SB 2.2 Statistical Machine Learning Practical

P135-P151-P782-P211

2491 Words
Contents
1 Introduction 2
2 Exploratory Data Analysis 2
3 Data Preprocessing and Splitting 4
4 Baseline Models 4
4.1 Multinomial Logistic Regression e 5
4.2 K-Nearest Neighbours (KNN)0 o 5
4.3 Support Vector Classifier (SVC) e 6
4.4 Neural Networks (NN) Lo e 6
4.5 Random Forests (RF) o 6
4.6 Gradient-Boosted Decision Trees (XGB) L 7
5 Feature Subsetting and Stacked Modelling Approaches 7
6 Final Model: Tuned Gradient-Boosted Trees (XGB) 9
6.1 Final Results o e 10
7 Conclusion 12
8 Appendix A: Source Code 13
9 Appendix B: Tuning Log 19

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

1 Introduction

This report focuses on forecasting the genre of a song using a dataset including 518 characteristics derived from
8,000 audio files. Each song is characterised by a vector of statistical summaries, including the mean, standard
deviation, skewness, kurtosis, median, minimum, and maximum, obtained from time series data of musical properties
such as the chromagrams or Mel-frequency cepstra via the librosa python package. We aim to create a classifier
that can accurately determine the genre from a selection of eight categories: Electronic, Experimental, Folk, Hip-
Hop, Instrumental, International, Pop, and Rock. As a benchmark, we reference the initial finding using a 5-nearest

neighbour classifier with 35% prediction accuracy on the unseen test set.

2 Exploratory Data Analysis

The training dataset includes 6,000 observations on 518 features. Our exploratory data analysis indicates that

the classes in the training dataset are evenly distributed across all eight genres, as shown in Figure 1.

Figure 1: Distribution of Classes in the Training Set

Electronic
Rock
Instrumental

Hip-Hop

Genre

Pop

Experimental

Folk

International

0 100 200 300 400 500 600 700 800
Count

Figure 2: Distribution of Classes in the Training Set

Spectral Centroid Median 01 Spectral Rolloff Median 01

Electronic | » Electronic
Rock Rock
Instrumental + Instrumental +
" Hip-Hop ® Hip-Hop
£ £
8 Pop 38 Pop
Experimental " Experimental [}
Folk Folk
International International I—Dj—hwm we o -
0 2000 4000 0 2000 4000 6000 8000 10000
spectral_centroid_median_01 spectral_rolloff_median_01
Spectral Contrast Median 04 MFCC Median 01
Electronic |—-—|mmo ‘ we Electronic X3 OM"M—-—|
Rock |—-—|um» X Rock . mm'—-—| .
I - X Instrumental { 4 |_-—| "
o HipHop I—-—m« "o e @ HipHop "o 1—-—| ‘
£ £
3 Pop I—-—klmmo ‘e 8 Pop X3 . ol—-—|
Experimental |—-—|m»o ‘00 wee . Experimental . 3 4 - XX
Folk " I—Dj—hno Folk X o|—|:|:|—|
International |—|_|_|—h00 - ‘e International -e o |—D]—|
10 15 20 25 30 35 -1000 750 -500 -250 0
spectral_contrast_median_04 mfcc_median_01

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

Figure 2 displays boxplots for the median of selected feature categories: spectral centroid, spectral rolloff,
spectral contrast, and MFCC. Spectral centroid and spectral rolloff have unique distributions in particular genres,
indicating their potential to distinguish certain music styles. In contrast, spectral contrast exhibits fluctuation but

displays increased overlap between genres, suggesting a weaker capacity to distinguish between them.

As Figure 3 shows, many features are highly correlated. Though not necessarily problematic, it complicates
attempts at feature engineering to reduce the number of features. Figure 4 shows that in order to capture 90% of the
variance in the training set, we would need roughly 130 principal components. This would not be helpful in creating
models that are easily interpretable, and in our experiments quickly led to reduced test accuracies compared to

models that utilize the full training dataset. We therefore decide not to reduce the number of features.

Figure 3: Correlation between Selected Features for Categories in the Training Set

spectral_contrast_kurtosis_01 -1.0
spectral_contrast_kurtosis_03
spectral_contrast_kurtosis_05 08

spectral_contrast_kurtosis_07
spectral_contrast_max_02
spectral_contrast_max_04
spectral_contrast_max_06
spectral_contrast_mean_01
spectral_contrast_mean_03
spectral_contrast_mean_05
spectral_contrast_mean_07
spectral_contrast_median_02
spectral_contrast_median_04
spectral_contrast_median_06
spectral_contrast_min_01
spectral_contrast_min_03
spectral_contrast_min_05
spectral_contrast_min_07
spectral_contrast_skew_02
spectral_contrast_skew_04
spectral_contrast_skew_06
spectral_contrast_std_01
spectral_contrast_std_03
spectral_contrast_std_05
spectral_contrast_std_07

RCFCFS

{\o‘b <\06 0":)6109 IO
SSSSo 288
NSNS R P

S22 A QRS IR >

CEELL L EE SR

ENSANSEN

AN /N /N 407,070
DL Q@
SRS

&
KRR

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

Figure 4: Cumulative Explained Variance by Principle Components

o o o o
IS n o g
L L L N

Cumulative Explained Variance
o
"

o
N
L

® 80% variance
® 90% variance

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o
=
L

0 25 50 75 100 125 150 175 200
Number of Components

3 Data Preprocessing and Splitting

To estimate our test accuracy and tune hyperparameters, we set aside the unlabelled test data and split the
training data as follows: we allocate 60% to the training subset and reserve 40 % for validation and pseudo-test
subsets. The latter subset is split again into equal proportions, leaving us with a 60 — 20 — 20 training-validation-
pseudo-test overall split, ensuring a standard proportion for model evaluation. We choose not to stratify these splits
based on our finding that class labels are balanced as shown in Figure 1. Given that we set the unlabelled test set
aside and use the pseudo-test set to estimate the test accuracy on the unlabelled test set, we subsequently use test
accuracy to refer exclusively to accuracy computed on the pseudo-test set, as the accuracy of our models on the
real test set is unknowable. We also round the pseudo-test and training accuracies for all models except our final

model to the nearest integer.

Considering the substantial differences in the ranges of the variables present in the unprocessed dataset, as evi-
denced by the drastically differing scales in Figure 2. This standardization is implemented using the StandardScaler
from the Scikit-learn library. It is worth noting that we fit these three scalers only after splitting the training
data to prevent information leakage, which could introduce bias and inaccurately inflate our models’ performance

metrics.

4 Baseline Models

We experiment with several common machine learning approaches as standalone models and obtain their
training and test accuracies (Table 1). We outline their respective advantages and disadvantages (Table 2). We
now briefly describe our model selection and implementation rationale but do not discuss results in detail in the

name of brevity.

