----------
length : float
Length returned in meters
"""
result = 0
for track in self.tracks:
length = track.length_2d()
if length or length == 0:
result += length
return result
def length_3d(self):
"""
Computes 3-dimensional length of the GPX file (latitude, longitude, and
elevation). This is the sum of 3D length of all segments in all tracks.
Returns
----------
length : float
Length returned in meters
"""
result = 0
for track in self.tracks:
length = track.length_3d()
if length or length == 0:
result += length
return result
def walk(self, only_points=False):
"""
Generator used to iterates through points in GPX file
Parameters
----------
only_point s: boolean
Only yield points while walking
Yields
----------
point : GPXTrackPoint
Point in the track
track_no : integer
Index of track containint point. This is suppressed if only_points
is True.
segment_no : integer
Index of segment containint point. This is suppressed if only_points
is True.
point_no : integer
Index of point. This is suppressed if only_points is True.
"""
for track_no, track in enumerate(self.tracks):
for segment_no, segment in enumerate(track.segments):
for point_no, point in enumerate(segment.points):
if only_points:
yield point
else:
yield point, track_no, segment_no, point_no
def get_track_points_no(self):
""" Number of track points, *without* route and waypoints """
result = 0
for track in self.tracks:
for segment in track.segments:
result += len(segment.points)
return result
def get_duration(self):
"""
Calculates duration of GPX file
Returns
-------
duration: float
Duration in seconds or None if time data is not fully populated.
"""
if not self.tracks:
return 0
result = 0
for track in self.tracks:
duration = track.get_duration()
if duration or duration == 0:
result += duration
elif duration is None:
return None
return result
def get_uphill_downhill(self):
"""
Calculates the uphill and downhill elevation climbs for the gpx file.
If elevation for some points is not found those are simply ignored.
Returns
-------
uphill_downhill: UphillDownhill named tuple
uphill: float
Uphill elevation climbs in meters
downhill: float
Downhill elevation descent in meters
"""
if not self.tracks:
return UphillDownhill(0, 0)
uphill = 0
downhill = 0
for track in self.tracks:
current_uphill, current_downhill = track.get_uphill_downhill()
uphill += current_uphill
downhill += current_downhill
return UphillDownhill(uphill, downhill)
def get_location_at(self, time):
"""
Gets approx. location at given time. Note that, at the moment this
method returns an instance of GPXTrackPoint in the future -- this may
be a mod_geo.Location instance with approximated latitude, longitude
and elevation!
"""
result = []
for track in self.tracks:
locations = track.get_location_at(time)
for location in locations:
result.append(location)
return result
def get_elevation_extremes(self):
"""
Calculate elevation extremes of GPX file
Returns
-------
min_max_elevation: MinimumMaximum named tuple
minimum: float
Minimum elevation in meters
maximum: float
Maximum elevation in meters
"""
if not self.tracks:
return MinimumMaximum(None, None)
elevations = []
for track in self.tracks:
(_min, _max) = track.get_elevation_extremes()
if _min is not None:
elevations.append(_min)
if _max is not None:
elevations.append(_max)
if len(elevations) == 0:
return MinimumMaximum(None, None)
return MinimumMaximum(min(elevations), max(elevations))
def get_points_data(self, distance_2d=False):
"""
Returns a list of tuples containing the actual point, its distance from the start,
track_no, segment_no, and segment_point_no
"""
distance_from_start = 0
previous_point = None
# (point, distance_from_start) pairs:
points = []
for track_no in range(len(self.tracks)):
track = self.tracks[track_no]
for segment_no in range(len(track.segments)):
segment = track.segments[segment_no]
for point_no in range(len(segment.points)):
point = segment.points[point_no]
if previous_point and point_no > 0:
if distance_2d:
distance = point.distance_2d(previous_point)
else:
distance = point.distance_3d(previous_point)
distance_from_start += distance
points.append(PointData(point, distance_from_start, track_no, segment_no, point_no))
previous_point = point
return points
def get_nearest_locations(self, location, threshold_distance=0.01):
"""
Returns a list of locations of elements like
consisting of points where the location may be on the track
threshold_distance is the the minimum distance from the track
so that the point *may* be counted as to be "on the track".
For example 0.01 means 1% of the track distance.
"""
assert location
assert threshold_distance
result = []
points = self.get_points_data()
if not points:
return ()
distance = points[- 1][1]
threshold = distance * threshold_distance
min_distance_candidate = None
distance_from_start_candidate = None
track_no_candidate = None
segment_no_candidate = None
point_no_candidate = None
for point, distance_from_start, track_no, segment_no, point_no in points:
distance = location.distance_3d(point)
if distance < threshold:
if min_distance_candidate is None or distance < min_distance_candidate:
min_distance_candidate = distance
distance_from_start_candidate = distance_from_start
track_no_candidate = track_no
segment_no_candidate = segment_no
point_no_candidate = point_no
else:
if distance_from_start_candidate is not None:
result.append((distance_from_start_candidate, track_no_candidate, segment_no_candidate, point_no_candidate))
min_distance_candidate = None
distance_from_start_candidate = None
track_no_candidate = None
segment_no_candidate = None
point_no_candidate = None
if distance_from_start_candidate is not None:
result.append(NearestLocationData(distance_from_start_candidate, track_no_candidate, segment_no_candidate, point_no_candidate))
return result
def get_nearest_location(self, location):
""" Returns (location, track_no, track_segment_no, track_point_no) for the
nearest location on map """
if not self.tracks:
return None
result = None
distance = None
result_track_no = None
result_segment_no = None
result_point_no = None
for i in range(len(self.tracks)):
track = self.tracks[i]
nearest_location, track_segment_no, track_point_no = track.get_nearest_location(location)
nearest_location_distance = None
if nearest_location:
nearest_location_distance = nearest_location.distance_2d(location)
if not distance or nearest_location_distance < distance:
result = nearest_location
distance = nearest_location_distance
result_track_no = i
result_segment_no = track_segment_no
result_point_no = track_point_no
return NearestLocationData(result, result_track_no, result_segment_no, result_point_no)
def add_elevation(self, delta):
"""
Adjusts elevation data of GPX data.
