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Intoduction

This report compares a Frequentist logistic regression model with several corresponding

Bayesian models. The purpose of these varying implementations is to contrast the advantages

and difficulties of specifying varying implementations of Bayesian models using two sets of priors

and varying sample sizes. Specifically, I seek to assess whether incorrectly specified priors are

overwhelmed by the likelihood at different sample sizes and the absolute and relative posterior

predictive accuracy of the respective models.

1 Data

The data set used in the remainder of this report is the simulated Default data set, taken from

An introduction to statistical learning. The stated aim of this data set is he aim here is to "predict

which [credit card] customers will default on their credit card debt" (James, Witten, Hastie,

and Robert Tibshirani 2021, p. 133). It spans 10, 000 simulated observations over 4 variables:

default, the binary dependent variable, student, a binary indicator of whether a customer is

a student, balance, a (non-negative) continuous variable which stores a customer’s credit card

balance, and income, a (non-negative) continuous variable which records a customer’s income.

1.1 Summary Statistics

Table 1 below displays summary statistics. No variables have missing observations. About

one third of customers are students, whereas only about 3.3% of customers default on their credit

card payment, making this data set highly imbalanced, which presents certain challenges when

splitting the data set.

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Max

default 10,000 0.033 0.179 0 1

student 10,000 0.294 0.456 0 1

balance 10,000 835.000 484.000 0.000 2,654.000

income 10,000 33,517.000 13,337.000 772.000 73,554.000
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Figure 1: Correlation of Student and Balance

Figure 2: Correlation of Balance and Income

One interesting property of these data is that two variables, student and balance, are correlated,

as can be seen in Figure 1: students tend to hold higher levels of debt, which we would a priori

expect to be associated with a higher default probability. As shown in Figure 2, balance and

income show no clear correlation.

1.2 Sample Splitting

To be able to compare the varying implementations of the Bayesian model introduced in

section 2, I generate two subsamples from the data, which hold 1, 000 and 5, 000 observations,

respectively. The random split preserves the proportion of default, the response, in all subsamples

by using caret: Classification and Regression Training ’s create_partition() function. Table 2
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below shows the proportion of the response in these subsamples and the full data set.

Table 2: Data Splits

n_obs Proportion of Defaults
Subset 1 1000 0.033
Subset 2 5000 0.032
Original Data 10000 0.034

2 Model

This section describes the specification of the Frequentist model as well as two specifications

of the same logistic regression as Bayesian models with two different priors.

2.1 Frequentist Baseline

The main interest of this model lies in predicting default on outstanding credit card balance

given all three predictors, or, more formally,

P(y = 1|x) = P(y = 1|student, balance, income) (1)

(cf. Wooldridge 2020, p. 560) To achieve this, and given the binary nature of the response, I use

a simple logistic regression model estimated by Maximum Likelihood of the form

default = α+ β1 × student+ β2 × balance+ β3 × income (2)

using glm(form, data = data, family = binomial(link = "logit")). Estimation Results

are reported in Section 4.
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2.2 Bayesian Model with Flat Priors

The first Bayesian model implements (2) by assuming uninformative, that is, flat, priors. The

R implementation requires rstanarm: Bayesian Applied Regression Modeling via Stan’s wrapper

function stan_glm(), as rstan: R Interface to Stan’s sampling() implementation did not progress

past the first iteration using either of the two available (NUTS and HMC) Markov Chain Monte

Carlo (MCMC) sampling algorithms 1. The implementation in R is fairly straightforward:

stan_glm(default ~ student + balance + income, data = data,

family = binomial(link = "logit"), y = T,

algorithm = "sampling",

warmup = 1000, iter = 10000, chains = 4, refresh = 10000)

As no priors are specified, rstanarm’s default priors are used by default:

Priors for model 'flat.fit'

------

Intercept (after predictors centered)

~ normal(location = 0, scale = 2.5)

Coefficients

Specified prior:

~ normal(location = [0,0,0], scale = [2.5,2.5,2.5])

Adjusted prior:

~ normal(location = [0,0,0], scale = [5.48492,0.00517,0.00019])

------

See help('prior_summary.stanreg') for more details

Estimation Results are reported in Section 4.

2.3 Bayesian Model with Strong Priors

To evaluate the performance and advantages of using a Bayesian modelling approach, I also

specify a second model which uses priors that are in a sense data-driven. Using estimation results

of the Frequentist baseline (reported fully later), I specify a set of priors that are purposefully

wrong in order to see how many observations are needed by this Bayesian model to successfully

update these priors to a good posterior approximation of the actual data. The parameters used

are deliberately changed based on the Frequentist baseline, from
1Appendix A reports details.
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term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -10.9 0.492 -22.1 4.91e-108

2 student -0.647 0.236 -2.74 6.19e- 3

3 balance 0.00574 0.000232 24.7 4.22e-135

4 income 0.00000303 0.00000820 0.370 7.12e- 1

to

data_driven_prior = normal(location = c(0.5, -0.1, -0.011),

scale = c(0.236, 0.000232, 0.00000820), autoscale = F)

The means for the coefficients’ respective normal distributions were chosen to have a mean that

is opposite in sign and different in magnitude to the point estimates, but to have the same scale.