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

Table 1: Prediction accuracy (%) of selected base models on training and test datasets

| Model | Training Accuracy (%) [Test Accuracy (%) |
Multinomial Regression 84 51
Random Forest 100 56
KNN Bagging 52 40
SVC 82 59
XGBoost 100 58
Table 2: Comprehensive comparison of advantages and disadvantages of the models considered
Model Advantages \ Disadvantages \ Comp. Complexity !
Multinomial Regression | Interpretability, effi- | Limited Capacity | O(10,000-n - f-m)
ciency in Training to Capture Com-
plex Relationships,
Susceptibility to
Overfitting in High
Dimensions
Random Forests Handles non-linear | Slow with many | O(200-n -log(n) - f)
data, robust to over- | trees, complex mod-
fitting els hard to interpret
KNN Bagging Captures complex | Computationally ex- | O(n - f)

boundaries, robust

pensive, sensitive to
noise

SvcC Effective in high di- | Poor with noise and | O(m?-n?- f) to O(m?-n?- f)
mensions overlap, kernel choice

XGBoost High performance | Can overfit, complex | O(Nestimators * 7+ f - max_depth)
and speed, iterative | to understand
learning

Neural Network Flexible, models com- | Requires significant | Depends on architecture
plex relationships computation, prone

to overfitting

1'n = number of samples, m = number of classes, f = number of features

4.1 Multinomial Logistic Regression

Initially, we use a multinomial logistic regression classifier that utilises a softmax function to generate class
predictions. We choose the multinomial technique over the one-vs-rest strategy (OvR) as OvR performs poorly
with insufficient differentiation for a particular class based on feature values. This can be seen in the provided

examples shown in Figure 2. We specify a limit of 10,000 iterations to guarantee convergence.

Although this model is highly interpretable and computationally simple (Table 2), we chose not to continue with
it because we want our final model to capture non-linear relations. Furthermore, multinomial regression performs

well if characteristics are independent from one another, which in our dataset is not the case (Figure 3).

4.2 K-Nearest Neighbours (KNN)

To probe whether more complex K-Nearest Neighbours models can outperform the benchmark basic KNN of
accuracy of 35%, we implement KNN Bagging (Bootstrap Aggregating), which reduces the variance of individual
models and exposes the constituent models to different parts of the dataset. We employ a BaggingClassifier on
1 and n_estimators =

KNeighborsClassifier with n_neighbor = 10 base estimators, which overfits.

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

4.3 Support Vector Classifier (SVC)

Next, we investigate the use of a SVC that utilises a radial basis function (RBF') kernel based on the assumption
of non-linear connections in the dataset, which is indirectly supported by the performance of the multinomial
regression model. By using the RBF kernel, we transform our dataset into a higher-dimensional space, in which
we expect to identify a linear decision boundary. The fitted SVC manages the high-dimensional data well and

marginally outperforms most other base model but is computationally intensive.

4.4 Neural Networks (NN)

Table 3: Summary of Neural Network Model Performances

Model No. HL No. Neurons LR'! DR? Optimizer OF?® Batch Norm Train Acc. (%) Test Acc. (%)

NN1 1 57 0.58 - Adam CEL No 82 57
NN2 6 221 0.0007 0.27 Adam CEL Yes 79 57
NN3 10 2056 0.01 0.4 SGD M 0.9 CEL Yes 76 47

! LR = Learning Rate
2 DR = Dropout Rate
3 OF = Objective Function

Additionally, we evaluate NNs motivated by the potential to capture complex, nonlinear relationships within
high-dimensional datasets such as ours. We explore various fully-connected architectures, as outlined in Table 3.
We use batch normalization to stabilize and accelerate training, dropout layers to regularize, and a cross-entropy

loss function (CEL). Attempts at using convolutional architectures on our tabular data performed very poorly.

Although the accuracies in both NN1 and NN2 configurations are promising, the complexity of further optimiza-
tion and the computational demands of deeper and more complex networks present practical constraints. Given
these considerations, along with the negligible accuracy improvement over simpler models like Random Forests,
SVCs, and Gradient Boosted Trees, we decide against adopting a neural network as our final model. Instead, we

favor methods that offer a better balance between performance, computational efficiency, and interpretability.

4.5 Random Forests (RF)

As we implicitly assume that the relationships between our features and classes are non-linear given the perfor-
mance of our multinomial logistic regression (Table 1) and the high-dimensional dataset, we decide to experiment
with RFs. These models demonstrate robustness to correlation between variables by creating several decision trees
and using a subset of features for each tree. They are attractive as they are able to capture non-linear relationships
and scale well with high-dimensional datasets. We implement an RF classifier, configuring it with hyperparameters

of: n_estimators=200, a maximum depth of 50 (max_depth=50), and log_loss as the criterion for quality of splits.

However, our RF models exhibits overfitting, suggesting poor generalizability. It is also computationally in-
tensive, as each iteration considers a random subset of characteristics. As the number of trees and the depth of
each tree rise, we choose to experiment with gradient boosted trees. Unlike RFs, which construct trees individually,

boosted trees create forests consecutively, with each tree aiming to rectify the errors made by its predecessors.

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

4.6 Gradient-Boosted Decision Trees (XGB)

We initially implement a gradient-boosted decision tree classifier with the package xgboost, configuring it
with specific hyperparameters: a multi:softmax objective function for the num_class = 8 classes, with 200 trees
num_rounds = 200 of maximum depth of 30 (max_depth = 30), employing mlogloss (multi-class log loss) as the
criterion for quality of splits. Compared to RFs, though the XGB model also overfits, the similarly high test
accuracy of 58% and stark superiority in both computational complexity (Table 2) and interpretability make it an

optimal base model to further experiment with.

5 Feature Subsetting and Stacked Modelling Approaches

After exploring the base models individually, we experiment with leveraging the hierarchical structure of the
dataset. Given that for each musical feature, such as for example the chromagrams, seven summary statistics in
each dimension are provided, we create feature subsets which include all summary statistics for each musical feature.
On these feature subsets, we first fit separate models which make the final prediction via weighted voting from the

validation accuracies (Table 4).

The gradient boosted decision tree implemented using XGBoost achieves the highest performance on the feature
subsets, followed by the SVC. Nevertheless, training the models on subsets of features and making predictions via

weighted voting does not enhance the performance of our models and is accompanied with increased computational

cost.
Table 4: Hyperparameters and test accuracy (%) of models trained on subsets of features
Model Final Prediction Test Accuracy (%)
Multinomial Regression Weighted Voting 53
Random Forest Weighted Voting 54
KNN Weighted Voting 51
SvC Weighted Voting 57
XGBoost Weighted Voting 57

Next, we try an ensemble technique. We choose the optimal model for each examined feature subset based on
validation accuracy, weigh each model by the same and create an ensemble of these models (Table 5). The final

prediction is made using weighted voting, obtaining 56.8% test accuracy.

