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Introduction

This report analyzes six months’ worth of granular shipment data to provide insight on possible improvements of

business practices on two fronts. Sections 1 through 5 are devoted to an econometric analysis of the seasonality

properties of medium-range shipments between processing clusters. Sections 6 through 8 outline ways of

algorithmically analyzing and improving the routing of trucks to pick up shipments from customers and transport

them to the origin cluster. Our results are generalizable to broader sets of shipment data and could potentially

also be used to optimize the vehicle routing at destination clusters to save costs on what is generally termed

last-mile delivery. Our appendices provide all necessary information to reproduce all results starting from the

raw data. In the interest of brevity, we proceed directly to our methodology.

1 Data Processing

We begin by identifying cluster 1 as our cluster of interest. The four most frequent destination clusters for

this origin are clusters 15, 96, 206, and 12. We therefore subset our raw data to keep information on these four

lanes. Subsequently, we aggregate the data to a daily frequency, add missing dates and replace missing values

with 0. Finally, we drop weekends and convert our data to a balanced time series with frequency 5, that is,

week-daily data, with a total of 204 observations across all 4 lanes.

Next, we use a custom function to generate dummy variable columns that are coded 1 for any observation

where any of Weight Wt, Volume Vt, or Number Nt exceed their mean by x or more standard deviations, as

given for Weight by

FlagWeight,i =


1 if Wt,i ≥ µW + x× σW

0 else

and use these three columns to create a fourth column:

Outlier =


1 if FlagWeight,i = 1 ∨ FlagV olume,i = 1 ∨ FlagNumber,i = 1

0 if FlagWeight,i = 0 ∧ FlagV olume,i = 0 ∧ FlagNumber,i = 0

Figure 1 below demonstrates the result of this function for a threshold of x = 2 standard deviations, which is the

value used to generate the final dataset used for the remainder of the analysis.
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Figure 1: Outliers using a 2SD threshold

Having successfully identified all outliers, we plot a copy of our data that removes all outliers to gain an

impression of whether they are stationary. Figure 2 below shows the three series and their respective means. All

series fluctuate around their mean, we can discern no trend, hence we assume them to be stationary.

Figure 2: Stationarity
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2 Baseline Models

To gain a rough understanding of the seasonality of these three series, we estimate the following linear models:

Wt = α0 + α1Tuesday + α2Wednesday + α3Thursday + α4Friday + α5Outliers+ ϵt (1)

Vt = α0 + α1Tuesday + α2Wednesday + α3Thursday + α4Friday + α5Outliers+ ϵt (2)

Nt = α0 + α1Tuesday + α2Wednesday + α3Thursday + α4Friday + α5Outliers+ ϵt (3)

We obtain the results reported in table 1 below. Across all three models, the estimated coefficient of the

outliers are statistically significant at the 1% level. Of the weekdays, only Monday (the intercept) and Friday

show significant estimated coefficients, which is indicative of a strong effect of these two days on the respective

dependent variable. All models show high joint significance of estimated coefficients; R̄2 is noticeably lower for

(3) than for (2) and (1).

Table 1: Baseline Regression Results

Dependent variable:

Weight Volume Number

OLS OLS OLS

(1) (2) (3)

tuesday −21.0671 0.0723 −1.3210
(101.1564) (0.7728) (0.8079)

wednesday 67.3354 0.5663 0.8576
(101.1564) (0.7728) (0.8079)

thursday −6.6085 0.8012 −1.3454∗
(101.1564) (0.7728) (0.8079)

friday 391.4009∗∗∗ 2.7827∗∗∗ 2.3422∗∗∗
(102.1424) (0.7803) (0.8158)

Outlier 4,204.3500∗∗∗ 39.0742∗∗∗ 20.8399∗∗∗
(192.4248) (1.4701) (1.5368)

Constant 280.7378∗∗∗ 2.2310∗∗∗ 4.3698∗∗∗
(71.6053) (0.5470) (0.5719)

Observations 204 204 204
R2 0.7343 0.7962 0.5524
Adjusted R2 0.7276 0.7910 0.5411
Residual Std. Error (df = 198) 457.5120 3.4953 3.6540
F Statistic (df = 5; 198) 109.4428∗∗∗ 154.6670∗∗∗ 48.8782∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3 Seasonality and Model Identification

To identify seasonal dynamics more specifically, we first turn to two portmanteau tests for autocorrelation.

