
FreeDV Digital Voice - ezDV Module Build
process
https://github.com/tmiw/ezDV/tree/HW-v0.7
To build this standalone freedv digital voice module you need to download
the assets from this web site in order to order the pub from JLCPCB who will
also assemble all the main required components on the board. This can be
quite a challenging process at first glance but once it is done it is fairly
straightforward.

The files you really need for the boards are:
ezDV.csv - this is the bill of materials or list of components required to be
assembled on the board
ezDV.pdf - this is the circuit schematics for the board
output.zip - this is the Gerber files required by JCLPCB in order to create the
pub and position the components
Also included in this last zip file is the position files used to locate the
components on the pcb as part of the assembly process by JCLPCB, they
are:
ezDV-bottom-pos.csv
ezDV-top-pos.csv

You will need to copy the ezDV-top-pos.csv file from the output.zip folder into
a separate folder, leaving the original where it is, it needs to be within the
Gerber file uploaded to JCLPCB and you need to upload the copied file
separately as part of the process of ordering the assembled boards. The
JCLPCB web site does provide guidance on how to place the order and I
generally followed the steps shown accepting all the default options
presented, noting that this particular board is a complex board using 6 layers
so need to use the Standard option instead of Economy also as a result of a
couple of the components that need to be placed.

https://cart.jlcpcb.com/quote?
orderType=1&stencilLayer=4&stencilWidth=50&stencilLength=50

Click the “Add Gerber File” button to start the process, various options below
this will change as a result of the file output.zip being uploaded

https://github.com/tmiw/ezDV/tree/HW-v0.7
https://cart.jlcpcb.com/quote?orderType=1&stencilLayer=4&stencilWidth=50&stencilLength=50
https://cart.jlcpcb.com/quote?orderType=1&stencilLayer=4&stencilWidth=50&stencilLength=50

I left the options as they changed as default without changing them before
moving to next step.

Because we want the components to be added to the board, click the PCB
Assembly option to change and add it to the order:

You will now see further options that can be configured below this, again I left
them as default. Note that there is an option to only assemble 2 out of the
minimum order of 5 PCB’s, I left this at 5 so I can ask some friends to
purchase the assembled boards that I don’t need to help lower the overall
cost to a more respectable value per board rather than having to stand the
full cost of the minimum order.
The boards will take approximately 10-14 days to arrive and then you will
need to finish off the assembly required before testing and putting into use.

The overall cost of the module will increase as there are some other items
needed that are not included in this process such as the battery and a pair of
pcb mounted TRRS sockets and cables required to interface the board to the
radio plus a suitable enclosure.

Battery - https://www.amazon.co.uk/s?
k=3.7v+lithium+ion+battery&crid=WPCH3CWYHQUU&sprefix=3.7v%2Caps
%2C288&ref=nb_sb_ss_ts-doa-p_1_4

https://www.amazon.co.uk/s?k=3.7v+lithium+ion+battery&crid=WPCH3CWYHQUU&sprefix=3.7v%2Caps%2C288&ref=nb_sb_ss_ts-doa-p_1_4
https://www.amazon.co.uk/s?k=3.7v+lithium+ion+battery&crid=WPCH3CWYHQUU&sprefix=3.7v%2Caps%2C288&ref=nb_sb_ss_ts-doa-p_1_4
https://www.amazon.co.uk/s?k=3.7v+lithium+ion+battery&crid=WPCH3CWYHQUU&sprefix=3.7v%2Caps%2C288&ref=nb_sb_ss_ts-doa-p_1_4

I ordered sockets to attach to the pcb so that I can ensure I can disconnect
the battery but also ensure it gets connected with the correct polarity when
reattached to the board or replaced in the future e.g. https://
www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/
ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-
PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-
ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-
spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1

TRRS Audio Connectors - https://uk.rs-online.com/web/p/jack-plugs-
sockets/2596700?gb=b

Suitable enclosure - TBC

Reference for building ESP32-S3 programming environment
For Linux and Mac OSX:
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-
started/linux-macos-setup.html

For Windows:
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-
started/windows-setup.html

These are the steps that I followed on my Apple M2 MacBook Air and tried
out again on my old 2012 Apple MacBook Pro to prove they worked
All following commands are run within a Terminal session:

Install Homebrew from https://brew.sh/:
$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"

Install git using Homebrew: $ brew install git

Install Python3 using: $ brew install python3
Install CMAKE and NINJA using: $ brew install cmake ninja dfu-util

It is strongly recommended to also install ccache for faster builds. If you
have HomeBrew, this can be done via: $ brew install ccache
This step worked fine on my M2 MacBook Air but after testing these
instructions on a 2012 MacBook Pro this step failed and hung while installing
rust as a dependency at the make step, I left it running for hours before
terminating the session. The following steps continued to work ok without it.

https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://www.amazon.co.uk/YIXISI-Pairs-Micro-Connector-Female/dp/B08JV8ZH72/ref=sr_1_2_sspa?crid=A6LUJ5QB01YI&keywords=JST-PH%2B2.0%2Bbattery%2Bconnectors&qid=1691854680&sprefix=jst-ph%2B2.0%2Bbattery%2Bconnectors%2Caps%2C91&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&th=1
https://uk.rs-online.com/web/p/jack-plugs-sockets/2596700?gb=b
https://uk.rs-online.com/web/p/jack-plugs-sockets/2596700?gb=b
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-started/linux-macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-started/linux-macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-started/windows-setup.html
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32s3/get-started/windows-setup.html
https://brew.sh/:
https://ccache.dev/
https://brew.sh/

Install ESP environment:
cd to target root directory - I used Users/paulhelliwell/
$ mkdir -p ~/esp
$ cd ~/esp
$ git clone -b release/v5.0 --recursive https://github.com/espressif/esp-idf.git

$ git clone https://github.com/tmiw/ezDV/

$ cd ezDV

$ git submodule update --init --recursive

$ cd firmware

$ idf.py build

To flash the image created in Users/paulhelliwell/ezDV/firmware onto the
device:
Connect device to USB port
Check where the port is located using ls /dev
Insert port information in the command below where (PORT)
Run command in terminal from firmware directory:

$ run idf.py -p (PORT) flash monitor

or

Project build complete. To flash, run this command:
$ /Users/paulhelliwell/.espressif/python_env/idf5.0_py3.9_env/bin/
python ../../esp/esp-idf/components/esptool_py/esptool/esptool.py -p
(PORT) -b 460800 --before default_reset --after hard_reset --chip esp32s3
write_flash --flash_mode dio --flash_size detect --flash_freq 80m 0x0 build/
bootloader/bootloader.bin 0x8000 build/partition_table/partition-table.bin
0xf000 build/ota_data_initial.bin 0x20000 build/ezdv.bin 0x7f8000 build/
http_0.bin

NOTE - Depending on machine you run this on, you may notice a different
python sub version used in the first line of this command set - on my old
MacBook Pro after installing python3, the version shown for this command
was py3.11

Now follow the instructions at https://github.com/tmiw/ezDV for final
assembly, programming and testing the board and then configuring it for your

https://github.com/espressif/esp-idf.git
https://github.com/tmiw/ezDV/
https://github.com/tmiw/ezDV

radio to get started on FreeDV Digital Voice.

Refer to https://freedv.org for more information about FreeDV and further
links to more information about this digital mode along with spot frequency
information to find operators using this mode around the world.

https://freedv.org