Parameters
----------
delta : float
Elevation delta in meters to apply to GPX data
"""
for track in self.tracks:
track.add_elevation(delta)
def add_missing_data(self, get_data_function, add_missing_function):
for track in self.tracks:
track.add_missing_data(get_data_function, add_missing_function)
def add_missing_elevations(self):
def _add(interval, start, end, distances_ratios):
assert start
assert end
assert start.elevation is not None
assert end.elevation is not None
assert interval
assert len(interval) == len(distances_ratios)
for i in range(len(interval)):
interval[i].elevation = start.elevation + distances_ratios[i] * (end.elevation - start.elevation)
self.add_missing_data(get_data_function=lambda point: point.elevation,
add_missing_function=_add)
def add_missing_times(self):
def _add(interval, start, end, distances_ratios):
if (not start) or (not end) or (not start.time) or (not end.time):
return
assert interval
assert len(interval) == len(distances_ratios)
seconds_between = float(mod_utils.total_seconds(end.time - start.time))
for i in range(len(interval)):
point = interval[i]
ratio = distances_ratios[i]
point.time = start.time + mod_datetime.timedelta(
seconds=ratio * seconds_between)
self.add_missing_data(get_data_function=lambda point: point.time,
add_missing_function=_add)
def add_missing_speeds(self):
"""
The missing speeds are added to a segment.
The weighted harmonic mean is used to approximate the speed at
a :obj:'~.GPXTrackPoint'.
For this to work the speed of the first and last track point in a
segment needs to be known.
"""
def _add(interval, start, end, distances_ratios):
if (not start) or (not end) or (not start.time) or (not end.time):
return
assert interval
assert len(interval) == len(distances_ratios)
time_dist_before = (interval[0].time_difference(start),
interval[0].distance_3d(start))
time_dist_after = (interval[-1].time_difference(end),
interval[-1].distance_3d(end))
# Assemble list of times and distance to neighbour points
times_dists = [(interval[i].time_difference(interval[i+1]),
interval[i].distance_3d(interval[i+1]))
for i in range(len(interval) - 1)]
times_dists.insert(0, time_dist_before)
times_dists.append(time_dist_after)
for i, point in enumerate(interval):
time_left, dist_left = times_dists[i]
time_right, dist_right = times_dists[i+1]
point.speed = float(dist_left + dist_right) / (time_left + time_right)
self.add_missing_data(get_data_function=lambda point: point.speed,
add_missing_function=_add)
def move(self, location_delta):
"""
Moves each point in the gpx file (routes, waypoints, tracks).
Parameters
----------
location_delta: LocationDelta
LocationDelta to move each point
"""
for route in self.routes:
route.move(location_delta)
for waypoint in self.waypoints:
waypoint.move(location_delta)
for track in self.tracks:
track.move(location_delta)
def to_xml(self, version=None):
"""
FIXME: Note, this method will change self.version
"""
if not version:
if self.version:
version = self.version
else:
version = '1.0'
if version != '1.0' and version != '1.1':
raise GPXException('Invalid version %s' % version)
self.version = version
if not self.creator:
self.creator = 'gpx.py -- https://github.com/tkrajina/gpxpy'
v = version.replace('.', '/')
xml_attributes = (
('xmlns:xsi', 'http://www.w3.org/2001/XMLSchema-instance'),
('xmlns', 'http://www.topografix.com/GPX/%s' % v),
('xsi:schemaLocation', 'http://www.topografix.com/GPX/%s http://www.topografix.com/GPX/%s/gpx.xsd' % (v, v))
)
content = mod_gpxfield.gpx_fields_to_xml(self, 'gpx', version, custom_attributes=xml_attributes)
return '<?xml version="1.0" encoding="UTF-8"?>\n' + content.strip()
def has_times(self):
""" See GPXTrackSegment.has_times() """
if not self.tracks:
return None
result = True
for track in self.tracks:
result = result and track.has_times()
return result
def has_elevations(self):
""" See GPXTrackSegment.has_elevations()) """
if not self.tracks:
return None
result = True
for track in self.tracks:
result = result and track.has_elevations()
return result
def __hash__(self):
return mod_utils.hash_object(self, self.__slots__)
def __repr__(self):
representation = ''
for attribute in 'waypoints', 'routes', 'tracks':
value = getattr(self, attribute)
if value:
representation += '%s%s=%s' % (', ' if representation else '', attribute, repr(value))
return 'GPX(%s)' % representation
def clone(self):
return mod_copy.deepcopy(self)
# Add attributes and fill default values (lists or None) for all GPX elements:
for var_name in dir():
var_value = vars()[var_name]
if hasattr(var_value, 'gpx_10_fields') or hasattr(var_value, 'gpx_11_fields'):
#print('Check/fill %s' % var_value)
mod_gpxfield.gpx_check_slots_and_default_values(var_value)