Tables 2 and 3 below report test statistics and p-values for the LM- and Q-tests of the residuals of 1.

Table 2: LM Tests of Regression Residuals

Lags LM Statistic p-value

Weight 25 39.649 0.03168

Volume 25 17.927 0.84547

Number 25 25.180 0.45234

Neither test finds statistically significant evidence for autocorrelation with the sole exception of Weight, the

residuals of which show autocorrelation at the 5% significance level.

Table 3: Q-Tests of Regresion Residuals

Q-Statistic p-value

Weight, 5 Lags 4.802 0.44048

Volume, 5 Lags 2.820 0.72773

Number, 5 Lags 2.529 0.77206

Weight, 15 Lags 15.058 0.44728

Volume, 15 Lags 9.815 0.83121

Number, 15 Lags 15.609 0.40847

Weight, 25 Lags 21.232 0.67962

Volume, 25 Lags 20.052 0.74411

Number, 25 Lags 23.197 0.56605

We note that the residuals of all three baseline regressions display heteroskedasticity at the 1% significance

level, as shown in

Table 4: White Tests for Heteroskedasticity in Regresion Residuals

Stat, No CT p-value, No CT Statistic, CT p-value, CT

Weight 132.399 0.00000 153.664 0.00000

Volume 56.066 0.00000 153.664 0.00001

Number 115.968 0.00000 153.664 0.00000

We now visualize the (partial) autocorrelation factors of the residuals as shown in Figure 4. We cannot

identify any patterns typical of autoregressive or moving-average processes in the three series generally. We also

cannot identify any obvious sign of seasonality, though we note that significant (patial) autocorrelation appears

at lags which are multiples of 5s, if they appear.
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Figure 3: ACF / PACF at up to 25 Lags
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4 Model Estimation

Before estimating SARMA(p, q)(P,Q) specifications, we first re-estimate our three models as SARMA(0, 0(0, 0)

models to use as a baseline:

Table 5: ARMA(0,0)(0,0) Estimation Results

Dependent variable:

Weight Volume Number

ARIMA ARIMA ARIMA

(1) (2) (3)

intercept 280.7378∗∗∗ 2.2310∗∗∗ 4.3698∗∗∗
(70.5445) (0.5389) (0.5634)

Outlier 4,204.3500∗∗∗ 39.0742∗∗∗ 20.8399∗∗∗
(189.5740) (1.4483) (1.5141)

tuesday −21.0671 0.0723 −1.3210∗
(99.6578) (0.7614) (0.7959)

wednesday 67.3354 0.5663 0.8576
(99.6578) (0.7614) (0.7959)

thursday −6.6085 0.8012 −1.3454∗
(99.6578) (0.7614) (0.7959)

friday 391.4009∗∗∗ 2.7827∗∗∗ 2.3422∗∗∗
(100.6291) (0.7688) (0.8037)

Observations 204 204 204
Log Likelihood −1,536.0820 −541.7077 −550.7674
σ2 203,160.9000 11.8578 12.9592
Akaike Inf. Crit. 3,086.1650 1,097.4150 1,115.5350

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Using R. Hyndman et al. (2022)’s forecast::auto.arima, we then identify the best-fitting specification for each

model computationally, using the Akaike Information Criterion as our minimization objective. The optimal

specifications we obtain are as follows:

Weight : SARMA(0, 0, 0)(2, 0, 1)[5]

V olume : SARMA(0, 0, 0)(0, 0, 0)[5]

Number : SARMA(0, 0, 0)(2, 0, 1)[5]

Table 7 below reports results. For Weight and Number, the models we identified perform better (as measured

by the Information Criteria in Table 6) than the SARMA(0, 0)(0, 0) baseline results reported in Table 5, whereas

the white-noise specification for V olume performs best for this series. We attribute the latter fact to the absence

of any significant (partial) autocorrelation in the series in our data. In all three specifications, the intercept and

Friday as well as the Outliers are significant at the 1% level. In the specification for Number, we additionally
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now have significant estimated coefficients for Tuesday and Thursday. In the models for Weight and Number,

the seasonal components are highly statistically significant.