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

Table 5: Best performing model and accuracy for each feature subset

Feature Best Model Test Accuracy (%)
chroma_ cens SVC 33
chroma cqt SVC 35
chroma_ stft RF 39
mfcc SVC 56
rmse RF 27
spectral _bandwidth RF 33
spectral centroid SVC 38
spectral contrast SVC 47
spectral rolloff SVC 37
tonnetz XGB 33
zCr SVC 34
Test accuracy (ensemble) 56

From the previous feature subset ensemble method, we observe that for different feature subsets, different
learners perform best with respect to accuracy (Table 4). Therefore, we decide to leverage the diverse advantages
of multiple base learners, stack them, and construct a meta-learner for the final prediction. This strategy involves

two main steps:

1. Generate meta-features by computing the class probability predictions from each base learner (e.g., RF, SVC,
XGBoost) on the validation set

2. Train a logistic regression model (meta-learner) on these features.

We first generate the meta-features. We experimented with a RF and KNN comibination (Table 6), and a trio of
RF, SVC, and XGB, however in the following we will focus on the latter. Each model predicts class probabilities for
the validation set, which we consider as meta-features. For each feature subset identified as having good predictive
potential, we train the base learners—specifically, RF, SVC, and XGB models. We choose these base learners for
their complementary strengths: RF for its ensemble robustness, SVC for its effectiveness in high dimensions, and
XGB for its performance in structured datasets. These three models also performed with highest accuracy for
the respective feature subsets (Table 5). For each feature subset, we stack the class probabilities from RF, SVC,
and XGB into a three-dimensional array, where each slice corresponds to one model’s output. This yields three
slices, each one being a two-dimensional array where rows represent samples and columns represent the predicted
probabilities for each class by one of the base learners (RF, SVC, or XGB). When we stack these arrays, we are
effectively layering these predictions to create a three-dimensional array, which we then average across the third
dimension (across the base learners) to obtain our meta-features for the meta-learner to train on. By averaging,
we aim to capture a common consensus. We follow an identical process to create the meta test set using the test
set. For the meta-learner, we choose logistic regression, which learns to weigh these meta-features to make final
predictions and is computationally efficient. Finally, we evaluate the meta-learner using the meta test set. The
output of this process is a set of final predictions for the test set, and we calculate the test accuracy by comparing

these predictions against the true labels.

The stacked models, as presented in Table 6, achieve test accuracies that rank among the highest in our series of
experiments. Particularly the stacked model of RF, XGBoost, and SVC, which utilized a Logistic Regression meta-

learner, results in a test accuracy of 61.1%. Analyzing the misprediction frequencies per class displayed in Figure 5,

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

we observe that the stacked model performs better on the international class than our final model. However, on all

remaining classes, the stacked model performs worse and the overall test accuracy is lower compared to our final

model.
Table 6: Test Accuracies of Stacked Models
Model Metalearner Test Accuracy (%)
Random Forest and KNN Logistic Regression 57
Random Forest, XGB, SVC Logistic Regression 61

Figure 5: Stacked Model Misprediction Frequency by Class

Qo* &R
&

Classes

60

40
20
10

0

o >
S &
S)
3 o
< 2
<
17

Misprediction Frequency (%)
@
S}

Consequently, we eventually opt not to use this as our final model. The choice is motivated by factors of
computing efficiency and model simplicity. The XGB model is a more practical option because of its better
performance with respect to accuracy, lower computing burden, and clear nature, which makes it easier to use

and analyse.

6 Final Model: Tuned Gradient-Boosted Trees (XGB)

The model we use to generate our final prediction is a tuned XGB model. We train our model using a
hyperparameter tuning suite to find the optimal values for several key hyperparameters of our chosen implementation
package XGBoost. Algorithm 1 describes the process of fitting numerous 'weak’ decision trees in a sequential manner
by calculating the gradient and Hessian of the loss function to guide the optimization of subsequent learners,
thereby correcting the errors of the preceding ensemble. The algorithm incorporates regularization directly in the
optimization process, which helps in preventing overfitting. Hyperparameters detailed in Algorithm 1 allow us to
tune the model. The learning rate () is particularly significant as it dictates the adjustment size at each step,
influencing both the speed of convergence and the risk of overshooting the optimal solution. By employing the
multi:softmax objective, the algorithm predicts labels for each class. Similar to RFs, XGBoost optimizes between
fitting the model closely to the training data and maintaining a generalization to avoid overfitting (“XGBoost

Documentation — xgboost 2.0.3 documentation”; 2024).

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

Algorithm 1 Gradient Boosting Algorithm, based on Hastie (2017)

1:

10:
11:
12:
13:
14:
15:

16:

Input: training set {(z;,)}, a differentiable loss function L(y, F(z)), a number of weak learners M, and a
learning rate 7
Loss Function: Multiclass Logloss := L(y, F(z)) = — Zszl I(y = k) log <Z%>
Objective function: ‘multi:softmax’ for multiclass classification with 8 classes
Hyperparameters:
Maximum depth of trees: trial.suggest int('max depth’; 3, 100)
Learning rate n: trial.suggest float(’eta’, 0.005, 0.4)
Subsample ratio of the training instances: trial.suggest float(’subsample’; 0.6, 1.0)
Subsample ratio of columns when constructing each tree: trial.suggest float(’colsample bytree’, 0.6, 1.0)
Minimum loss reduction required to make a further partition on a leaf
trial.suggest float(’colsample bytree’, 0.2, 0.7)
Initialize model with a constant value: fy(x) = argming ZZI\LI L(y;,0).
Tuning Process: validation_accuracies = ||, trials = ||
for i in 1,100 do
params=suggest hyperparameter values
for num_boosting_round=5,000 do
Compute the gradients and Hessians for training data:
po N | 9Ly, f (i)
Gm(@2) [87 (=) }f@:):fm_l(x)

7 N — 52L(yi7f(37i))}
hm(l'z) - [of(@:)> F@)=fom 1 ()

Fit a base learner to the gradients and Hessians, including regularization:

b = argming S [S (@) (0(:) — £282)2 4 A[g]12].
Scale the base learner’s contribution with the learning rate: fi,,(x) = ndm ().
Update the model: fn, () = fm—1(z) + fm(2).
Evaluate model on validation set and calculate accuracy: accuracy(Yval, fim(Xval))-
Apply early stopping if validation accuracy does not improve for 15 rounds.
end for
Return trial[i] = accuracy, params
: end for
: Obtain optimal parameters :arg max validation_accuracies.params
: Retrain on combined training and validation sets using optimal parameters for num_boosting_round=10,000
: Output: The final model f(z) = fa(z) = Z%:o fm(z).

Note: This entire process takes about 1 hour on a laptop CPU, prediction with the trained model takes milliseconds

6.

1 Final Results

Given our tuning results, we arrive at the following values for our final model (section 9).

Table 7: Hyperparameter search space and selected values for model tuning.