The implementation is again simple:

stan_glm(default ~ student + balance + income, data = data,

family = binomial(link = "logit"), y = T,

algorithm = "sampling",

prior = data_driven_prior,

warmup = 1000, iter = 10000, chains = 4, refresh = 10000)

2.4 Strong Priors with Different Sample Sizes

This second model is re-estimated with identical informative priors on the two subsamples

discussed earlier:

stan_glm(default ~ student + balance + income, data = subset1,

family = binomial(link = "logit"), y = T,

algorithm = "sampling",

prior = data_driven_prior,

warmup = 1000, iter = 10000, chains = 4, refresh = 0)

stan_glm(default ~ student + balance + income, data = subset2,

family = binomial(link = "logit"), y = T,

algorithm = "sampling",

prior = data_driven_prior,

warmup = 1000, iter = 10000, chains = 4, refresh = 0)
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3 MCMC Diagnostics

3.1 Flat Priors

The Bayesian model with flat priors displays good MCMC covergence:

Figure 3: MCMC Trace Plot, Flat Priors

As Figure 3 shows, all 4 MCMC chains do not show flat portions or a trend over time, but

rather display a white noise-like trace, indicating good mixing.

Figure 4: Geweke Diagnostic p-values, Flat Priors

8



Figure 4 shows the z-scores produced by the Geweke Diagnostic (cf. Geweke 1991, p.9). As the

vast majority of z-scores lie between the critical values at the 5% confidence level, we can conclude

that there is no statistically significant difference between the means of samples drawn at the

beginning of each chain and in the subsequent portions, which is indicative of good convergence to

the target (i.e. posterior) distribution. It also shows that there is no burn-in required to achieve

convergence for this model.

Figure 5: MCMC Autocorrelation, Flat Priors

Figure 5 shows that there is barely any autocorrelation in the MCMC chains for predictor

student, which shows the highest autocorrelation. The strongest autocorrelation is detected at

lag 1, with autocorrelation subsiding to zero by lag 5 at the latest across all variables.

Figure 6: R̂, Flat Priors
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Figure 6 shows the Gelman-Rubin statistic (cf. Gelman and Rubin 1992) across all four

variables. Rrstan recommends using only samples that show an R̂ ≤ 1.05. As this model shows

R̂ = 1 across all variables, this is again indicative of good convergence.

Figure 7: Neff , Flat Priors

Figure 7 shows the ratio of the effective sample size Neff to N across all four variables. Values

of Neff

N ≤ 0.5 are commonly viewed as favorable for convergence, which this model displays.

3.2 Strong Priors

For the sake of brevity, this subsection simply displays the same plots as the previous subsection

for the strong prior model, which also shows (very) favorable convergence properties.

Figure 8: MCMC Trace Plot, Strong Priors

As Figure 8 shows, all 4 MCMC chains do not show flat portions or a trend over time, but

rather display a white noise-like trace, indicating good mixing.
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Figure 9: Geweke Diagnostic p-values, Strong Priors

Figure 9 is again indicative of good convergence.

Figure 10: MCMC Autocorrelation, Strong Priors

Figure 10 shows less autocorrelation for predictor student.
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Figure 11: R̂, Strong Priors

Figure 11 shows identical R̂ = 1 across all variables, this is again indicative of good convergence.

Figure 12: Neff , Strong Priors

Figure 12 shows that Neff

N is higher than for the model using flat priors.

Figures 13 - 15 below display the same diagnostics for the model with strong priors estimated

on the subsets with 1, 000 and 5, 000 observations. There are no distinguishable differences

between these models in terms of autocorrelation, R̂, and Neff . This is somewhat surprising, as

one could reasonably expect the model that uses only 1, 000 observations to converge less well

than the ones using more data, but this seems not to be the case.
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Figure 13: MCMC Autocorrelation by Sample Size

Figure 14: R̂ by Sample Size
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Figure 15: Neff by Sample Size

In conclusion, there is no indication that either model needs burn-in draws or thinning to

converge or mix, and therefore to predict well.

4 Estimation Results

This section reports coefficient estimates / posterior samples from all three models. As

the main topic of interest of this report is the comparison of the models’ respective strengths,

and given that the data used are simulated, I will not dwell too much on the interpretation of

parameter estimates.

4.1 Frequentist Baseline

Table 3 shows the point estimates and standard errors for eq. (2). Interestingly, income has

an estimated coefficient of 0 and is the only variable that is not statistically significant. This can

plausibly be explained by the correlated nature of student and income. Due to this correlation,

student, the estimated coefficient of which is highly statistically significant, picks up the variance

in income, which renders the predictive power of income useless.
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Table 3: Baseline Estimation Results

Dependent variable:

default

student −0.647∗∗∗ (0.236)

balance 0.006∗∗∗ (0.0002)

income 0.00000 (0.00001)

Constant −10.900∗∗∗ (0.492)

Observations 10,000

Log Likelihood −786.000

Akaike Inf. Crit. 1,580.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.2 Bayesian Model with Flat Priors

Figure 16 shows histograms and correlation scatter plots for a sample (n = 1, 000) of the

posterior distribution of eq. (2) estimated using flat priors. As the histograms show, this sample

of the posterior is approximately normal in distribution, which corresponds to the flat priors.