Table 6: Information Criteria Comparison

BIC Baseline BIC Final AIC Baseline AIC Final

Weight 15.242 15.281 15.128 15.086

Volume 5.493 5.493 5.379 5.379

Number 5.582 5.619 5.468 5.456

Table 7: ARMA(p,q)(P,Q) Estimation Results

Dependent variable:

Weight Volume Number

ARIMA ARIMA ARIMA

(1) (2) (3)

sar1 0.5582∗∗∗ 0.6363∗∗∗
(0.2064) (0.2082)

sar2 −0.0988 −0.1783∗∗
(0.0969) (0.0801)

sma1 −0.7263∗∗∗ −0.6549∗∗∗
(0.2037) (0.1997)

intercept 282.8321∗∗∗ 2.2310∗∗∗ 4.4237∗∗∗
(36.5122) (0.5389) (0.3636)

Outlier 4,151.9630∗∗∗ 39.0742∗∗∗ 21.0669∗∗∗
(192.3428) (1.4483) (1.5439)

tuesday −25.5452 0.0723 −1.3545∗∗∗
(51.5271) (0.7614) (0.5133)

wednesday 39.9651 0.5663 0.6840
(52.8975) (0.7614) (0.5199)

thursday −8.1966 0.8012 −1.3919∗∗∗
(51.5516) (0.7614) (0.5133)

friday 380.5566∗∗∗ 2.7827∗∗∗ 2.4926∗∗∗
(53.0834) (0.7688) (0.5258)

Observations 204 204 204
Log Likelihood −1,530.3360 −541.7077 −546.5224
σ2 191,111.3000 11.8578 12.3890
Akaike Inf. Crit. 3,080.6720 1,097.4150 1,113.0450

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We now test for a difference in daily effects, that is,

H0 : α1 = α2 = α3 = α4 = 0

8



Table 6 below reports the F-statistic and associated p-values for these tests, the code for their computation can

be found in the provided code. We reject H0 only for Weight, pointing to a stronger effect of individual days in

that series.

Table 8: F-Tests for Coefficient Restrictions

F-statistic 95% Crit. Value p-value

Weight 62016487.905 2.416 0.000

Volume 0.867 2.416 0.485

Number 0.924 2.416 0.451

Lastly, we test our specifications for misspecification. Although the results reported in Table 7 suggest

that the residuals of our models are not normally distributed, Figures 5 and 5 suggests that they are at least

approximately normally distributed and do not display significant autocorrelation (with the exception in the

latter case of Weight).

Table 9: ARMA Residual Normality Test

JB Statistic JB p-value Ljung-Box Statistic LB p-value

Weight 1158.181 0.000 0.109 0.741

Volume 936.778 0.000 0.437 0.509

Number 2219.082 0.000 0.590 0.442

Figure 4: SARMA Misspecification: Weight
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Figure 5: SARMA Misspecification: V olume,Number

5 Forecasting

To forecast the last 10 days of data, we make a copy our data that omits the last 10 rows. We then use this

copy to re-estimate our static models as well as our dynamic models. As the last 10 days of our data include

an outlier identified by us, we repeat this process with a different set of forecast covariates that includes the

information that this day is an outlier. Table 8 reports RMSE values, we note that the dynamic model generally

performs slightly better.
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Table 10: RMSE of Forecast Models

Weight Volume Number

Static Forecast 1113.878 9.721 5.171

Dynamic Forecast 1104.308 9.781 5.021

Static with Outlier 428.418 3.886 3.469

Dynamic with Outlier 468.031 3.281 3.810

Figure 6: Forecast Comparison

Finally, we estimate our dynamic model over our full sample to forecast the next 10 observations, that is, 2

weeks into the future. Figure 7 visualizes the various forecasts per series. As we do not have actual data for these

10 future observations, we cannot forecast using a linear model. The reason why we can forecast our SARMA

models is that they are based on lagged values of data, which enables us to estimate missing future values, which

a linear model cannot do. Similarly, as we do not have the actual data for these 10 future observations, we

cannot compute RMSE of any kind.

