
Outbound Open Source:
Leveraging open source
ecosystems
September 2022

Contents

Introduction..3
Goal and target audience... 3

Maturity levels.. 3

How companies manage open source: Open Source Program Offices... 4

Motivation for open source contribution... 4

How to contribute to OSS projects...5
Define your open source goal and strategy... 5

Establish open source guiding principles and processes.. 6

General structure and scope of the process.. 6

Process for expressing company approval for contributions.. 6

Procedure for contributions to existing projects.. 10

Contribution models... 10

Starting open source projects...14
Motivation.. 14

Project life cycle.. 14

Planning or Concept Phase.. 14

Legal and governance considerations... 17

Community management.. 19

Technical considerations, tooling, and best practices... 20

Build an open source metrics strategy when releasing to open source projects..23

References and Abbreviations...23
Abbreviations..23

References...24

Appendix...24
Managing work vs personal emails in git..25

3THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Introduction

Goal and target audience
This guide is about how to contribute to or launch an open source
project (also called “outbound open source”) as a company. It aims
to describe a complete and lean process, that can be implemented
in companies of any size (large but also small or medium-sized orga-
nizations). Companies can tailor the proposed procedure to their
needs. I.e., depending on the size and situation of the company not
all steps need to be implemented.

Maturity levels
Corporate adoption of open source software can typically be classi-
fied with a model of maturity levels. These levels describe how open
source software is used in an increasingly effective fashion to drive
value and address business needs. One of the distinguishing factors
for the different maturity levels is how outbound open source is
handled in an organization. The insight that influencing the open
source ecosystem is mainly done by participation in and contrib-
uting to open source projects is seen as a critical factor.

A typical maturity model of corporate open source adoption looks
like this (see for example Haddad: Open Source Program Offices):

1.	 Denial - No or unconscious use of open source
2.	 Consumption - Passive use of open source software
3.	 Participation - Engagement with open source communities
4.	 Contribution - Pragmatic contributions to open source projects
5.	 Leadership - Strategic involvement with open source to drive

business value

To advance from one level to another, certain initiatives and struc-
tural and organizational elements are required.

Going from consumption to participation, for example, will start
with informal engagement and low-effort activities such as
reporting bugs in upstream projects, which typically are driven
by technical needs. On that level, decisions about open source
contributions will normally be ad-hoc and be taken for individual
cases only.

Establishing dedicated decision-making processes and formalizing
contribution policies will lead to the next level. A typical step on this
level is to establish an Open Source Program Office to support open
source engagement and maintain an open source strategy and
processes.

On the leadership level, contribution processes are mature and
scale. Corresponding toolchains are implemented. Own projects
with the goal to create new open source communities are started if
that’s required and appropriate. This will typically come with lever-
aging open source foundations to enable cropen source-company
collaboration to strategically use open source to accelerate creating
business value.

A company may decide to not progress to levels that are based
on more contributions, and it’s of course possible to build mature
processes to consume open source software without contributing.
In most cases, there will be some pressure to contribute back,
though. This can arise from practical technical needs (missing func-
tionalities or required bug fixes are typical reasons for contributing
to open source projects), the expectation to take responsibility
in the open source ecosystem, or from the desire to reap the full
benefits of the open source model.

https://www.linkedin.com/pulse/open-source-program-offices-primer-organizational-roles-haddad

4THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

How companies manage open source:
Open Source Program Offices

An increasing number of organizations realized the tasks of
managing open source in an enterprise and complex relation-
ships that are inherent to the open source ecosystem when
they are advancing in their engagement in open source. For this
reason, many of them started Open Source Program Offices
(OSPOs), sometimes called differently, for example, Open Source
Technology Centers, Open Source Community Development
Team etc. OSPOs are a designated place where open source is
supported, nurtured, shared, explained, and grown inside an orga-
nization. With such an office in place, businesses can establish and
execute their open source strategies with clear terms and respon-
sibilities, giving their leaders, developers, marketers, and other
staff the processes and tools they need to make open source a
success within their operations.

The TODO Group offers a set of guides on how to get started with
an OSPO. Companies that are new to this topic, might want to first
take a look at How to create an open source program

Motivation for open source contribution

There is a broad spectrum of motivations for contributing to open
source projects or starting new projects. Here, we can only list
some examples.