Hyperparameter | Search space | Selected value
Max depth {5, ..., 100} 86

Eta {0.005, ..., 0.4} 0.089
Subsample {0.6, ..., 1.0} 0.71
Colsample by tree | {0.6, ..., 1.0} 0.78
Gamma {0.0, ..., 5.0} 0.32

Using this final model, we compute the training and test set accuracies of 100% and 64%, respectively.

10

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

Figure 6 displays the 10 most important features in the final model based on 4 different metrics: the features’ weight,
gain, cover, and total gain (Quinto, 2020). We can that individual features related to the Mel-frequency cepstra

and spectra dominate across all four importance metrics.

Figure 6: Final Model Feature Importance

Weight Gain
mfcc_max_04 spectral_bandwidth_median_01
mfcc_min_05 spectral_contrast_median_04
mfcc_skew_07 mfcc_median_(03 =———
@ mfcc_std_(04 m— 2 spectral_rolloff_median_(1 =—
5 mfcc_std_(2 m— 5 spectral_rolloff_mean_01 =——
§ spectral_contrast_max_01 g spectral_contrast_median_02 =————
w mfcc_skew_06 w rmse_std_(1 =——
spectral_bandwidth_max_01 — spectral_centroid_median_01 =———
rmse_min_01 mfcc_median_20 =
mfcc_max_03 spectral_contrast_std_(04 =
0.0 1000.0 0.0 2.0 4.0
Importance Importance
Cover Total Gain
spectral_centroid_median_01 mfcc_max_04
spectral_contrast_median_04 rmse_std_01
mfcc_median_(03 =——— mfcc_median_03
2 rmse_std_01 s—— 2 spectral_contrast_median_04
5 spectral_contrast_median_02 =—— 5 spectral_bandwidth_median_01
§ spectral_bandwidth_median_01 =——— g spectral_contrast_median_02
w mfcc_max_04 s—— w spectral_contrast_std_04
spectral_rolloff_mean_01 =——— mfcc_std_02
mfcc_median_20 =——— spectral_rolloff_median_01
spectral_rolloff_median_01 mfcc_median_20
0.0 25.0 50.0 0.0 1000.0 2000.0
Importance Importance

Figure 7 displays the performance of our final model across all 8 genres on our pseudo-test set, as measured by
the precision, recall, and fl-scores, which are high for most genres, with the notable exception of genres Pop and

Ezperimental. For these genres, our model exhibits poor recall, indicative of a high false negative rate.

Figure 7: Final Model Performance by Class

Electronic
-0.70

Experimental
0.65

Folk
0.60

Hip-Hop
0.55

Instrumental
0.50

International
0.45

Pop
0.40

Rock
0.35

precision recall f1-score

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

This poor recall is more clearly visible in Figure 8, where we can see that our model misclassifies more than
60% of observations from the Pop genre in the test set, and more than 40% of Ezperimental observations. As both
genres are well-represented in our data (Figure 1), the poor performance of our model for them is the limiting factor

in not achieving higher test set accuracy.

Figure 8: Final Model Misprediction Frequency by Class

N
o

o

Misprediction Frequency (%)

If the real test data are similarly distributed to our training data (and therefore training, validation, and
pseudo-test subsets), and contain identical genres, we conservatively estimate our final model’s accuracy
on the test set to be 60%. This corresponds to a generalisation error of 40%.

7 Conclusion

We implement various base models, experiment with feature subsetting and stacked modelling approaches
before choosing to optimize the XGBoost model, given its high accuracies and computational simplicity. On our
best performing final model, we achieve robust performance on most genres although our model overfits to the
training data. If given actual audio files, future improvements can include training NNs directly on audio data, or

better feature extraction with different libraries.

References

Hastie, T. (2017). The elements of statistical learning: Data mining, inference, and prediction (Second edition.).

Springer. (Cit. on p. 10).

Quinto, B. (2020). Nexzt-Generation Machine Learning with Spark: Covers XGBoost, Light GBM, Spark NLP, Dis-
tributed Deep Learning with Keras, and More (1st ed.). Apress L. P. https://doi.org/10.1007/978-1-4842-
5669-5 (cit. on p. 11).

XGBoost Documentation — xgboost 2.0.3 documentation. (2024). Retrieved March 18, 2024, from https://xgboost.
readthedocs.io/en/stable/ (cit. on p. 9).

12

https://doi.org/10.1007/978-1-4842-5669-5
https://doi.org/10.1007/978-1-4842-5669-5
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

8 Appendix A: Source Code

Library Import

import getpass

import os

import shutil

from collections import Counter

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

import xgboost as xgb

from matplotlib.ticker import FuncFormatter

from sklearn.decomposition import PCA

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler

Function to generate final submission csv file
def generate_submission_csv(genre_predictions, filename="submission.csv"):
submission_df = pd.DataFrame(data={
"Id": range(len(genre_predictions)),
"Genre": genre_predictions
)
submission_df.to_csv(filename, index=False)

print (f"Submission file '{filenamel}' created successfully.")

Function to compute pseudo test set accuracy

def calculate_pseudo_test_accuracy(predictions):

print (f"Pseudo Test Set accuracy: {accuracy_score(Y_test, predictions):.2f}")

Function to compute training set accuracy
def calculate_training_accuracy(predictions) :

print (f"Training Set accuracy: {accuracy_score(Y_train, predictions):.2f}")

Load the training data and the test inputs

x_train = pd.read_csv('Data/X_train.csv', index_col=0, header=[0, 1, 2])
x_train_np = np.array(x_train)

y_train = pd.read_csv('Data/y_train.csv', index_col=0)

y_train_np = y_train.squeeze().to_numpy() # Make y_train a NumPy array

13

45

46

47

48

49

50

52

53

54

55

56

57

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

86

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

x_test = pd.read_csv('Data/X_test.csv', index_col=0, header=[0, 1, 2])

x_test_np = np.array(x_test)

Flatten the columns for easier wrangling
x_train_flat_columns = ['_'.join(col).strip() for col in x_train.columns.values]

X_train.columns = x_train_flat_columns

x_test_flat_columns = ['_'.join(col).strip() for col in x_test.columns.values]

X_test.columns = x_train_flat_columns

Label-encode training labels
label_encoder = LabelEncoder()

y_train_encoded = label_encoder.fit_transform(y_train_np.ravel()) #

Split training data into training and temporary wvalidation sets
X_train, X_temp, Y_train, Y_temp = train_test_split(x_train, y_train_encoded, test_size=0.4,

—» random_state=42)

Split the temporary validation set into wvalidation and pseudo test set

X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=42)

Standardise respective subsets after splitting to avoid data leakage
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_val_scaled = scaler.transform(X_val)

X_test_scaled = scaler.transform(X_test)

X_real_test_scaled = scaler.transform(x_test) # real test set to generate submission on

Load best XGB model

final_model_name = 'Models/xgboost-64%-all-data’

final_booster = xgb.Booster() # instantiate

final booster.load_model(final_model_name) # load

train_predictions = final_booster.predict(xgb.DMatrix(X_train_scaled)) # predict on train set
pseudo_test_predictions = final_booster.predict(xgb.DMatrix(X_test_scaled)) # predict on