11



Figure 7: Forecasts

6 Data Cleansing and Base Case

For the Operations Research part of this case, the first problem is to clean up the data and decide which

cluster to use for the acquisition of the shipment data. As is suggested in the case description, we choose cluster

2 to be our cluster of interest and we select the relevant data by performing data cleansing in RStudio.

The initial stages of programming require us to plan ahead and choose which classes we want use. The obvious

choice is to read the data into a "Shipment" class, which is exactly what we do. The code we use to retrieve the

relevant data is provided in Appendix C. On closer inspection of the data, we find that many shipments store

the same coordinates for their origin location so we decide on the creation of a new class "Customer" which

stores relevant information which is specific to the customer, like their location and location code, which we use

later as an identifier to select shipments and customers more efficiently. Last, we are required to have an object

to store the shipments, we call this class "Truck". The truck has an identifier as well in order to make it easier

to identify trucks while debugging. In the truck object, we store the shipments that are to be loaded in the
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truck as a shipment array-list, as well as the customer route which is also stored as an array-list. The choice of

array-lists is an obvious one as they are dynamic when it comes to their size and we won’t get issues regarding

out-of-bounds indices. The last data we store in the truck is its current weight and volume, which is used to

make sure that none of the 22000kg max weight and 82m3 max volume constraints are violated.

Now that all additional classes have been outlined, we start by reading the shipments into a large array-list

containing all selected shipments on all selected dates. The base case itself is not particularly interesting as it

involves creating a new truck for each shipment and sending it to the customer who has the shipment and going

back to the cluster. The distance calculation is done by a haversine distance formula for distances on a sphere

using the coordinates of two locations:

R = radius of ball

ϕi, ψi, i = 1, 2

a = sin2(∆ϕ/2) + sin2(∆ψ/2) ∗ cos(ϕ1) ∗ cos(ϕ2)

c = 2 ∗ arcsin(
√
a)

distance = R ∗ c

For a more adequate explanation on this, we invite the reader to have a look at the source code of the Shipment

and Customer classes.

Given that this particular solution is not interesting, we do not include it within the source code, the storing

of this process is only wasting space as the data is kept in memory and because it is a bad solution, it is better

to immediately move on to a better routing heuristic in the next section.

7 Finding good routing

For an immediate improvement on the base case, we use a nearest neighbour approach. The idea is that we

start by constructing a distance matrix for all customers to each other and to the cluster. We then initiate a new

truck at the cluster and go to the nearest customer who has one or more shipment(s). We load the shipments

into the truck and go from this customer, to its nearest neighbour who has one or more shipments until one of

the capacity constraints is violated. We initiate a new truck at the cluster and repeat this process until there are

no more shipments to be picked up. At the end we make all trucks return to the cluster.

To calculate the costs, we count how many trucks are used in total and multiply that amount by the fixed

cost of 450, then to this total we add the total distance covered by the trucks and multiply this number by the

variable cost of 1.5 to get the total cost of operation.

The total distance is calculated by summing up the route of each truck, which stores at the start and end the

cluster, and in between those the customers it visits. By using the distance method from the Customer class, we

calculate the individual distances of each route segment between index position i and index position i− 1 for

1 ≤ i < route_size and sum all of these values up.
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The algorithm makes sure that shipments are loaded one at a time, this means that when we are at a customer

who has (for example) 4 shipments and we can only load 2 without violating a constraint, we do not remove that

customer from the list of customers who still needs a truck for shipment transport but we keep those shipments,

and thus the customer, in the list.