The scatter plots do show some signs of correlation in the posterior sample, for instance between

student and income. Overall, these results are to be expected: estimating this model with flat,

i.e. N -distributed priors, leads to a normally distributed posterior sample. Table 4 below reports

parameter means, Standard Deviations, and confidence intervals.
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Figure 16: Posterior Sample, Flat Priors

Table 4: Fit with Flat Priors

mean mcse sd 10% 50% 90% n_eff Rhat

(Intercept) -10.8220 0.0038 0.4861 -11.4481 -10.8138 -10.2072 16558 1

student -0.6413 0.0018 0.2328 -0.9393 -0.6406 -0.3430 16941 1

balance 0.0057 0.0000 0.0002 0.0054 0.0057 0.0060 14912 1

income 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17256 1

mean_PPD 0.0334 0.0000 0.0021 0.0307 0.0334 0.0361 37053 1

log-posterior -796.0163 0.0128 1.4124 -797.9135 -795.6960 -794.5339 12209 1

4.3 Bayesian Model with Strong Priors

Figure 17 shows histograms and correlation scatterplots for a sample (N = 1, 000) of the

posterior distribution of eq. (2) estimated using data-driven / strong priors. Similarly to the

flat prior model, the posterior sample is normally distributed for every parameter. Interestingly,

this posterior does not show any correlation between any parameters to the extent that the one

with flat priors does. Table 5 again shows summary values. The estimated parameter means are

noticeably different from Table 4, while the SD are similar. This is explained by the specification

of the priors, which use an incorrect mean, but accurate SD. As Tables 6 and 7 below show, the

model with strong priors achieves results that are similar to the flat prior baseline using only

n = 5, 000, though the results are closer for the full data set.

16



Figure 17: Posterior Sample, Strong Priors

Tables 5-7 below show concrete values.

Table 5: Fit with Strong Priors, Full Data Set

mean mcse sd 10% 50% 90% n_eff Rhat

(Intercept) 2.01e+02 0.0021 0.4031 2.00e+02 2.01e+02 2.01e+02 37011 1

student -9.64e+00 0.0013 0.2320 -9.94e+00 -9.64e+00 -9.34e+00 34451 1

balance -7.70e-02 0.0000 0.0002 -7.73e-02 -7.70e-02 -7.67e-02 35443 1

income -1.05e-02 0.0000 0.0000 -1.05e-02 -1.05e-02 -1.05e-02 30597 1

mean_PPD 3.68e-02 0.0000 0.0005 3.62e-02 3.68e-02 3.74e-02 38346 1

log-posterior -1.13e+05 0.0112 1.4083 -1.13e+05 -1.13e+05 -1.13e+05 15949 1

Table 6: Fit with Strong Priors, Subset 1

mean mcse sd 10% 50% 90% n_eff Rhat

(Intercept) 2.32e+02 0.004 0.789 2.31e+02 2.32e+02 2.33e+02 40872 1

student -1.47e+00 0.001 0.236 -1.77e+00 -1.47e+00 -1.17e+00 39924 1

balance -9.70e-02 0.000 0.000 -9.70e-02 -9.70e-02 -9.70e-02 44727 1

income -1.10e-02 0.000 0.000 -1.10e-02 -1.10e-02 -1.10e-02 42997 1

mean_PPD 6.70e-02 0.000 0.002 6.40e-02 6.70e-02 6.90e-02 40229 1

log-posterior -1.44e+04 0.011 1.406 -1.44e+04 -1.44e+04 -1.44e+04 15914 1
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Table 7: Fit with Strong Priors, Subset 2

mean mcse sd 10% 50% 90% n_eff Rhat

(Intercept) 2.08e+02 0.002 0.486 2.07e+02 2.08e+02 2.08e+02 40934 1

student -4.76e+00 0.001 0.232 -5.06e+00 -4.76e+00 -4.46e+00 36665 1

balance -8.90e-02 0.000 0.000 -8.90e-02 -8.90e-02 -8.80e-02 37825 1

income -1.10e-02 0.000 0.000 -1.10e-02 -1.10e-02 -1.10e-02 36824 1

mean_PPD 3.80e-02 0.000 0.001 3.70e-02 3.80e-02 3.90e-02 38697 1

log-posterior -5.83e+04 0.011 1.422 -5.83e+04 -5.83e+04 -5.83e+04 15305 1
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5 Model Evaluation

5.1 Posterior Predictive Checks

Figure 18 below gives an impression of how well the two models fit the data. The left-hand

side panels show the distribution of the posterior predictive distribution (PPD), which is the

distribution of the outcome implied by the model after using the observed data to update our

beliefs about the unknown parameters. The two dark-blue bars / dark-red in the upper and

lower panels represent the true (i.e. observed) proportion of default = 0 and default = 1 in

the data. The light blue /red distributions around this proportion are the respective PPD with

1, 000 draws each. As the left-hand panel shows, the model with flat priors generates a PPD

that fairly accurately represents the true proportion. On the right-hand side panels, the same

plots are displayed for the model with strong priors. For this model, which was specified with

intentionally "wrong" means, the PPD is clearly off from the true proportion. Even though this

model converges just fine and produces identical-looking posterior samples, it clearly fits the data

substantially worse, even after updating the (wrong) priors with 10, 000 observations.