— pseudo-test set

real_test_predictions = final_booster.predict(xgb.DMatrix(X_real_test_scaled)) # predict on

— real test set

Decode numeric predictions to string labels

genre_predictions_decoded = label_encoder.inverse_transform(real_test_predictions.astype(int))

Make submission csv with decoded predictions

generate_submission_csv(genre_predictions_decoded, filename="submission.csv")

MAKE PLOTS ######H#

14

87

88

89

90

91

92

93

94

95

96

97

98

99

100

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

export_username = "ts" # Only save plots to dropboxz on Tight machine

Function to save plots to EPS for overleaf
def save_plot(plot, filename):
username = getpass.getuser()
filepath = "/Users/ts/Library/CloudStorage/Dropbox/Apps/Overleaf/SML Practical/Figures"
filename += ".eps"
if username == export_username:
plot.savefig(os.path.join(filepath, filename), format='eps') # Save as EPS

print("Saved plot to {}".format(filename))

Make EDA Plots

PCA Plot
pca = PCA(n_components=0.95)

X_train_pca = pca.fit_transform(X_train_scaled)
idx_full_80

idx_full_90 = np.where(np.cumsum(pca.explained_variance_ratio_) >= 0.9) [0] [0]

np.where (np.cumsum(pca.explained_variance_ratio_) >= 0.8)[0] [0]

pcaplot = plt.figure(figsize=(10, 6))

Plot the cumulative explained variance

cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
plt.plot(cumulative_variance, color=plt.cm.viridis(0.5))
plt.xlabel('Number of Components', fontsize=14)
plt.ylabel('Cumulative Explained Variance', fontsize=14)
plt.yticks(np.arange(0, 1, step=0.1))

y_80
y_90

cumulative_variance[idx_full_80]

cumulative_variance[idx_full_90]

noinspection PyTypeChecker

plt.axvline(x=idx_full_80, ymax=y_80, color=plt.cm.viridis(0.3), linestyle='--')

noinspection PyTypeChecker

plt.axhline(y=y_80, xmax=idx_full_80 / len(cumulative_variance), color=plt.cm.viridis(0.4),
— linestyle='--')

noinspection PyTypeChecker

plt.axvline(x=idx_full_90, ymax=y_90, color=plt.cm.viridis(0.6), linestyle='--')

noinspection PyTypeChecker

plt.axhline(y=y_90, xmax=idx_full_90 / len(cumulative_variance), color=plt.cm.viridis(0.7),

< linestyle='--')

Scatter points with adjusted Viridis colors

plt.scatter(idx_full_80, y_80, color=plt.cm.viridis(0.3), label='80% variance')

15

130

131

132

134

135

136

138

139

140

142

143

144

146

147

152

153

154

155

156

158

159

160

162

163

164

166

167

168

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

plt.scatter(idx_full_90, y_90, color=plt.cm.viridis(0.6), label='90% variance')

plt.legend(loc='best')
save_plot(pcaplot, "pca")

Class Balance Plot
viridis_colors = plt.cm.viridis(np.linspace(0, 1, 8))

custom_palette = [matplotlib.colors.rgb2hex(color) for color in viridis_colors]

class_bal = plt.figure(figsize=(10, 6))

sns.countplot (data=y_train, y='Genre', palette=custom_palette)
plt.xlabel('Count', fontsize=16)

plt.ylabel('Genre', fontsize=16)

plt.yticks(fontsize=16)

plt.xticks(fontsize=16)

plt.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)

save_plot(class_bal, "Class-Balance")

x_train_with_genre = x_train.merge(y_train, left_index=True, right_on='Id') # Nerge Genre
— labels on to training data

boxl, axs = plt.subplots(nrows=2, ncols=2, figsize=(16, 9)) # Create the subplots
sns.boxplot(x='spectral_centroid_median_01', y='Genre', data=x_train_with_genre, ax=axs[0, 0],
- palette=custom_palette)

axs[0, 0].set_title('Spectral Centroid Median 01')

sns.boxplot (x='spectral_rolloff_median_01', y='Genre', data=x_train_with_genre, ax=axs[0, 1],
— palette=custom_palette)

axs[0, 1].set_title('Spectral Rolloff Median 01')

sns.boxplot (x="'spectral_contrast_median_04', y='Genre', data=x_train_with_genre, ax=axs[1, 0],
— palette=custom_palette)

axs[1, 0].set_title('Spectral Contrast Median 04')
sns.boxplot(x='mfcc_median_01', y='Genre', data=x_train_with_genre, ax=axs[l, 1],
— palette=custom_palette)

axs[1, 1].set_title('MFCC Median 01')

sns.set(font_scale=2) # Adjust the font scale for better readability
plt.tight_layout()

save_plot(boxl, "boxplot-1")

Correlation matric

df _corr = X_train.filter(like='spectral_contrast')

corr_mat = df_corr.corr()

cormat = plt.figure(figsize=(16, 13))

sns.heatmap(corr_mat, cmap='viridis')
plt.xticks(rotation=45, ha='right') # Rotate z-axis labels
plt.xlabel('') # Remove z-azis title

16

170

171

172

174

175

176

178

179

180

182

183

184

186

187

188

190

191

193

194

195

196

198

199

200

201

202

203

204

205

206

207

209

210

211

212

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

plt.ylabel('') # Remove y-azis title
plt.tight_layout()

save_plot(cormat, "correlation")

Get decoded class labels for plots

y_test_decoded = label_encoder.inverse_transform(Y_test)

pseudo_test_preds_labels = label_encoder.inverse_transform(pseudo_test_predictions.astype(int))

calculate_training accuracy(train_predictions)

calculate_pseudo_test_accuracy(pseudo_test_predictions)

Make XGB Visualizations
Retrieve column names
feature_names = x_train_flat_columns

Custom formatter to one decimal place

formatter = FuncFormatter(lambda x, _: f'{x:.1f}")

Define a list of colors for the bar plots

colors = plt.cm.viridis(np.linspace(0, 1, 4))

Create the subplots with constrained_layout instead of tight_layout

importanceplots, axs = plt.subplots(nrows=2, ncols=2, figsize=(16, 12),

- constrained_layout=True)

Define importance types and corresponding titles
importance_types = ['weight', 'gain', 'cover', 'total_gain']
titles = ['Weight', 'Gain', 'Cover', 'Total Gain']

Plot importance for each type

for i, ax in enumerate(axs.flat):

xgb.plot_importance(final_booster, importance_type=importance_types[i],

— max_num_features=10, ax=ax,

show_values=False, color=colorsl[i])

ax.xaxis.set_major_formatter(formatter)
ax.set_xlabel('Importance')
ax.set_title(titles[i])

ticks = ax.get_yticklabels()

indices = [int(tick.get_text().replace('f', '')) for tick in ticks]

new_labels = [feature_names[i] for i in indices]

ax.set_yticklabels(new_labels)

save_plot (importanceplots, "XGB-Importance")