If one of the constraints is violated, we also do not immediately go back to the customer the previous truck

ended at, as it is not certain whether this customer is in fact the nearest customer to the cluster, which is the

starting point of a new truck.

When the list of shipments that are to be picked up is empty, we stop the program and return the costs.

These results are a massive improvement over the previous ones as they save on truck spending because there

are less trucks than in the base case. The route for each truck is longer in comparison, which is an obvious result

of adding customers to the route of the truck. These improvements however, are still not optimal because the

nearest neighbour algorithm is only a heuristic as it is obvious to save on costs.

Current shortcomings of this algorithm are manifold, however we focus only on two. A first issue is that the

order of visiting the customers is not necessarily minimized because there may points in the route in which going

to a customer who is further along the route first instead of the one who is closest, may actually make the route

length shorter in the end. The improvement here is thus to exchange two points in the route, the case calls this

type of improvement a "2-opt-exchange".

A second issue is that trucks that are designated as "full" may actually be able to carry more shipments still,

that are lighter in weight and smaller in volume without violating any constraints. A solution to this is to see

whether we can improve on the length of routes of two trucks by moving all shipments that belong to a customer

from one truck to another truck and removing that customer from the former’s route and adding it to the latter

truck’s route. The case calls this type of local search a "move".

8 Finding a local optimum

The difficulty of implementing these previous two improvements, 2-opt-exchange (2opt) and local search move

(LSMove) depends greatly on the data structures used in solving the problem presented in the previous section.

In our implementation of these local optimizations, we run into some issues regarding the data structures as

well. Especially in finding and storing distance matrices and updating customers and shipments in lists quickly

becomes rather confusing. However, by careful, step-by-step implementation of operations, we come to the

following algorithms.

After we have gotten the initial routing from the previous section, we first implement the 2opt optimization

because it is relatively easier compared to LSMove because we are looking at trucks one at a time instead of

comparing and editing the properties of two trucks at a time. In pseudocode, the 2opt follows the following logic

in Algorithm 1 below. Here, the reverse function of this algorithm reverses the route order from index i until

index j. Meaning that if we have a route R = 1->2->5->3->4 and we want to reverse index 1 and 4, we get the

route R* = 1->4->3->5->2. Furthermore, the updateRoute function updates the route that is stored in truck t.

This way of reversing and swapping around the route effectively implements the 2opt algorithm and sometimes
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Algorithm 1: Pseudocode 2opt
1 Take t ∈ T a truck in the set of trucks;
2 Let R = Route(t);
3 Let bd = totaldistance(R);
4 Let foundImprovement = true;
5 Let newd = 0;
6 while foundImprovement do
7 foundImprovement = false;
8 for 1 ≤ i < |R| − 2 do
9 for i+ 1 ≤ j < |R| − 1 do

10 newR = reverse(R,i,j);
11 newd = totaldistance(newR);
12 if newd < bd then
13 bd = newd;
14 R = newR;

15 updateRoute(t,R);
16 return t;

leads to improvements in routing for trucks.

The second improvement to implement is the LSMove, which moves all shipments from a customer from one

truck to another and checks whether there is an improvement of costs. In the algorithm, lines 10 and 11 perhaps

require clarification. What is meant here is that we insert the customer "c" in position j from the route of truck

2, whose shipments we are considering moving from truck 2 to truck 1, into the route of truck 1 at position i,

and we are removing that customer from the route of truck 2.