Figure 18: Response Proportion Comparison between Priors

Figures 19 and 20 below display an overlay of the PPD density for the models with flat and

strong priors onto the empirical density. For both models, the PPD sample density is virtually

indistinguishable from the observed density, which means that both models, even the one with

wrong priors, fit the data seemingly well, as they can be used to simulate data that at least in

density is close to identical to the observed data. However, Figure 18 above paints a different

picture, as the model with strong priors fails to accurately predict the response proportions. As
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this would be the main interest of any practical application, the density overlays are somewhat

deceiving for this model.

Figure 19: Density Overlay Comparison between Priors

Figure 20: Discrete Density Overlay Comparison between Priors

Figure 21 below compares the respective proportions of default = 0 and default = 1 between

the respective PPDs and the actual data (sub)sets. While none of the models are particularly

accurate, there is a visible improvement each time the model is given more data to update its

intentionally wrong priors. This improvement can be spotted by the posterior sample moving

closer to the true proportion the more observations there are.
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Figure 21: Response Proportion Comparison by Sample Size

Finally, Figure 22 displays the overlay of the PPD density for the model with strong priors

onto the empirical density by subsample. Similarly to the proportions, there is a clearly visible

improvement every time we increase the sample size.

Figure 22: Density Overlay Comparison by Sample Size

21



5.2 Cross-Validation

Moving beyond graphical Posterior Predictive Checks, which ultimately rely on heuristics

and judgement, this section attempts to quantify the goodness of fit of the models by using

10-fold Cross-Validation (cf. James, Witten, Hastie, and Robert Tibshirani 2021, ch. 5.1.3). To

keep the computation tractable, I use k = 10 instead of k = N . a.k.a leave-one-out CV. Using

rstanarm::kfold(), I can compare the performance of all Bayesian models:

Table 8: 10-fold CV Comparison

ELPD ELPD SE # Params # Params SE N

Strong Priors, 1k obs -2859 293.6 100.43 17.744 1000

Strong Priors, 5k obs -9925 558.4 147.69 19.288 5000

Strong Priors, 10k obs -19983 790.0 176.85 21.259 10000

Flat Priors -790 38.9 3.98 0.678 10000

The first column displays the expected log pointwise predictive density (ELPD). Following

Vehtari, Gelman, and Gabry (2017, section 2.3), rstanarm::kfold() partitions the data into

k = 10 subsets y_k, k = 1, . . .K and fits the model separately to each trainig set y−k, yielding a

posterior ppost(−k)(θ) = p(θ|y(−k)). For the typical value of k = 10, it is computationally cheap to

refit the model separately each time. Vehtari, Gelman, and Gabry (2017, eq. 19) define predictive

accuracy for each data point, which yields the log predictive density for yi ∈ k:

logp(yi|y(−k)) = log

∫
p(yi|θ)p(θ|y(−k))dθ, i ∈ k (3)

If the posterior [(θ|y(k) is summarized by S simulation draws θk,s, the log predictive density is

computed as

êlpdi = log
( 1

S

S∑
i=1

p(yi|θk,s)
)

(4)

using the simulations which correspond to subset k ∋ i. Lastly, one sums to obtain the estimate

êlpdxval =

n∑
i=1

êlpdi (5)

ELPD values themselves are mainly useful for comparing models. Though such a comparison is

nontrivial, the difference between ELPD values shown in Table 8 are substantial. Following Sivula

et al. (2022, p. 10ff), it is necessary to assume that both ELPD and the associated standard error

(SE) based on normal approximation are are well-calibrated, which a.o. necessitates no gross

misspecification in the models to be compared. Although one can reasonably conclude that the
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Strong Prior model used here does not satisfy this condition, I will attempt to use Sivula et al.

(2022)’s rough heuristic of significant differences between models for |elpddiff | > 4, ifN > 100

(cf. If elpd_diff/se_diff > |2|, is this noteworthy? 2021). Using this heuristic, there are very

strong differences between the predicitvce accuracy of all models. The Flat Prior model shows

the largest ELPD estimate with a narrow standard error (SE). The smallest difference to this

baseline is surprisingly given by comparing this baseline to the model using strong priors fit to

the smallest subset of n = 1, 000. The difference is largest (i.e. several orders of magnitude) when

comparing the flat prior model to the strong prior model fit on more data. This is yet again due

to the (intentional) misspecification. Following Spiegelhalter et al. (2002, p. 583), # Params

in Table 8 refers to the measure pd of the "effective number of parameters in a model as the

difference between the posterior mean of the deviance and the deviance at the posterior means of

the parameters of interest". By this measure as well, the model with flat priors fits the data best

by far.

6 Conclusion

This report has contrasted the implementation, results, posterior predictive checks, and

cross-validation performance of one Bayesian model implemented with two different sets of priors.

