Report Presentation

EBS 2003: Second-year Project II

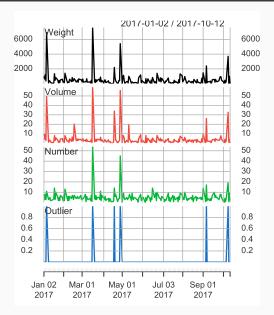
Obbe Pulles & Tobias Schnabel July 1st, 2022 Econometric Analysis
 Exploratory Analysis
 SARMA(p,q)(P,Q) Models
 Forecasting: In-Sample
 Forecasting: Out-Of-Sample

- 2. Vehicle Routing
 - Program Structure
 - Local Search
 - Results

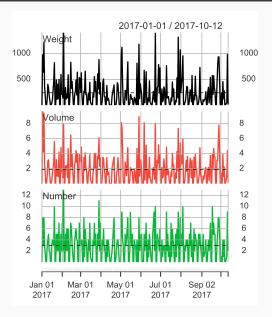
Econometric Analysis

Exploratory Analysis

- Origin cluster: Cluster 1
- 4 most frequent destination clusters between 200 and 400km: clusters 12, 15, 186, 208
- Lanes aggregated to (week)daily data with n=204 obs. at periodicity 5


We use a custom function to generate dummy variable columns that are coded 1 for any observation where any of W_t , V_t , or N_t exceed their mean by 2 or more standard deviations, as given for *Weight* by

$$Flag_{Weight,i} = \begin{cases} 1 & \text{if } W_{t,i} \ge \mu_W + 2 \times \sigma_W \\ 0 & else \end{cases}$$


and use these three columns to create a fourth column:

$$Outlier = \begin{cases} 1 & \text{if } Flag_{Weight,i} = 1 \lor Flag_{Volume,i} = 1 \lor Flag_{Number,i} = 1 \\ 0 & \text{if } Flag_{Weight,i} = 0 \land Flag_{Volume,i} = 0 \land Flag_{Number,i} = 0 \end{cases}$$

Outliers (2)

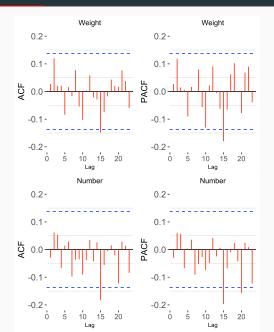
Stationarity

- $W_{t} = \alpha_{0} + \alpha_{1} Tuesday + \alpha_{2} Wednesday + \alpha_{3} Thursday + \alpha_{4} Friday (1)$ $+ \alpha_{5} Outliers + \epsilon_{t}$
- $V_{t} = \alpha_{0} + \alpha_{1} Tuesday + \alpha_{2} Wednesday + \alpha_{3} Thursday + \alpha_{4} Friday (2)$ $+ \alpha_{5} Outliers + \epsilon_{t}$
- $N_t = \alpha_0 + \alpha_1 Tuesday + \alpha_2 Wednesday + \alpha_3 Thursday + \alpha_4 Friday (3)$ $+ \alpha_5 Outliers + \epsilon_t$

Baseline Models: Estimation Results

Table 1: Baseline Regression Results

	Dependent variable:		
	Weight	Volume	Number
tuesday	-21.0671	0.0723	-1.3210
wednesday	67.3354	0.5663	0.8576
thursday	-6.6085	0.8012	-1.3454*
friday	391.4009***	2.7827***	2.3422***
Outlier	4,204.3500***	39.0742***	20.8399***
Constant	280.7378***	2.2310***	4.3698***
Observations	204	204	204
Adjusted R ²	0.7276	0.7910	0.5411
F Statistic (df = 5; 198)	109.4428***	154.6670***	48.8782***


Note:

*p<0.1; **p<0.05; ***p<0.01

Econometric Analysis

SARMA(p,q)(P,Q) Models

SARMA(p,q)(P,Q)[5] Models: Identification

SARMA(p,q)(P,Q)[5] Models: Baseline Results

Table 2: ARMA(0,0)(0,0) Estimation Results

_	Depei	ndent varial	ble:
	Weight	Volume	Number
intercept	280.7378***	2.2310***	4.3698***
Outlier	4,204.3500***	39.0742***	20.8399***
tuesday	-21.0671	0.0723	-1.3210*
wednesday	67.3354	0.5663	0.8576
thursday	-6.6085	0.8012	-1.3454*
friday	391.4009***	2.7827***	2.3422***
Note:	*p<0.	1; **p<0.05	;***p<0.01