Algorithm 2: Pseudocode LSMove
1 Take t1, t2 ∈ T , where t1 ̸= t2 are trucks;
2 Let R1 =Route(t1), R2 =Route(t2);
3 Let bd = totalDistance(R1 +R2);
4 Let foundImprovement = true;
5 while foundImprovement do
6 foundImprovement = false;
7 for 1 ≤ i < |R1| − 1 do
8 for 1 ≤ j < |R2| − 1 do
9 Let c = R2[j] gets customer in route 2 at position j;

10 Let newR1 = R1 ∪ c at position i;
11 Let newR2 = R2\c;
12 Let nd = totalDistiance(newR1 + newR2);
13 if nd < bd AND no constraints are violated then
14 bd = nd;
15 Move all shipments with customer c from t2 to t1;
16 R1 = newR1, R2 = newR2;
17 foundImprovement = true;

18 updateRoute(t1, R1);
19 updateRoute(t2, R2);
20 return [t1, t2];

Finally, after implementing these algorithms, we end up with routes for trucks that are close to or at the

local optimum. It is not necessarily the best solution possible, as we limit ourselves to the selection of the route

made in the previous section and are thus constrained. But it is still better than the route we had before. Below

are the results from the output of the program we have written for one day before local search optimizations and
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after local search optimizations showing long routes and a small improvement:

Date #10: 24/07/2017

Total cost of the feasible basic solution: 1493,39 EUR

Truck #1: Weight: 15,8/22 Volume: 78,77/82

Route: Cluster -> FR2055 > FR1207 > FR2006 > FR321 > FR34 > FR178 > FR4710 > FR5000 > FR3307 > FR743

> FR47 > FR813 > FR3601 > FR2834 > FR1890 > FR953 > FR > Cluster

Truck #2: Weight: 3,6/22 Volume: 62,24/82

Route: Cluster -> FR > Cluster

Truck #3: Weight: 2,5/22 Volume: 38,34/82

Route: Cluster -> FR2754 > FR2845 > FR144 > FR3236 > FR2672 > FR3191 > FR849 > FR226 > Cluster

Optimal Total cost : 1491,58 EUR

Number of trucks used: 3

Method executed in 15 milliseconds, of which

Obtaining the feasible basic solution took 0 ms

Optimizing the basic solution took 15 ms

As we can see from the output, the optimization algorithms we employ do cut the cost of transport, so our

implementation of these ideas is a correct starting point. For all results, we invite the reader to run the files that

we provided in the assignment.
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9 Business Report

This report serves as a proof-of-concept in helping the customer optimize their daily business practices. We

show that medium-range shipments exhibit some seasonality, which can be exploited to forecast future demand

with good accuracy in the short run. This enables the customers to pre-plan logistical efforts between clusters,

which can be scaled to each week’s requirements in an agile way. This analysis is extensible to long-range and

perhaps also short-range shipments and ideally suited for permanent production implementation.

Our vehicle routing optimization program executes until all shipments to be picked up in the vicinity of a

cluster have been assigned to a truck such that a truck starts and ends its route at the cluster origin. The basic

solution uses a "Nearest Neighbour" approach, which makes it so that trucks go to the closest customer until

they are full. We expand on this basic solution by recognizing that going to the nearest neighbour might not

always be optimal. The first way to improve is by switching around the order of visited customers in the route

of a single truck, and seeing whether it gives a route length improvement. Secondly, we check whether it is

beneficial to move all shipments from a customer that are in one truck into another truck and see whether this

move results in a reduction of the sum of the two routes of the trucks. We repeat this process until no more

improvements can be made, in which case we call this solution the "local optimum".

The sample data we use to judge effectiveness of the program takes the busiest cluster from the provided

shipment data, and takes those days on which there are more than 20 or more than 30 shipments to be picked

up. Therefore, we have a sufficient benchmark for the performance of our program, as we are looking at some

"worst case" scenarios for transporting shipments on busy days.

Our results are that of those 10 days, there are only 2 in which the local optimum does not improve on the

basic solution. Given a fixed cost of €450 per truck and a variable cost of €1.5 per kilometer, the average

amount we save by running the local optimum approach is approximately €10 per day. The running time of the

algorithms is short, the computation of the basic solution for the 10 dates takes on average 1.6 milliseconds,

while the computation of the local optimum averages 5.3 milliseconds. An example of the output of the program

is given below.

Our methods are reliable and not cost-intensive. Given sufficient compute and robust data pipelines, they

can be implemented at scale with reasonable accuracy, requiring moderate supervision. We are confident that

both components can help the customer achieve substantial compounded cost savings, which can be (in part)

productively redirected to the salaries of staff Econometricians.