Both models mix and converge well, and at first glance yield similar results. This is somewhat

unexpected given that the model estimated using strong priors was deliberately specified using

incorrect priors to see how many observations are necessary for those priors to be dominated by

the Likelihood. When comparing the models side-by-side, it is clear that while both have excellent

MCMC diagnostics, only the flat prior model achieves good accuracy in representing the correct

proportions of response values in the posterior. As expected, for larger sample sizes, the model

with strong priors achieves better accuracy here. Similarly, for larger sample sizes, the strong

prior model performs more closely to the baseline in all graphical Posterior Predictive Checks.

It is only when comparing the 10-fold CV ELPD estimates that it becomes clear that the more

observations are used to fit the strong prior model, the worse its predictive accuracy vis-à-vis

the flat prior baseline becomes. Overall, the models yield results as expected, with the strong

(that is, wrong) priors overwhelmed by the likelihood for larger N , but the resulting models still

performing worse than the one fit using flat priors in terms of predictive accuracy as a result of

the misspecified priors.
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7 Software used

The implementation of this project used R: A Language and Environment for Statistical

Computing v. 4.2.2 and relies on the following packages:

1. tidyverse: Easily Install and Load the Tidyverse v.1.3.2

2. rstan: R Interface to Stan v.2.21.8

3. rstanarm: Bayesian Applied Regression Modeling via Stan v.2.21.3

4. bayesplot: Plotting for Bayesian Models v.1.10.0

5. coda: Output Analysis and Diagnostics for MCMC v.0.19-4

6. kableExtra: Construct Complex Table with kable and Pipe Syntax v.1.3.4

7. stargazer: Well-Formatted Regression and Summary Statistics Tables v.5.2.3

8. ISLR: Data for an Introduction to Statistical Learning with Applications in R v.1.3

9. caret: Classification and Regression Training v.6.0-93
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8 Appendix A: Failed rstan Attempt

(Back to Model) This Appendix contrasts the machine-generated rstanrm::stan_glm() STAN

ode with my attempt at implementing the same model in rstan::sampling(), documented by

the R and STAN files used. It is unclear to me why implementing the model in rstan did not work.

The only sampling algorithm available in rstanarm, the wrapper method that worked perfectly

fine, is Hamiltonian Monte Carlo (HMC) (cf. cf. rstanarm: Bayesian Applied Regression Modeling

via Stan). Using rstan::get_stanmodel(flat.fit\$stanfit) yields the following result:

Machine-Generated STAN code

4 class stanmodel 'bernoulli' coded as follows:

#include /pre/Columbia_copyright.stan

#include /pre/license.stan

// GLM for a Bernoulli outcome

functions {

#include /functions/common_functions.stan

#include /functions/bernoulli_likelihoods.stan

}

data {

// dimensions

int<lower=0> K; // number of predictors

int<lower=0> N[2]; // number of observations where y = 0 and y = 1 respectively

vector[K] xbar; // vector of column-means of rbind(X0, X1)

int<lower=0,upper=1> dense_X; // flag for dense vs. sparse

matrix[N[1],K] X0[dense_X]; // centered (by xbar) predictor matrix | y = 0

matrix[N[2],K] X1[dense_X]; // centered (by xbar) predictor matrix | y = 1

int<lower=0, upper=1> clogit; // 1 iff the number of successes is fixed in each stratum

int<lower=0> J; // number of strata (possibly zero)

int<lower=1,upper=J> strata[clogit == 1 ? N[1] + N[2] : 0];

// stuff for the sparse case

int<lower=0> nnz_X0; // number of non-zero elements in the implicit X0 matrix

vector[nnz_X0] w_X0; // non-zero elements in the implicit X0 matrix
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int<lower=1, upper = K> v_X0[nnz_X0]; // column indices for w_X0

// where the non-zeros start in each row of X0

int<lower=1, upper = rows(w_X0) + 1> u_X0[dense_X ? 0 : N[1] + 1];

int<lower=0> nnz_X1; // number of non-zero elements in the implicit X1 matrix

vector[nnz_X1] w_X1; // non-zero elements in the implicit X1 matrix

int<lower=1, upper = K> v_X1[nnz_X1]; // column indices for w_X1

// where the non-zeros start in each row of X1

int<lower=1, upper = rows(w_X1) + 1> u_X1[dense_X ? 0 : N[2] + 1];

// declares prior_PD, has_intercept, link, prior_dist, prior_dist_for_intercept

#include /data/data_glm.stan

int<lower=0> K_smooth;

matrix[N[1], K_smooth] S0;

matrix[N[2], K_smooth] S1;

int<lower=1> smooth_map[K_smooth];

int<lower=5,upper=5> family;

[ommited for brevity]

generated quantities {

real mean_PPD = compute_mean_PPD ? 0 : negative_infinity();

real alpha[has_intercept];

if (has_intercept == 1) {

if (dense_X) alpha[1] = gamma[1] - dot_product(xbar, beta);

else alpha[1] = gamma[1];

}

if (compute_mean_PPD) {

vector[N[1]] pi0;

vector[N[2]] pi1;