Build software faster and better

Consuming open source software typically increases the develop-
ment speed and decreases development costs since one builds
upon existing code and a working and tested functionality. One
risk however is that required features or bug fixes are not provided
by the community as quickly as needed. To mitigate that risk, it
might make sense to build up the required skills and create these

bug fixes and/or features yourself. Contributing them back to the
upstream projects has important benefits:

•	 Integrating “own” features into upstream projects makes
maintenance a lot easier

•	 Upstream versions can be directly used in own products and
services

•	 More features are obtained in a shorter period of time

•	 Higher quality is achieved in a shorter period of time

•	 Support available from core experts

Exercise strategic influence

In addition to the benefits of open source software wrt. develop-
ment velocity and quality mentioned above, contributing to open
source projects can also be important from a strategic point of
view. In the open source world, reputation and the ability to influence
are typically built up by engaging in the community and by contrib-
uting. Thus, contributions to open source projects can help to...

•	 Influence the direction of upstream open source projects

•	 Gain (co)copyright on open source software packages

•	 Access to the creativity of everyone interested in software

Companies sometimes have the tendency to use the money to
exert influence. With open source projects, this is not the most
effective method. The currency of influence is contributions
because open source projects are usually much more driven by the
work of individuals than the decisions of committees. So contri-
butions work much more directly and effectively than being a
member in an organization or paying for support or other services.

Open source communities (particularly those run by the big open
source foundations) provide a neutral place for collaboration
between companies and other organizations. Thus, an open source

https://todogroup.org/guides/
https://todogroup.org/guides/create-program/

5THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

approach could offer new ways of collaboration with suppliers,
customers, partners and even competitors, just to mention
industry- or domain-specific projects such as Linux Foundation
Energy or Eclipse Tractus-X. Establishing open source communities
can also be a powerful means to create and maintain ecosystems
and to establish de facto standards.

Attract, grow and retain talents

Software (and therefore also open source software) becomes
more and more ubiquitous in many products and areas. Thus,
for many companies, it is crucial to have a skilled and motivated
software development workforce. This is not only true for software
or cloud companies, but also for companies from other segments,
such as traditional hardware producers who integrate software
into their products more and more, or any other company which is
becoming more dependent on software due to accelerating digital
transformation. An open source strategy including open source
contributions and community engagements supports this:

•	 Increase developer satisfaction

•	 Improve quality and boosts developer skills by peer review
of each contribution by core experts

•	 Make the company visible as an attractive employer

•	 Improve the company’s reputation, and with it the standing
of developers in their communities

Give back and keep open source sustainable

Open source software development is living from its communities.
As mentioned above, the consumption of open source software
helps to decrease costs and speed up development, but that’s only

possible because there is the community behind these projects
maintaining the software. To keep the open source development
model sustainable, each consumer of open source software has,
therefore, the responsibility to think about ways how to support
these projects. These are some ways of engagement and support:

•	 Contributions in terms of code, documentation, time
(by testing software, for example)

•	 Donating infrastructure resources, e.g. compute resources
for CI/CD and testing

•	 Dedicating a “DevRel” person to the project

•	 “Marketing support”, for instance by featuring a project in
company blogs etc.

•	 Monetary support (some important projects are maintained
by developers who do this in their spare time and thus can
only invest limited time in the project)

•	 Hosting hackathons and local community meet-ups

It is important to understand that though open source software has
no license costs when consuming it, it is not available for free. To
keep these projects attractive to their consumers, steady engage-
ment and support are required. That’s why it is important to have a
strategy for open source contributions in place.

https://www.lfenergy.org/
https://www.lfenergy.org/
https://projects.eclipse.org/proposals/eclipse-tractus-x

6THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

How to contribute to open source projects
Building better relationships with the open source ecosystem have
its own set of challenges, but it becomes easier if you have a clear
plan to follow. Here are some guidelines for a number of practices
that organizations can adopt.