SARMA(p,q)(P,Q)[5] Models: Final Specifications

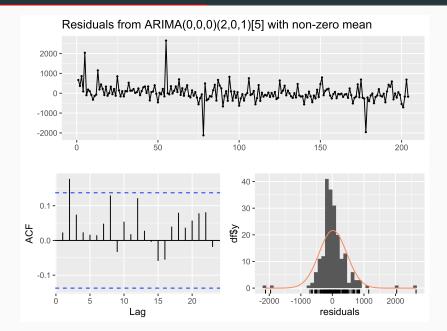
Models automatically selected based on AIC (BIC gives identical results)

Weight : SARMA(0,0,0)(2,0,1)[5] Volume : SARMA(0,0,0)(0,0,0)[5] Number : SARMA(0,0,0)(2,0,1)[5]

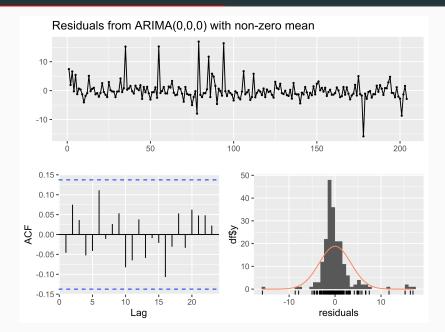
Table 3: Information Criteria Comparison

	BIC Baseline	BIC Final	AIC Baseline	AIC Final
Weight	15.242	15.281	15.128	15.086
Volume	5.493	5.493	5.379	5.379
Number	5.582	5.619	5.468	5.456

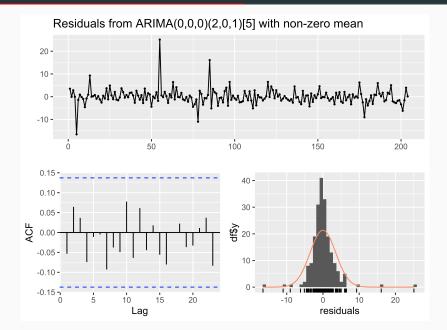
SARMA(p,q)(P,Q)[5] Models: Estimation Results


Table 4: ARMA(p,q)(P,Q) Estimation Results

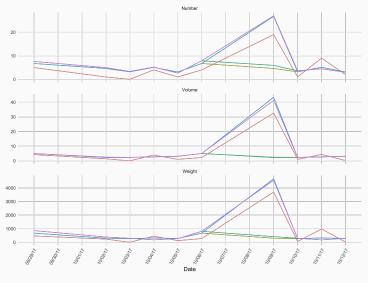
Dependent variable:		
Weight	Volume	Number
0.5582***		0.6363***
-0.0988		-0.1783**
-0.7263***		-0.6549***
282.8321***	2.2310***	4.4237***
4,151.9630***	39.0742***	21.0669***
-25.5452	0.0723	-1.3545***
39.9651	0.5663	0.6840
-8.1966	0.8012	-1.3919***
380.5566***	2.7827***	2.4926***
	Weight 0.5582*** -0.0988 -0.7263*** 282.8321*** 4,151.9630*** -25.5452 39.9651 -8.1966	Weight Volume 0.5582*** -0.0988 -0.7263*** 282.8321*** 282.8321*** 2.2310*** 4,151.9630*** 39.0742*** -25.5452 0.0723 39.9651 0.5663 -8.1966 0.8012


Note:

*p<0.1; **p<0.05; ***p<0.01


SARMA(p,q)(P,Q)[5] Models: Robustness

SARMA(p,q)(P,Q)[5] Models: Robustness (2)

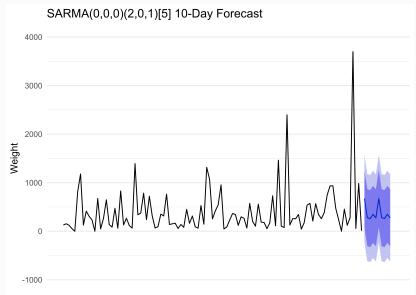

SARMA(p,q)(P,Q)[5] Models: Robustness (3)

Econometric Analysis

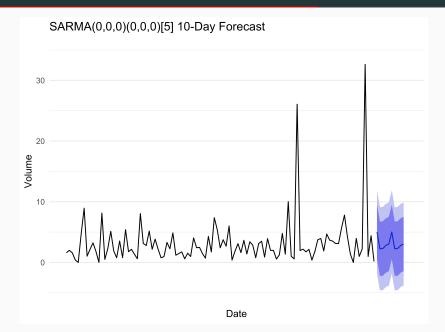
In-Sample Forecasting

Forecasting: In-Sample Accuracy

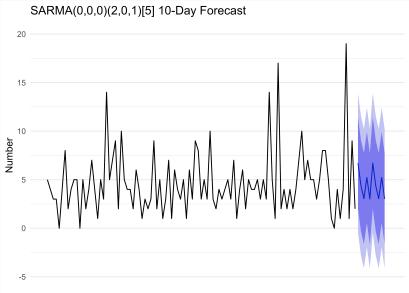
Values - Actual - Static Forecast - Dynamic Forecast - Static Forecast with Outlier - Dynamic Forecast with Outlier