// defines eta0, eta1

#include /model/make_eta_bern.stan

if (has_intercept == 1) {
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if (link != 4) {

eta0 += gamma[1];

eta1 += gamma[1];

}

else {

real shift;

shift = fmax(max(eta0), max(eta1));

eta0 += gamma[1] - shift;

eta1 += gamma[1] - shift;

alpha[1] -= shift;

}

}

if (clogit) for (j in 1:J) mean_PPD += successes[j]; // fixed by design

else {

pi0 = linkinv_bern(eta0, link);

pi1 = linkinv_bern(eta1, link);

for (n in 1:N[1]) mean_PPD += bernoulli_rng(pi0[n]);

for (n in 1:N[2]) mean_PPD += bernoulli_rng(pi1[n]);

}

mean_PPD /= NN;

}

}

Upon comparing this code to the one I tried to use (Section 8 below), I can spot no clear

explanation why rstanarm’s HMC algorithm worked while rstan’s did not. I can also not see any

explanation as to why rstan’s NUTS sampling algorithm did not work, as it is supposedly more

easily cmputationally tractable (cf. rstan: R Interface to Stan, sampling() documentation).

R code

1 ## Tobias Schnabel ##

2 ## i6255807 ##

3

4 rm(list = ls(all = TRUE)) #CLEAR ALL

5

6 ####Housekeeping####

7 packages <- c("tidyverse", "broom", "ggpubr", "stargazer", "caret", "rstan",

8 "rstanarm", "kableExtra", "bayesplot", "coda", "ISLR")
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9

10 #Comment in lines below to Install packages not yet installed

11 # installed_packages <- packages %in% rownames(installed.packages())

12 # if (any(installed_packages == FALSE)) {

13 # install.packages(packages[!installed_packages])

14 # }

15

16 #load packages

17 invisible(lapply(packages, library, character.only = TRUE))

18

19 #set options

20 options(mc.cores = parallel::detectCores())

21 rstan_options(auto_write = TRUE)

22

23 #load Credit Card Default Data Set

24 attach(Default)

25

26 # tidy

27 #make factors numerical

28 data = Default %>%

29 mutate(default=ifelse(default=="No", 0,1)) %>%

30 mutate(student=ifelse(student=="No", 0,1))

31

32 #df summary statistics

33 stargazer(data, type = "text")

34 #prepare data for STAN

35 #make recipe

36 rec = recipe(default ~ student + balance + income, data = data) %>%

37 prep(retain = T)

38

39 #extract X matrix and y vector

40 X = juice(rec, all_predictors(), composition = 'matrix')

41 y = juice(rec, all_outcomes(), composition = 'matrix') %>% drop()

42

43 #feed data into STAN

44 stan_data <- list(

45 X = X,

46 K = ncol(X),

47 N = nrow(X),

48 y = y,

49 use_y_rep = T,

50 use_log_lik = F

51 )

52
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53 #initialize models

54 stan.mod = stan_model('Final_Assignment_Schnabel.stan')

55

56 #flat priors WITHOUT income variable

57 # does not work

58 # flat.fit.hmc = sampling(stan.mod, data = stan_data,

59 # algorithm = "HMC",

60 # warmup = 1000, iter = 10000, chains = 1, thin = 1)

61

62 #does work, but does not perform MCMC

63 flat.fit.fixedparam = sampling(stan.mod, data = stan_data,

64 algorithm = "Fixed_param",

65 warmup = 1000, iter = 10000, chains = 4, thin = 1)

66

67 #does not work

68 # flat.fit.nuts = sampling(stan.mod, data = stan_data,

69 # algorithm = "NUTS",

70 # warmup = 1000, iter = 10000, chains = 1, thin = 1)

71

72

73 fixedparam_params = rstan::extract(flat.fit.fixedparam)

74 monitor(flat.fit.fixedparam)

75

76 #check proportions of 0s and ones

77 ppc_stat(y, yrep.flat, stat = "prop_zero", binwidth = 0.00005)

78 ppc_stat(y, yrep.flat, stat = "prop_one", binwidth = 0.00005)

79

80 #check posterior.flat trace

81 color_scheme_set("mix-blue-pink")

82 mcmc_trace(flat.fit.fixedparam)

83 mcmc_pairs(flat.fit.fixedparam)

84

85 # mcmc diagnostics

86 # rhat

87 plot(flat.fit.fixedparam, "rhat")

88 plot(flat.fit.fixedparam, "rhat_hist")

89 # ratio of effective sample size to total posterior.flat sample size

90 plot(flat.fit.fixedparam, "neff")

91 plot(flat.fit.fixedparam, "neff_hist")

92 # autocorrelation by chain

93 plot(flat.fit.fixedparam, "acf", pars = "(Intercept)")

94 plot(flat.fit.fixedparam, "acf_bar", pars = "(Intercept)")

95 mcmc_acf(flat.fit.fixedparam)

30



STAN code

1 data {

2 int <lower = 0> N; // Defining the number of defects in the test dataset

3 // response

4 int <lower = 0, upper = 1> y [N];

5 // number of columns in the design matrix X

6 int <lower = 0> K;

7 // design matrix X

8 // does not include an intercept

9 matrix [N, K] X;