Plot Misprediction Frequency by class

Calculate mispredictions

17

224

225

226

228

229

230

232

233

235

236

237

238

239

240

241

243

244

245

247

248

249

250

SB2.2 Statistical Machine Learning Assessed Practical P135-P151-P782-P211 | March 20, 2024

mispredictions = (y_test_decoded != pseudo_test_preds_labels)

Count the total occurrences for each class in the true test set

total_counts = Counter(y_test_decoded)

Count mispredictions for each decoded class

mispredicted_counts = Counter(y_test_decoded[mispredictions])

Calculate misprediction frequencies as a percentage
misprediction_freq = {class_label: (mispredicted_counts.get(class_label, 0) /
— total_counts[class_label]) * 100

for class_label in total_counts}

Sort the classes by name to maintain consistent order

sorted_class_labels = sorted(total_counts.keys())

Prepare colors, one for each class

colors = plt.cm.viridis(np.linspace(0, 1, len(sorted_class_labels)))

Bar chart of misprediction frequencies (as percentages)

xgb_mispred_freq = plt.figure(figsize=(10, 6))

plt.bar(sorted_class_labels, [misprediction_freql[class_label] for class_label in

- sorted_class_labels], color=colors)

plt.xlabel('Classes')

plt.ylabel('Misprediction Frequency (%)')
plt.xticks(ticks=range(len(sorted_class_labels)), labels=sorted_class_labels, rotation=45)

plt.subplots_adjust(bottom=0.4) # Increase the bottom margin

save_plot(xgb_mispred_freq, "xgb_mispred_freq")

Classification Report Heatmap

Plot the classification report as a heatmap

report_dict = classification_report(Y_test, pseudo_test_predictions, output_dict=True)
report_df = pd.DataFrame(report_dict).transpose()

Extract unique class names in the correct order from y_test_decoded

unique_class_names = label_encoder.inverse_transform(sorted(np.unique(Y_test)))

Drop the 'support' column and rTows with averages, since we only want the individual classes

report_df = report_df.drop(columns=['support'])

class_report_df = report_df.iloc[:-3, :]

heatmap = plt.figure(figsize=(10, 8))

sns.heatmap(class_report_df, cmap='viridis', cbar=True, fmt='.2g',
annot_kws={'color': 'black'}, # Add contrasting color for readability
yticklabels=unique_class_names)

plt.ylabel('Class Label', fontsize=14)

18

256

257

258

260

261

262

10

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

heatmap.subplots_adjust(left=0.2)

save_plot (heatmap, "XGB-Heatmap")

Copy code to overleaf

shutil.copy('submission.py', '/Users/ts/Library/CloudStorage/Dropbox/Apps/Overleaf/SML

—

Practical/Code"')

shutil.copy('tuning.txt', '/Users/ts/Library/CloudStorage/Dropbox/Apps/0Overleaf/SML

—

Practical/Code"')

print ("Source Code and Tuning log copied to Overleaf")

9

Appendix B: Tuning Log

/opt/homebrew/anaconda3/envs/sml-practical-env/bin/python

1
[1
1
1

—

/Users/ts/Git/sml-practical/Boosting.py

2024-03-13 17:36:21,282] A new study created in memory with name: XGB

2024-03-13 17:36:39,472] Trial O finished with value: 0.545 and parameters: {'max_depth':
26, 'eta': 0.2628146320956893, 'subsample': 0.7972713283357904, 'colsample_bytree':
0.816275172425584, 'gamma': 0.5549659330850426}. Best is trial O with value: 0.545.

2024-03-13 17:39:28,514] Trial 1 finished with value: 0.575 and parameters: {'max_depth':
83, 'eta': 0.020858906103026254, 'subsample': 0.8283894956733198, 'colsample_bytree':
0.6947693012123138, 'gamma': 0.6296835502488504}. Best is trial 1 with value: 0.575.

2024-03-13 17:39:42,549] Trial 2 finished with value: 0.5408333333333334 and parameters:
{'max_depth': 42, 'eta': 0.3503523803700617, 'subsample': 0.7571401123742608,
'colsample_bytree': 0.7649244055417993, 'gamma': 0.6401155866869406}. Best is trial 1 with
value: 0.575.

2024-03-13 17:40:57,497] Trial 3 finished with value: 0.585 and parameters: {'max_depth':
94, 'eta': 0.04882205533678397, 'subsample': 0.6825997193130474, 'colsample_bytree':
0.6465288666735272, 'gamma': 0.5290770879296267}. Best is trial 3 with value: 0.585.

2024-03-13 17:41:33,087] Trial 4 finished with value: 0.5533333333333333 and parameters:
{'max_depth': 85, 'eta': 0.16435042060435348, 'subsample': 0.7992227416169095,
'colsample_bytree': 0.8015206920815696, 'gamma': 0.37576383381061895}. Best is trial 3 with
value: 0.585.

2024-03-13 17:41:51,269] Trial 5 finished with value: 0.555 and parameters: {'max_depth':
40, 'eta': 0.3625490378281487, 'subsample': 0.8056596870782603, 'colsample_bytree':
0.6592098943485736, 'gamma': 0.5428923898809522}. Best is trial 3 with value: 0.585.

2024-03-13 17:43:02,761] Trial 6 finished with value: 0.5758333333333333 and parameters:
{'max_depth': 75, 'eta': 0.04537194641541596, 'subsample': 0.679130829667404,
'colsample_bytree': 0.7800798339847403, 'gamma': 0.29785200155444036}. Best is trial 3 with
value: 0.585.

2024-03-13 17:43:37,170] Trial 7 finished with value: 0.5633333333333334 and parameters:
{'max_depth': 59, 'eta': 0.1687200748829207, 'subsample': 0.6021802720485504,
'colsample_bytree': 0.6919453360127953, 'gamma': 0.6913331782269285}. Best is trial 3 with
value: 0.585.

19

11

12

13

14

15

16

17

18

19

20

21

22

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

(1

2024-03-13 17:43:52,781] Trial 8 finished with value: 0.5541666666666667 and parameters:
{'max_depth': 47, 'eta': 0.20592041602172748, 'subsample': 0.7850964466185477,
'colsample_bytree': 0.6347492211226203, 'gamma': 0.30452006633737644}. Best is trial 3 with
value: 0.585.

2024-03-13 17:44:56,698] Trial 9 finished with value: 0.5691666666666667 and parameters:
{'max_depth': 80, 'eta': 0.053638238084523594, 'subsample': 0.6299265913130072,
'colsample_bytree': 0.8073265770602875, 'gamma': 0.5025625193126635}. Best is trial 3 with
value: 0.585.