Table 5: RMSE of Forecast Models

	Weight	Volume	Number
Static Forecast	1113.878	9.721	5.171
Dynamic Forecast	1104.308	9.781	5.021
Static with Outlier	428.418	3.886	3.469
Dynamic with Outlier	468.031	3.281	3.810


Econometric Analysis

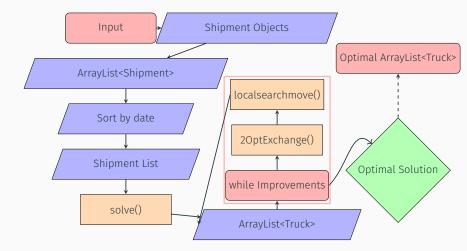
Out-Of-Sample Forecasting


Forecasting: Out-of-Sample

Forecasting: Out-of-Sample (2)

Forecasting: Out-of-Sample (3)

Vehicle Routing


Program Structure

Objects

```
public class Shipment {
      private final Date PDate;
      private final double Weight;
      private final double Volume;
4
      private final double OriginClusterLat;
      private final double OriginClusterLong;
6
      private final Customer customer;
8
 public class Customer {
10
      private double lat;
      private double lon;
      private final String ID;
      private int numShip = 0;
14
```

1 put	blic class Truck {
2	<pre>private double currentWeight = 0;</pre>
3	<pre>private double currentVolume = 0;</pre>
4	<pre>private final int truckId;</pre>
5	<pre>private final ArrayList<shipment> shipments = new</shipment></pre>
	ArrayList<>();
6	<pre>private ArrayList<customer> route = new ArrayList<>();</customer></pre>
7	}

Execution Flowchart

Vehicle Routing

Local Search

```
1 Let S \neq \emptyset be the set of shipments, C \neq \emptyset the set of customers;
<sup>2</sup> Let T = \{t_1\} be the set of trucks;
<sup>3</sup> while S \neq \emptyset do
       Take t \in T:
4
       Let c = minDistCustomer(t):
5
       for s \in S do
6
            Take s \in S:
 7
            if s.customer = c AND no constraints violated then
8
                add(s, t), S = S \setminus \{s\};
 9
                add(c, Route(t));
10
            else if constraints violated then
11
                T = T \cup \{t_{new}\};
12
                break:
13
```

- 1 Take $t \in T$ a truck in the set of trucks;
- 2 Let R = Route(t), bd = distance(R);
- з Let newd = 0;
- 4 while foundImprovement do

```
5 for 1 \le i < |R| - 2 do

6 for i + 1 \le j < |R| - 1 do

7 newR = reverse(R, i, j);

8 newd = distance(newR);

9 if newd < bd then

10 bd = newd;

11 R = newR;
```

```
1 Take t_1, t_2 \in T, where t_1 \neq t_2 are trucks;
<sup>2</sup> Let R_1 =Route(t_1), R_2 =Route(t_2), bd = distance(R_1 + R_2);
3 while foundImprovement do
      for 1 < i < |R_1| - 1 do
4
          for 1 \le j < |R_2| - 1 do
5
               Let c = R_2[i] gets customer in route 2 at position j;
6
               Let newR_1 = R_1 \cup \{c\} at position i;
7
              Let newR_2 = R_2 \setminus \{c\}:
8
               if distance(newR_1 + newR_2) <bd AND no constraints
9
                are violated then
                   bd = totalDistiance(newR_1 + newR_2);
10
                   Move all shipments with customer c from t_2 to t_1;
11
                  R_1 = newR_1, R_2 = newR_2;
12
```

Vehicle Routing

Results

Results

```
1 Date #10: 24/07/2017
<sup>2</sup> Total cost of the feasible basic solution: 1493.39 EUR
3 Truck #1: Weight: 15.8/22 Volume: 78.77/82
4 Route: Cluster > FR2055 > FR1207 > FR2006 > FR321 > FR34 >
       FR178 > FR4710 > FR5000 > FR3307 > FR743 > FR47 >
      FR813 > FR3601 > FR2834 > FR1890 > FR953 > FR >
      Cluster
6 Truck #2: Weight: 3.6/22 Volume: 62.24/82
7 Route: Cluster > FR > Cluster
9 Truck #3: Weight: 2.5/22 Volume: 38.34/82
10 Route: Cluster > FR2754 > FR2845 > FR144 > FR3236 > FR2672
       > FR3191 > FR849 > FR226 > Cluster
12 Optimal Total cost : 1491.58 EUR
13 Number of trucks used: 3
14 Method executed in 6 milliseconds, of which
15 Obtaining the feasible basic solution took 2 ms
<sup>16</sup> Optimizing the basic solution took 4 ms
```

Questions?