
Improved JNI Memory Management Using Allocations from the Java Heap

Jeffrey Sorensen and Daniel Bikel
IBM T. J. Watson Research Center

Yorktown Heights, New York
{sorenj,dbikel}@us.ibm.com

1. Introduction

JAVA, as a development platform provides a number of programmer friendly capabilities,
including Platform neutrality, Garbage collection, Unicode support, Regular expres-

sions, and Multi-threading support. The Java Native Interface (JNI) to allow Java to interact
with libraries written in other languages. However, JNI introduces platform specific depen-
dencies that mitigate some of Java’s benefits. In particular: Java’s garbage collection system
and heap management has no awareness or control over the use of dynamic memory in
the native code. A JNI library can easily cause the Java program to exceed its maximum
specified heap.

#include ” j n i . h ”
extern ”C” JNIEXPORT j l o n g JNICALL
Java Wastefu l 1 1c (JNIEnv ∗ , j o b j e c t) {

return (j l o n g) new char [1024] ;
}

extern ”C” JNIEXPORT void JNICALL
Java Wastefu l 1 1d (JNIEnv ∗ , j ob j ec t , j l o n g c p t r) {

delete [] (char ∗) c p t r ;
}

public class Wasteful {

protected long cPt r = 0 ;
pr ivate native long c () ;
pr ivate native void d (long) ;
public Wasteful () { cPt r = c () ; }

protected void f i n a l i z e () { d (cP t r) ; }
s t a t i c public void main (S t r i ng args []) {

while (1) { new Wasteful () ; }

}
} ;

BECAUSE Java only accounts for the storage required for the handles to the C++ objects,
the memory management system sees little reason to finalize objects that are unreach-

able. For Java to effectively manage persistent C++ objects, Java must know (at a minimum)
when their aggregate resource consumption necessitates a garbage collection.

2. Java Heap Allocations

OUR solution is to use the language features of C++ to override the default heap allocation
methods and instead depend upon the Java virtual machine to allocate storage for C++

objects. The principle advantage of this approach is that Java will now become aware of
each allocation and will trigger more aggressive garbage collection when these allocations
are becoming tight. While Java cannot directly force C++ objects to free up their storage, any
unreachable Java objects that maintain handles to C++ objects will be finalized, and in turn,
will free up their associated additional heap space.

REQUESTING Java heap storage for C++ objects is most naturally handled via the Java
jbytearray object, which has methods to access the underlying byte buffer. Because

JNI by default creates objects with only local references, they are eligible for garbage col-
lection immediately upon return from the JNI calls. To prevent Java from deleting the byte
arrays we create Global References until the C++ code has de-allocated the block by calling
delete. We allocate more space than was requested to incorporate a stash area to contain
the handles (pointers) to the jbytearray and the Global Reference.

3. Edge conditions

SIMILARLY supporting C libraries (that use malloc/free) would pose additional chal-
lenges, and would surrender platform independence. This is because Java itself uses

these functions, and C, unlike C++, was not designed for overriding of heap allocators. How-
ever, using library interceptors and other tools this idea could be explored.

BECAUSE at least two Java objects are created with each allocation, it is important that
new and delete not be called for very small objects. Fortunately, pool management is

already part of most C++ standard libraries.

THE JVM’s use of dlopen means that Java heap resources cannot effectively be used to
address several C++ allocations including the executable code segment, the initialized

data segment, the uninitialized data segment, and global (extern and static) objects.
Global objects may invoke the new operator before the JVM calls the JNI OnLoad method
that provides the JNI library with a handle to the Java environment. During this period, our
customized new method handles allocations from the ordinary C heap using malloc, and
marks these blocks using a null pointer so they are freed appropriately.

4. SWIG

SWIG (Simplified Wrapper and Interface Generator) is a popular tool that allows one to
publish C and C++ libraries through JNI. Due to its ability to inserting custom code, our

implementation of new and delete is entirely compatible with the SWIG environment and
can be easily added to a SWIG interface file, automating the use of JNI allocations for all
SWIG managed objects. We propose that the inclusion of this code be a standard (or at least
optional) feature of the SWIG tool, as the current implementations of SWIG generates code
where heap management is likely to be problematical.

