Probabilistic formulation of the Take The Best heuristic
This repository contains Matlab code implementing the probabilistic model of Take The Best heuristic and experiments described in
- Peltola, Jokinen, Kaski. Probabilistic formulation of the Take The Best heuristic, to appear in the proceedings of CogSci2018.
Running the experiments
run_tests_on_real_data.m
: accuracy comparisons on benchmark datasets (this can take a lot of time with 1000 repetitions; maken_reps
smaller intest_on_real_data.m
for faster results).run_linear_function_learning_experiment.m
: function learning task given biased (TTB generated) pairwise feedback.
The functions ttbfit
(exact inference using exhaustive computation) and ttbmcmc
(MCMC inference) can be used to learn the probabilistic TTB model from training data.
Requirements
The implementation of the probabilistic TTB does not have any requirements beyond Matlab.
Running the experiments requires:
R
and packagesTTBABC
andheuristica
.matlab2tikz
,save2pdf
, andtight_subplot
for generating and saving result figures andlatexTable
for tables.
Contact
Tomi Peltola, tomi.peltola@aalto.fi