Date: 26/05/2017

Total cost of the feasible basic solution: 1472,57 EUR

Truck #1: Weight: 2,5/22 Volume: 44,35/82

Route: Cluster > FR735 > FR849 > FR178 > Cluster

Truck #2: Weight: 5,1/22 Volume: 63,32/82

Route: Cluster -> FR > Cluster
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Truck #3: Weight: 2,8/22 Volume: 60,04/82

Route: Cluster -> FR2055 > FR1890 > FR2834 > FR1808 > FR2754 > FR > Cluster

Optimal Total cost : 1455,96 EUR

Number of trucks used: 3

Method executed in 16 milliseconds, of which

Obtaining the feasible basic solution took 0 ms

Optimizing the basic solution took 16 ms
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10 Appendix A: Software Packages Used Including all Dependencies

Zeileis, Achim and Torsten Hothorn (2002). “Diagnostic Checking in Regression Relationships”. In: R News 2.3,

pp. 7–10. url: https://CRAN.R-project.org/doc/Rnews/.

Zeileis, Achim and Gabor Grothendieck (2005). “zoo: S3 Infrastructure for Regular and Irregular Time Series”.

In: Journal of Statistical Software 14.6, pp. 1–27. doi: 10.18637/jss.v014.i06.

Hyndman, Rob J and Yeasmin Khandakar (2008). “Automatic time series forecasting: the forecast package for

R”. In: Journal of Statistical Software 26.3, pp. 1–22. doi: 10.18637/jss.v027.i03.

Xie, Yihui (2014). “knitr: A Comprehensive Tool for Reproducible Research in R”. In: Implementing Reproducible

Computational Research. Ed. by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. ISBN 978-1466561595.

Chapman and Hall/CRC. url: http://www.crcpress.com/product/isbn/9781466561595.

— (2015). Dynamic Documents with R and knitr. 2nd. ISBN 978-1498716963. Boca Raton, Florida: Chapman

and Hall/CRC. url: https://yihui.org/knitr/.

Wickham, Hadley (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. isbn: 978-3-

319-24277-4. url: https://ggplot2.tidyverse.org.

Hamner, Ben and Michael Frasco (2018). Metrics: Evaluation Metrics for Machine Learning. R package version

0.1.4. url: https://github.com/mfrasco/Metrics.

Dahl, David B. et al. (2019). xtable: Export Tables to LaTeX or HTML. R package version 1.8-4. url: http:

//xtable.r-forge.r-project.org/.
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11 Appendix B: Versions of Third-Party Software Packages Used

Table 11: Versions of Packages used in this Report

pkg version
1 astsa 1.15
2 base 4.2.1
3 colorspace 2.0.3
4 curl 4.3.2
5 digest 0.6.29
6 ellipsis 0.3.2
7 evaluate 0.15
8 fansi 1.0.3
9 farver 2.1.0

10 forecast 8.16
11 fracdiff 1.5.1
12 glue 1.6.2
13 grateful 0.1.11
14 gtable 0.3.0
15 highr 0.9
16 isoband 0.2.5
17 knitr 1.39
18 labeling 0.4.2
19 lifecycle 1.0.1
20 lmtest 0.9.40
21 Metrics 0.1.4
22 munsell 0.5.0
23 pkgconfig 2.0.3
24 quadprog 1.5.8
25 quantmod 0.4.20
26 R6 2.5.1
27 RColorBrewer 1.1.3
28 Rcpp 1.0.8.3
29 RcppArmadillo 0.11.2.0.0
30 scales 1.2.0
31 stringi 1.7.6
32 tidyverse 1.3.1
33 timeDate 3043.102
34 tseries 0.10.51
35 TTR 0.24.3
36 urca 1.3.0
37 utf8 1.2.2
38 vctrs 0.4.1
39 viridisLite 0.4.0
40 withr 2.5.0
41 xfun 0.31
42 xts 0.12.1
43 yaml 2.3.5
44 zoo 1.8.10
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12 Appendix C: Source Code (Operations Research Part Data Clean-

ing)