10 //keep responses

11 int use_log_lik;

12 int use_y_rep;

13 }

14 parameters {

15 // The (unobserved) model parameters that we want to recover

16 real alpha;

17 vector[K] beta;

18 }

19 transformed parameters {

20 vector[N] eta;

21 eta = alpha + X * beta;

22 }

23 model {

24 // multiple logistic regression model

25 y ~ bernoulli_logit(eta);

26

27 // Prior models for the unobserved parameters

28 // alpha ~ normal(0, 1);

29 // beta ~ normal(1, 1);

30 }

31 generated quantities {

32 // simulate data from the posterior

33 vector[N * use_y_rep] y_rep;

34 // log-likelihood posterior

35 vector[N * use_log_lik] log_lik;

36 for (i in 1:num_elements(y_rep)) {

37 y_rep[i] = bernoulli_rng(inv_logit(eta[i]));

38 }

39 for (i in 1:num_elements(log_lik)) {

40 log_lik[i] = bernoulli_logit_lpmf(y[i] | eta[i]);

41 }

42 }
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9 Appendix B: Main Script

Last executed January 31, 2023, 00:36, runtime of 7.89 minutes on 10 cores.

1 ## Tobias Schnabel ##

2 ## i6255807 ##

3

4 rm(list = ls(all = TRUE)) #CLEAR ALL

5

6 ####Housekeeping####

7 packages <- c("tidyverse", "broom", "ggpubr", "stargazer", "caret", "rstan",

8 "rstanarm", "kableExtra", "bayesplot", "coda", "ISLR")

9

10 #Comment in lines below to Install packages not yet installed

11 # installed_packages <- packages %in% rownames(installed.packages())

12 # if (any(installed_packages == FALSE)) {

13 # install.packages(packages[!installed_packages])

14 # }

15

16 #load packages

17 invisible(lapply(packages, library, character.only = TRUE))

18

19 #set options

20 options(digits = 3)

21 options(mc.cores = parallel::detectCores())

22 rstan_options(auto_write = TRUE)

23

24 #load Credit Card Default Data Set

25 attach(Default)

26

27 #record start time

28 start.time = Sys.time()

29

30 # tidy

31 #make factors numerical

32 data = Default %>%

33 mutate(default=ifelse(default=="No", 0,1)) %>%

34 mutate(student=ifelse(student=="No", 0,1))

35

36 #df summary statistics

37 stargazer(data, type = "text")

38

39 #generate datasets with fewer obs to compare models

40 intrain_1k = caret::createDataPartition(
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41 y = data$default,

42 p = 0.1,

43 list = F

44 )

45

46 intrain_5k = caret::createDataPartition(

47 y = data$default,

48 p = 0.5,

49 list = F

50 )

51

52 subset1 = data[intrain_1k,]

53 subset2 = data[intrain_5k,]

54

55 #verify proportions

56 props = rbind(table(subset1$default)[2]/table(subset1$default)[1],

57 table(subset2$default)[2]/table(subset2$default)[1],

58 table(data$default)[2]/table(data$default)[1])

59 nrows = rbind(nrow(subset1), nrow(subset2), nrow(data))

60

61 #create matrix to export later

62 data_integrity = as.matrix(cbind(nrows, props))

63 rownames(data_integrity) = c("Subset 1", "Subset 2", "Original Data")

64 colnames(data_integrity) = c("n_obs", "Proportion of Defaults")

65 print(data_integrity)

66

67 #estimate logit baseline

68 form = formula(default ~ student + balance + income)

69

70 baseline = glm(form, data = data, family = binomial(link = "logit"))

71 tidy(baseline)

72

73

74 ####flat priors####

75

76 #fit stan model

77 flat.fit = stan_glm(default ~ student + balance + income, data = data,

78 family = binomial(link = "logit"), y = T,

79 algorithm = "sampling",

80 warmup = 1000, iter = 10000, chains = 4, refresh = 10000)

81

82 #generate yrep for this prior

83 yrep.flat = posterior_predict(flat.fit, draws = 1000)

84
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85 #extract posterior

86 posterior.flat = as.matrix(flat.fit)

87

88 #generate tidy df for use with ggplot

89 plotposterior.flat = as.data.frame(flat.fit) %>%

90 reshape2::melt(measure.vars = 1:4)

91

92

93

94 ####strong / data-driven priors####

95 tidy(baseline)

96 #set data-driven priors: means and SD taken from baseline logit output

97 data_driven_prior = normal(location = c(0.5, -0.1, -0.011),

98 scale = c(0.236, 0.000232, 0.00000820), autoscale = F)

99

100 #estimate models with data-driven / strong prior

101 #fit strong priors (data-driven) on ***FULL data set***

102 strong.fit = stan_glm(default ~ student + balance + income, data = data,

103 family = binomial(link = "logit"), y = T,

104 algorithm = "sampling",

105 prior = data_driven_prior,

106 warmup = 1000, iter = 10000, chains = 4, refresh = 10000)