5. Conclusion

THE difference between the “roll-your-own” style of memory management in C++ and the
more abstract and formal heap management within the Java Virtual Machine’s garbage

collection subsystems has generated endless debate about their relative merits. With JNI
programming, developers truly have the worst of both worlds. Our own experience suggests
that it is far too easy to create C++ objects that persist and consume large amounts of space.
The use of STL smart pointers, such as provided by the Boost shared ptr library, only ex-
acerbates the problems caused by the philosophical disjuncture, as these reference-counting
solutions do not handle the general case of arbitrary object graphs.

HOWEVER, with the incorporation of approximately 70 lines of code, a form of détente can
be achieved. While C++ may still consume and hold resources for arbitrary amounts

of time, by restricting allocation to the Java heap we are reasserting Java’s own memory
controls. In addition, the consumption of resources will trigger more frequent garbage collec-
tion and, when Java objects are proxies for C++ objects, those objects will be freed through
finalization.

6. Complete Listing

#include <stdexcept>
#include ” j n i . h ”

struct J a l l o c {
j by teA r ray jba ;
j o b j e c t r e f ;

} ;

s t a t i c JavaVM ∗cached jvm = 0;

JNIEXPORT j i n t JNICALL
JNI OnLoad (JavaVM ∗ jvm , void ∗ reserved)
{

cached jvm = jvm ;
return JNI VERSION 1 2 ;

}

s t a t i c JNIEnv ∗
JNU GetEnv ()
{

JNIEnv ∗env ;
j i n t r c = cached jvm−>GetEnv ((void ∗∗)&env , JNI VERSION 1 2) ;
i f (r c == JNI EDETACHED)

throw s td : : r un t i m e e r r o r (” cu r ren t thread not at tached ”) ;
i f (r c == JNI EVERSION)

throw s td : : r un t i m e e r r o r (” j n i vers ion not supported ”) ;
return env ;

}

void ∗

operator new (s i z e t t)
{

i f (cached jvm != 0) {
JNIEnv ∗env = JNU GetEnv () ;
j by teA r ray jba = env−>NewByteArray ((i n t) t + sizeof (J a l l o c)) ;
i f (env−>ExceptionOccurred ()) throw bad a l l oc () ;
void ∗ j b u f f e r = stat ic cast <void ∗>(env−>GetByteArrayElements (jba , 0)) ;
i f (env−>ExceptionOccurred ()) throw bad a l l oc () ;
J a l l o c ∗ pJa l l oc = stat ic cast <J a l l o c ∗>(j b u f f e r) ;
pJa l loc−>j ba = jba ;
pJa l loc−>r e f = env−>NewGlobalRef (jba) ;
i f (env−>ExceptionOccurred ()) throw bad a l l oc () ;
return stat ic cast <void ∗>(stat ic cast <char ∗>(j b u f f e r) + sizeof (J a l l o c)) ;

}

else {
J a l l o c ∗ pJa l l oc = stat ic cast <J a l l o c ∗>(mal loc ((i n t) t + sizeof (J a l l o c))) ;
i f (! pJa l l oc) throw bad a l l oc () ;
pJa l loc−>r e f = 0 ;
return stat ic cast <void ∗>(

stat ic cast <char ∗>(stat ic cast <void ∗>(pJa l l oc)) + sizeof (J a l l o c)) ;
}

}

void operator delete (void ∗v) {
i f (v != 0) {

void ∗ b u f f e r = stat ic cast <void ∗>(
stat ic cast <char ∗>(v) − sizeof (J a l l o c)) ;

J a l l o c ∗ pJa l l oc = stat ic cast <J a l l o c ∗>(b u f f e r) ;
i f (pJa l loc−>r e f) {

JNIEnv ∗env = JNU GetEnv () ;
env−>DeleteGlobalRef (pJa l loc−>r e f) ;
env−>ReleaseByteArrayElements (pJa l loc−>jba ,

stat ic cast <j b y t e ∗>(b u f f e r) , 0) ;
}

else {
f r ee (b u f f e r) ;

}

}
}

2007 USENIX Annual Technical Conference 20 June 2007, Santa Clara, California