1 ##OR data cleaning

2

3 packages <- c("data.table", "dplyr", "zoo", "tidyr", "readxl", "summarytools")

4

5 installed_packages <- packages %in% rownames(installed.packages())

6 if (any(installed_packages == FALSE)) {

7 install.packages(packages[!installed_packages])

8 }

9

10 #load packages

11 invisible(lapply(packages, library, character.only = TRUE))

12 rm(installed_packages)

13 Paths = c("/Users/ts/Git/Second-Year-Project-II-Econometrics",

"C:/Users/obbep/Documents/R/Second-Year-Project-II-Econometrics/")↪→

14 names(Paths) = c("ts", "obbep")

15 setwd(Paths[Sys.info()[7]])

16

17 ordat = as.data.table(read_excel('Data.xlsx'))

18 #location to cluster

19 #issue 1: shipment already at destination

20 #drop Lat-Long duplicates

21 orwdat = ordat[OriginClusterLat != OriginLat][OriginClusterLong != OriginLong]

22

23 #drop shipments over 22 tons

24 orwdat = orwdat[`TR Gross Weight (KG)` <= 20000][`TR Gross Volume (M3)` <= 82]

25

26 #sort on origin cluster and PU Date

27 setorder(orwdat, -`Nb of Ship Units`, -PUDate, na.last = TRUE)

28 #stview(dfSummary(orwdat))

29

30 #filter, drop unnecessary cols, rename vars, add counter var to id 20+/3-+ days, sort

31 orex = as_tibble(orwdat) %>%

32 filter(OriginCluster == "Cluster2") %>%

33 select(-c(2,4,7,8,9,16,17,18,19,20,28)) %>%

34 rename(Weight = `TR Gross Weight (KG)`) %>%

35 rename(Nb = `Nb of Ship Units`) %>%

36 rename(EDay = `TR Pickup - Event Day`) %>%

37 rename(Volume = `TR Gross Volume (M3)`) %>%

38 rename(Date = PUDate) %>%

39 rename(TRC = `TR Code`) %>%

40 rename(SLC = `TR Source Location Code`) %>%

41 rename(OrigID = OriginFull) %>%
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42 relocate(c(Date, Weight, Nb, Volume, SLC)) %>%

43 add_count(Date, name = "NumPerDay") %>%

44 relocate(NumPerDay, .after = Volume ) %>%

45 arrange(desc(NumPerDay))

46

47 #grab more than 20

48 export1 = orex %>% filter(NumPerDay > 19) %>%

49 filter(NumPerDay < 40) %>%

50 arrange(desc(NumPerDay), Date)

51 #get dates

52 datelist1 = head(unique(export1$Date), 5)

53

54 #subset

55 export1 = export1 %>%

56 filter(Date %in% datelist1) %>%

57 distinct(SLC, Date, .keep_all = T) %>%

58 select(-c(5,7,8,9,14,15,16,17,18,19))

59

60 #grab more than 30

61 export2 = orex %>% filter(NumPerDay > 30) %>%

62 arrange(desc(NumPerDay), Date)

63 #get dates

64 datelist2 = head(unique(export2$Date), 5)

65

66 #subset

67 export2 = export2 %>%

68 filter(Date %in% datelist2) %>%

69 distinct(SLC, Date, .keep_all = T) %>%

70 select(-c(5,7,8,9,14,15,16,17,18,19))

71

72 #combine

73 export = export1 %>%

74 bind_rows(export2) %>%

75 relocate(SLC, .after = Date)

76 #strip latter half of SLC identifier (first part is already unique)

77 SLC = export$SLC

78 SLC = sub(" .*", "", SLC)

79 SLC = sub("T011.", "", SLC)

80 export$SLC = SLC

81

82 #export to txt

83 print(length(union(datelist1, datelist2)))

84 write.table(export, file = "Data.txt", sep = " ",

85 row.names = F, col.names = F)
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