Define your open source goal and strategy
Your open source strategy connects the plans for managing, partic-
ipating in, and creating open source software with the business
objectives that the plans serve. This can open up many opportuni-
ties and catalyze innovation. The TODO Group offers a dedicated
guide to Setting an Open Source Strategy

Establish open source guiding
principles and processes

Guiding principles

The procedure described in the following is designed to ensure
that the company’s interests and its employees are protected. We
also need to make sure that contributions are in line with copyright
law, export regulations, data protection regulations, and open
source development best practices. On the other hand, the proce-
dural burden for all to be involved stakeholders shall be low and
the approval procedure should not take too much time.

Responsibility: decision rests with unit

•	 The approval procedure is the responsibility of the
organization that financed the development of the code in
question

•	 If the affected code/IP is used, co-developed, or co-financed
by other units, involve them as stakeholders in the release
decision

General structure and scope of the process

Lean procedure

•	 The tasks to be carried out by the developers should be
clear, simple, and cause as little effort as possible

•	 The potential complexity of the “backend tasks” should not
be visible to the developer. The current status of the request
shall be visible to the developers

Boundary conditions

•	 Protect our employees and our business interests

•	 Act in compliance with the law as well as with internal and
external regulations

•	 Provide transparency to the decision makers on what and
how much of the companies’ code and IP will be affected by
the publication

•	 The contributions shall not harm the business strategy of
other parts of the company

•	 All the contributions shall be made with the “company”
e-mail (similar to the GitHub activity) so that all contributions
of the company can be identified easily

•	 Respect the rules and customs of the Open source
ecosystem and of the target Open source project

https://todogroup.org/guides/strategy/

7THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Process for expressing company
approval for contributions

Why is it needed?

Why is there a need for a certain procedure at all?

First of all, the copyright law requires it.

For example, the German copyright act states in Section 69b:
Authors in employment or service relationships

(1) Where a computer program is created by employees in
the execution of their duties or following the instructions of
their employer, the employers exclusively shall be entitled to
exercise all economic rights in the computer program unless
otherwise agreed.

Source: German Copyright Act

This means that all the software developed in this context is the
property of the employers, i.e. the company the developers are
working for. At least the German copyright act does not limit the
proprietorship to code developed during working hours or within
the company’s IT infrastructure, it only scopes the context.

Secondly, a procedure is required to protect the company’s business
interests as well as to protect the employees. Finally, public code
is like the business card of a company as well as of the developers
who have written the code. In the context of contributions several
aspects can harm the business interests of a company, like (the
following list is not a complete list):

•	 Accidently contributing intellectual property, which shall not
leave the company (core IP)

•	 Contributing code which is not anymore state of the art

•	 Accidently contributing company internal credentials or
other sensible data like personal data

Similar to the protection of business interests, the protection of
the employees has several aspects:

•	 Employees who contribute material, which was created in
the scope of Section 69b without an official approval, may be
hold liable for any negative consequences to the company or
face repercussions in context of their work contract

•	 Contributions which are not inline with the projects’ rules
and practices, might harm the employees reputation

Finally, public code is like the business card of a company as well as
of the developers who have written the code.

Outbound CLA

Some open source projects as well as some open source
Foundations require a Contributor License Agreement (CLA)
before they accept contributions. We know at least two different
types of CLAs:

•	 Corporate Contributor License Agreement (CCLA)

•	 Individual Contributor License Agreement (ICLA)

Whether none, one, or both are required for contributions is usually
described in files like CONTRIBUTING.md in the project reposito-
ries. The CCLA and the ICLA authored by the Apache Foundation
are the de facto standard of CLAs and many open source projects
have adopted either one or both.

The purpose of a CLA is to provide confidence to the open source
project that the contributor is entitled to submit the contribution. A
Developer Certificate of Origin (DCO) is an alternative approach and
is more lightweight compared to a CLA.

https://dejure.org/gesetze/UrhG/69b.html
https://www.apache.org/licenses/cla-corporate.pdf
https://www.apache.org/licenses/icla.pdf

8THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Some CLAs are also required to transfer additional rights to the
project such as the right to release the code under an additional,
often proprietary license. This is an asymmetric setup that puts
contributors at a disadvantage. Therefore most companies will not
contribute to these kinds of projects.