2024-03-13 17:45:13,804] Trial 10 finished with value: 0.5733333333333334 and parameters:
{'max_depth': 3, 'eta': 0.09787092974584016, 'subsample': 0.6954912139222134,
'colsample_bytree': 0.6104571344775431, 'gamma': 0.4094001086633518}. Best is trial 3 with
value: 0.585.

2024-03-13 17:45:45,405] Trial 11 finished with value: 0.5841666666666666 and parameters:
{'max_depth': 100, 'eta': 0.09507499065807604, 'subsample': 0.6855439825040089,
'colsample_bytree': 0.7328098007409967, 'gamma': 0.20387053382531892}. Best is trial 3 with
value: 0.585.

2024-03-13 17:46:11,459] Trial 12 finished with value: 0.58 and parameters: {'max_depth':
99, 'eta': 0.10878967781596152, 'subsample': 0.6708412443823324, 'colsample_bytree':
0.7327974059637782, 'gamma': 0.21190555611177578}. Best is trial 3 with value: 0.585.

2024-03-13 17:47:08,524] Trial 13 finished with value: 0.5691666666666667 and parameters:
{'max_depth': 99, 'eta': 0.10312157388757899, 'subsample': 0.7261436795367667,
'colsample_bytree': 0.7354178428756479, 'gamma': 0.46965857279972395}. Best is trial 3 with
value: 0.585.

2024-03-13 17:50:00,051] Trial 14 finished with value: 0.5783333333333334 and parameters:
{'max_depth': 66, 'eta': 0.013699170602828055, 'subsample': 0.6499973619411648,
'colsample_bytree': 0.6797753455414872, 'gamma': 0.2258549695623622}. Best is trial 3 with
value: 0.585.

2024-03-13 17:50:18,900] Trial 15 finished with value: 0.55 and parameters: {'max_depth':
100, 'eta': 0.2577701353965642, 'subsample': 0.724787824449863, 'colsample_bytree':
0.8446684042030116, 'gamma': 0.357447568001234}. Best is trial 3 with value: 0.585.

2024-03-13 17:51:02,368] Trial 16 finished with value: 0.5733333333333334 and parameters:
{'max_depth': 90, 'eta': 0.14467043019902703, 'subsample': 0.7040434094685657,
'colsample_bytree': 0.6013823119846831, 'gamma': 0.4318725185160022}. Best is trial 3 with
value: 0.585.

2024-03-13 17:52:16,208] Trial 17 finished with value: 0.5675 and parameters: {'max_depth':
68, 'eta': 0.07313349418536874, 'subsample': 0.7481364041005474, 'colsample_bytree':
0.7144302711094385, 'gamma': 0.5515528704276921}. Best is trial 3 with value: 0.585.

2024-03-13 17:52:30,988] Trial 18 finished with value: 0.5608333333333333 and parameters:
{'max_depth': 24, 'eta': 0.22617848171784177, 'subsample': 0.643091997057727,
'colsample_bytree': 0.6558976273068391, 'gamma': 0.273230979010732}. Best is trial 3 with
value: 0.585.

2024-03-13 17:52:58,779] Trial 19 finished with value: 0.575 and parameters: {'max_depth':
91, 'eta': 0.13761458188996406, 'subsample': 0.6142904735125763, 'colsample_bytree':
0.7596885970440854, 'gamma': 0.4977199521557925}. Best is trial 3 with value: 0.585.

20

23

24

25

26

27

28

29

30

31

32

33

34

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

(1

2024-03-13 17:53:14,549] Trial 20 finished with value: 0.5583333333333333 and parameters:
{'max_depth': 72, 'eta': 0.30871067263417784, 'subsample': 0.6600098983765909,
'colsample_bytree': 0.6294804335721165, 'gamma': 0.6097567820884121}. Best is trial 3 with
value: 0.585.

2024-03-13 17:53:45,707] Trial 21 finished with value: 0.5816666666666667 and parameters:
{'max_depth': 96, 'eta': 0.10683139040303158, 'subsample': 0.6790847374920324,
'colsample_bytree': 0.731838690051801, 'gamma': 0.2483221311097987}. Best is trial 3 with
value: 0.585.

2024-03-13 17:54:28,620] Trial 22 finished with value: 0.58 and parameters: {'max_depth':
90, 'eta': 0.0743354509349324, 'subsample': 0.6934492256509515, 'colsample_bytree':
0.7437030911944721, 'gamma': 0.26857552664760487}. Best is trial 3 with value: 0.585.

2024-03-13 17:55:07,530] Trial 23 finished with value: 0.5741666666666667 and parameters:
{'max_depth': 92, 'eta': 0.12410506717419809, 'subsample': 0.7174966297879752,
'colsample_bytree': 0.7146975849216959, 'gamma': 0.3383770158079019}. Best is trial 3 with
value: 0.585.

2024-03-13 17:56:03,516] Trial 24 finished with value: 0.5766666666666667 and parameters:
{'max_depth': 79, 'eta': 0.0518842948117746, 'subsample': 0.6760993863842863,
'colsample_bytree': 0.7063719598727107, 'gamma': 0.20625694512079015}. Best is trial 3 with
value: 0.585.

2024-03-13 17:56:26,523] Trial 25 finished with value: 0.575 and parameters: {'max_depth':
100, 'eta': 0.17259723620387704, 'subsample': 0.6332147944883807, 'colsample_bytree':
0.6675141865655313, 'gamma': 0.23289155998045133}. Best is trial 3 with value: 0.585.

2024-03-13 17:57:11,590] Trial 26 finished with value: 0.5725 and parameters: {'max_depth':
59, 'eta': 0.07087890107916804, 'subsample': 0.7415773237284217, 'colsample_bytree':
0.7554908422723174, 'gamma': 0.2670961668610108}. Best is trial 3 with value: 0.585.

2024-03-13 17:58:08,972] Trial 27 finished with value: 0.5966666666666667 and parameters:
{'max_depth': 86, 'eta': 0.08914110787027095, 'subsample': 0.7090217089902818,
'colsample_bytree': 0.7798683657238631, 'gamma': 0.3202196584688024}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:00:14,414] Trial 28 finished with value: 0.5741666666666667 and parameters:
{'max_depth': 86, 'eta': 0.03245793946096251, 'subsample': 0.7140273678733143,
'colsample_bytree': 0.787966930641372, 'gamma': 0.3855273417003752}. Best is trial 27 with
value: 0.5966666666666667.

2024-03-13 18:00:29,938] Trial 29 finished with value: 0.5516666666666666 and parameters:
{'max_depth': 60, 'eta': 0.3944206280473697, 'subsample': 0.7780563279942019,
'colsample_bytree': 0.8232092013020121, 'gamma': 0.32518212939218916}. Best is trial 27
with value: 0.5966666666666667 .

2024-03-13 18:01:26,371] Trial 30 finished with value: 0.5791666666666667 and parameters:
{'max_depth': 30, 'eta': 0.0807346769397424, 'subsample': 0.7649894238773554,
'colsample_bytree': 0.8237359307483485, 'gamma': 0.45456702922807984}. Best is trial 27
with value: 0.5966666666666667 .