107

108 yrep.strong = posterior_predict(strong.fit, draws = 1000) #gen yrep

109 posterior.strong = as.matrix(strong.fit) #extract posterior

110

111 #generate tidy df for ggplot

112 plotposterior.strong = as.data.frame(strong.fit) %>%

113 reshape2::melt(measure.vars = 1:4)

114

115 #fit strong priors (data-driven) on ***SUBSET 1***

116 strong.fit.s1 = stan_glm(default ~ student + balance + income, data = subset1,

117 family = binomial(link = "logit"), y = T,

118 algorithm = "sampling",

119 prior = data_driven_prior,

120 warmup = 1000, iter = 10000, chains = 4, refresh = 0)

121

122 yrep.strong.s1 = posterior_predict(strong.fit.s1, draws = 1000) #gen yrep

123 posterior.strong.s1 = as.matrix(strong.fit.s1) #extract posterior

124

125 #fit strong priors (data-driven) on ***SUBSET 2***

126 strong.fit.s2 = stan_glm(default ~ student + balance + income, data = subset2,

127 family = binomial(link = "logit"), y = T,

128 algorithm = "sampling",
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129 prior = data_driven_prior,

130 warmup = 1000, iter = 10000, chains = 4, refresh = 0)

131

132 yrep.strong.s2 = posterior_predict(strong.fit.s2, draws = 1000) #gen yrep

133 posterior.strong.s2 = as.matrix(strong.fit.s2) #extract posterior

134

135

136 ####COMPARE RESULTS####

137 #monitor results

138 monitor(posterior.flat)

139

140 #look at flat priors

141 prior_summary(flat.fit)

142

143 #look at strong priors

144 prior_summary(strong.fit)

145

146 #monitor results

147 monitor(posterior.strong)

148 cat("", sep = "\n") # print empty line for readability

149 #monitor results subset 1

150 monitor(posterior.strong.s1)

151 cat("", sep = "\n") # print empty line for readability

152

153 #monitor results subset 2

154 monitor(posterior.strong.s2)

155 cat("", sep = "\n") # print empty line for readability

156

157 #Geweke Test

158 geweke.diag(posterior.flat)

159 geweke.diag(posterior.strong)

160 geweke.diag(posterior.strong.s1)

161 geweke.diag(posterior.strong.s2)

162

163 #Geweke plots

164 geweke.plot(as.mcmc(posterior.flat))

165 geweke.plot(as.mcmc(posterior.strong))

166 geweke.plot(as.mcmc(posterior.strong.s1))

167 geweke.plot(as.mcmc(posterior.strong.s2))

168

169

170 #compare 10-fold cv with diff sample sizes, this way of performing 10-fold cv

171 #adds an attribute to each model

172 #*****NOTE*****this will take quite a while to run
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173 #I would recommend lowering k to 3-4 unless strong compute is available

174 # reason why I chose k = 10: my machine has 10 cores, which this function utilizes

175 # reason why not LOOCV: too computationally expensive

176 flat.fit$loo = kfold(flat.fit, k = nrow(data))

177 strong.fit$loo = kfold(strong.fit, k = nrow(data))

178 strong.fit.s1$loo = kfold(strong.fit.s1, k = 10)

179 strong.fit.s2$loo = kfold(strong.fit.s2, k = nrow(subset2))

180

181 #compare

182 loocv.comp = loo_compare(flat.fit, strong.fit)

183 strong.fit.s1$loo

184 strong.fit.s2$loo

185

186 ####Graphical PPC####

187 # do plots

188 #define custom functions for plots below

189 prop_zero <- function(x) mean(x == 0)

190 prop_one <- function(x) mean(x == 1)

191 source('Plots.R')

192

193 ####Housekeeping Pt2####

194 #export plots and Tables and copy code files

195 if (Sys.info()[7] == "ts") {

196 #this code only executes on my machine to prevent errors

197 source('Tables.R')

198 source('Plot.Export.R')

199 setwd('/Users/ts/Git/ise')

200

201 #copy code files to overleaf

202 file.copy('Main.R', '/Users/ts/Library/CloudStorage/Dropbox/Apps/Overleaf/ISE_Assignment/Code',

overwrite = T)↪→

203 file.copy('scrap_file.R',

'/Users/ts/Library/CloudStorage/Dropbox/Apps/Overleaf/ISE_Assignment/Code', overwrite = T)↪→

204 file.copy('Final_Assignment_Schnabel.stan',

'/Users/ts/Library/CloudStorage/Dropbox/Apps/Overleaf/ISE_Assignment/Code', overwrite = T)↪→

205

206 #copy bib of packages and dependencies

207 knitr::write_bib(c(.packages()),

208 "/Users/ts/Dropbox/Apps/Overleaf/ISE_Assignment/packages.bib")

209 }

210

211 #record end time

212 end.time = Sys.time()

213 print("Time Elapsed: ")
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214 print(end.time-start.time)

215 ####Show Plots####

216 #display plots (run each line to show plots, might take a few seconds)

217 phf

218 dof

219 dodf

220 propcomp

221 denscomp

222 discretedenscomp

223 rhatcomp

224 neffcomp

225 acfcomp

226 do_sample_comp

227

228 #Baseline Regression Diagnostic Plots

229 plot(baseline)

230

231
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