Natural B-Spline Construction and Evaluation on Irregular Grids

February 20, 2017

Primitives

We have a grid with *N* elements $g = \{g_i\}$ where $g_1 < g_2 < \ldots < g_{N-1} < g_N$. Also we know the values of $f(g_i)$, $\forall i \in \{1...N\}$. We are going to use $M - th$ order B-Spline to interpolate f .

Construction

Using De Boor's algorithm, we need a starting grid with dimention $N+2M$. A "natural" way of constructing this auxillary grid is $g^{\text{aux}} =$ $\sqrt{ }$ I \mathbf{I} *g*1*...g*¹ *g*₁...*g*₁*, g*₂*, g*₃*, ..., g*_{*N*}-2*, g*_{*N*}-1*, g*_{*M*⁻¹*M*+1} \mathbf{A} \mathbf{I} I . (The boundary condition it indicates is a bunch of higher order derivatives at both ends to be 0. To be specific, if $M = 3$ it suggests $f''(g_1) =$ $f''(g_N) = 0.$) De Boor's algorithm reads

$$
N_i^0(g) = \begin{cases} 1 & g \in (g_i^{\text{aux}}, g_{i+1}^{\text{aux}}) \\ 0 & \text{else} \end{cases}
$$

and

$$
N_{i}^{n}\left(g\right)=\frac{g-g_{i}^{\textrm{aux}}}{g_{i+n}^{\textrm{aux}}-g_{i}^{\textrm{aux}}}N_{i}^{n-1}\left(g\right)+\frac{g_{i+n+1}^{\textrm{aux}}-g}{g_{i+n+1}^{\textrm{aux}}-g_{i+1}^{\textrm{aux}}}N_{i+1}^{n-1}\left(g\right)
$$

then in a $M - th$ order B-Spline approximation for any g ,

$$
f(g) = \sum_{i=1}^{N} \theta_i N_i^M(g)
$$

Observations:

- 1. $N_i^M(g)$ is a $M-th$ order polynomial of g. For example, linear spline is a linear function of g.
- 2. $\forall g \in [g_1, g_N]$, there will be at most $M + 1$ *i*s such that $N_i^M(g)$ is nonzero. For example, with a linear spline interpolation, for each point of *g* there will be at most two points that is non-trivially related to the value of $f(g)$.
- 3. Although *g* is a continuous variable, $N_i^M(g)$ only differs from interval to interval. For $a, b \in [g_i, g_{i+1}]$, the polynomial coefficient of $N_i^M(a)$ is exactly the same as $N_i^M(b)$. For example, to linearly interpolate any variable $x \in [1, 2]$, we always know that $f(x) = f(1) \frac{2-x}{2-1} + f(2) \frac{x-1}{2-1}$ no matter what value of *x* is.

Therefore, I construct and store all possible coefficients in a $N + 1 \times M + 1 \times M + 1$ matrix - we only have $N+1$ intervals (think about extrapolation as two intervals). Within each interval, at most $M+1$ spline objects are non-zero. For each non-zero spline object, it is a *M − th* order polynomial so we only need to store $M + 1$ numbers.

(For sure, we can construct Jacobian similarly)

Evaluation

After we store all the coefficients, for a given *g* to interpolate,

- 1. Calculate $1, g, g^2, g^3, ..., g^M$.
- 2. (Binary) search which interval does *g* lie in.
- 3. Evaluate all *M* + 1 spline objects, each of them is a *M − th* order polynomial. After we do step 1, step 3 is just a matrix multiplication. And we get all $N_i^M(g)$ we need.
- 4. $f(g) = \sum_{i=1}^{N} \theta_i N_i^M(g)$. As I said in step 3, there are at most $M+1$ spline objects. Therefore there are only $M + 1$ non-zero items here.

Time and Memory Complexity

Using float number basic calculation as measure. $(+, *)$ Construction: TC: $O(NM^2)$, MC: $O(NM^2)$, Evaluation *K* points: $TC: O(KM^2 \log N)$, MC: $O(KM^2)$.