2024-03-13 18:01:52,412] Trial 31 finished with value: 0.5758333333333333 and parameters:
{'max_depth': 96, 'eta': 0.11488827657989104, 'subsample': 0.6800519725984875,
'colsample_bytree': 0.7753141802452551, 'gamma': 0.2461424389366125}. Best is trial 27 with
value: 0.5966666666666667 .

21

35

36

37

38

39

40

41

42

43

44

45

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

(1

2024-03-13 18:06:44,253] Trial 32 finished with value: 0.5758333333333333 and parameters:
{'max_depth': 85, 'eta': 0.010331722743462404, 'subsample': 0.6959338208267418,
'colsample_bytree': 0.745784323164655, 'gamma': 0.5897231626354085}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:07:23,463] Trial 33 finished with value: 0.5833333333333334 and parameters:
{'max_depth': 92, 'eta': 0.08818633534637826, 'subsample': 0.6610818663817299,
'colsample_bytree': 0.7253748211066992, 'gamma': 0.2931525731111545}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:09:00,445] Trial 34 finished with value: 0.5816666666666667 and parameters:
{'max_depth': 76, 'eta': 0.03684964666584306, 'subsample': 0.8439590404723045,
'colsample_bytree': 0.717803181379646, 'gamma': 0.29482666065926644}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:09:29,955] Trial 35 finished with value: 0.5575 and parameters: {'max_depth':
86, 'eta': 0.19348262971763927, 'subsample': 0.6573468403879056, 'colsample_bytree':
0.6976338312657588, 'gamma': 0.5145249841220667}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:10:03,239] Trial 36 finished with value: 0.5725 and parameters: {'max_depth':
81, 'eta': 0.13622912208346832, 'subsample': 0.7322233121632405, 'colsample_bytree':
0.79301010805919, 'gamma': 0.3324049232959213}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:10:36,632] Trial 37 finished with value: 0.5666666666666667 and parameters:
{'max_depth': 93, 'eta': 0.09177306256689026, 'subsample': 0.7067022256085407,
'colsample_bytree': 0.6850255185552782, 'gamma': 0.3854326368875961}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:11:50,259] Trial 38 finished with value: 0.57 and parameters: {'max_depth':
72, 'eta': 0.06007977105353304, 'subsample': 0.6641760471558428, 'colsample_bytree':
0.771453520773445, 'gamma': 0.6668007004926394}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:12:18,304] Trial 39 finished with value: 0.5675 and parameters: {'max_depth':
85, 'eta': 0.15156299229122341, 'subsample': 0.6897976250797817, 'colsample_bytree':
0.6439131254996642, 'gamma': 0.5824765976964921}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:13:18,379] Trial 40 finished with value: 0.5741666666666667 and parameters:
{'max_depth': 94, 'eta': 0.039058749907474676, 'subsample': 0.623711570941751,
'colsample_bytree': 0.7510119771191417, 'gamma': 0.29576329021997716}. Best is trial 27
with value: 0.5966666666666667 .

2024-03-13 18:13:50,717] Trial 41 finished with value: 0.5716666666666667 and parameters:
{'max_depth': 96, 'eta': 0.0907664981742017, 'subsample': 0.6837328525962776,
'colsample_bytree': 0.735142734687972, 'gamma': 0.241387948811296}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:14:16,457] Trial 42 finished with value: 0.5758333333333333 and parameters:
{'max_depth': 88, 'eta': 0.11202202083192216, 'subsample': 0.6404723972501751,
'colsample_bytree': 0.7234936253398007, 'gamma': 0.20333936137570224}. Best is trial 27
with value: 0.5966666666666667 .

22

46

47

48

49

50

51

52

53

54

55

56

57

58

SB2.2 Statistical Machine Learning Assessed Practical

P135-P151-P782-P211 | March 20, 2024

(1

2024-03-13 18:14:36,068] Trial 43 finished with value: 0.5675 and parameters: {'max_depth':
81, 'eta': 0.17487937112644442, 'subsample': 0.6696024510658934, 'colsample_bytree':
0.7050317523986152, 'gamma': 0.26087383780695983}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:15:05,477] Trial 44 finished with value: 0.575 and parameters: {'max_depth':
95, 'eta': 0.1219829290483965, 'subsample': 0.65168357620829, 'colsample_bytree':
0.7657536123021709, 'gamma': 0.3041079108056126}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:15:46,591] Trial 45 finished with value: 0.575 and parameters: {'max_depth':
10, 'eta': 0.058197175388446334, 'subsample': 0.705587269509559, 'colsample_bytree':
0.6752623822174838, 'gamma': 0.3494433211556069}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:17:34,387] Trial 46 finished with value: 0.5808333333333333 and parameters:
{'max_depth': 47, 'eta': 0.02522676082925976, 'subsample': 0.6750043279936795,
'colsample_bytree': 0.7307551389914038, 'gamma': 0.2818447369632301}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:18:09,832] Trial 47 finished with value: 0.5875 and parameters: {'max_depth':
77, 'eta': 0.09298697847604198, 'subsample': 0.6921783170086437, 'colsample_bytree':
0.6945485168422483, 'gamma': 0.4143290865615039}. Best is trial 27 with value:
0.5966666666666667 .

2024-03-13 18:18:53,825] Trial 48 finished with value: 0.5683333333333334 and parameters:
{'max_depth': 75, 'eta': 0.08161708070938356, 'subsample': 0.7349772046626463,
'colsample_bytree': 0.6240121180427641, 'gamma': 0.5295665522581865}. Best is trial 27 with
value: 0.5966666666666667 .

2024-03-13 18:19:06,436] Trial 49 finished with value: 0.53 and parameters: {'max_depth':
66, 'eta': 0.2930047397457317, 'subsample': 0.7176313418474469, 'colsample_bytree':
0.6463957459794509, 'gamma': 0.48948472762402184}. Best is trial 27 with value:
0.5966666666666667 .

Best trial: {'max_depth': 86, 'eta': 0.08914110787027095, 'subsample': 0.7090217089902818,

—

'colsample_bytree': 0.7798683657238631, 'gamma': 0.3202196584688024}

Retraining

Test set accuracy: 0.64

Total execution time: 52.59 minutes

Process finished with exit code O

23

	Introduction
	Exploratory Data Analysis
	Data Preprocessing and Splitting
	Baseline Models
	Multinomial Logistic Regression
	K-Nearest Neighbours (KNN)
	Support Vector Classifier (SVC)
	Neural Networks (NN)
	Random Forests (RF)
	Gradient-Boosted Decision Trees (XGB)

	Feature Subsetting and Stacked Modelling Approaches
	Final Model: Tuned Gradient-Boosted Trees (XGB)
	Final Results

	Conclusion
	Appendix A: Source Code
	Appendix B: Tuning Log