The price of improved confidence for the open source project is
more overhead in the organization the contributor is working for.
Especially in the case of large corporations with several affiliates,
the effort of evaluating, signing and maintaining a CCLA shall not be
underestimated.

Why is a CCLA causing additional effort in large organizations? Let’s
briefly look at the CCLA of the Apache Foundation as an example:

•	 The CCLA is a contract - in many organizations, the “four
eyes principle” is implemented - a contract has to be signed
by two persons, who have the right to sign contracts in the
name of the organization - the required involvement of
probably two more stakeholders requires additional effort in
briefing them

•	 Usually, a CCLA covers not only the specific legal entity the
contributor is working for, it also covers all affiliates:

•	 For legal entities, the entity making a Contribution and all
other entities that control, are controlled by, or are under
common control with that entity are considered to be a
single Contributor. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract
or otherwise, or (ii) ownership of fifty percent (50%) or more
of the outstanding shares, or (iii) beneficial ownership of
such entity

•	 The CCLA includes besides the copyright grant a patent
grant. This is fine, nevertheless inside the organization the
“IP department” needs to be involved in the evaluation
process of the CCLA and for the specific contribution the “IP
department” needs to sync with all affiliates

•	 The CCLA needs to be analyzed by the “Legal department” of
the organization.

Some CCLAs require that the copyright of the contributions is
assigned to the open source project/foundation. Copyright assign-
ment is a topic that causes even more effort and might not be
accepted at all.

Besides the above-mentioned additional effort, the CCLA adds addi-
tional “maintenance effort” to the organization, because it requires
that the organization nominates all entitled contributors by name to
the CCLA requiring party.

It is your responsibility to notify the Foundation when any change is
required to the list of designated employees authorized to submit
Contributions on behalf of the Corporation, or to the Corporation’s
Point of Contact with the Foundation.

•	 The signed CCLA has to be made available inside the
organization - This can be done via publishing the CCLA on
the OSPOs website at a location that can be found easily by
the employees (e.g., it might be useful to have a “top-level
page” named CCLAs, this page then contains a list of “signed
CCLAs”, a list of “CCLAs under evaluation”, and a list of
“denied CCLAs”.)

•	 All affiliates need to be informed and a procedure needs to
be defined for how the affiliates can nominate/de-nominate
contributors working for them. This becomes even more
challenging in case an affiliate has no access to the intranet
of the signing entity. In this case, the signed CCLA or the
information about the signed CCLA needs to be sent to the
OSPOs of all affiliates, in case an affiliate has no OSPO set
up, the information must be routed to the function, which
is in charge of software development. All affiliates need to
provide the names of nominated contributors or former
contributors, who shall not be entitled anymore to do
contributions to the OSPO of the signing entity, which then
must inform the Foundation/project about the change of the
list of contributors.

9THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

•	 Publishing the list of contributors inside the organization and
disclosing it to the Foundation/project might also require
the approval of the data protection officers of the involved
entities

This additional effort may hold organizations off to contribute
small bug fixes or patches or even new features to the upstream
open source projects and puts them to risk of private forks and
thus a lot of additional development effort in the long run. Thus
the decision not to contribute needs to be taken very carefully.

A DCO in contrast to a CLA is a much more lightweight procedure.
It was introduced to enhance the confidence that contributions to
the Linux kernel are made “legally correct” by the contributors.
The DCO version 1.1 is used by many Open source projects.

The main difference between a DCO compared to a CLA is, that a
DCO is not a contract, it is a kind of attestation of the specific contrib-
utor that they are entitled to submit a concrete contribution. All the
effort which has to be spent to get a CLA signed and maintained is not
needed. The only tasks which have to be carried out are:

•	 Evaluation of the DCO by the “Legal department”
•	 Evaluation by the “IP department”
•	 Evaluation by the specific contributor, whether it is acceptable

for them Since the DCO version 1.1 is the “standard” the “Legal”-
and “IP department” only have very little effort to spend.

Procedure for contributions to existing projects

The more complex the business environment in which the code
to publish was developed, the more stakeholders need to be
involved. The picture below shows a procedure that involves all
functions, even in a complex setup.

The open source officers play a central role in the contribu-
tion process. They are the link between the contributors and the
stakeholders, to be involved in the “backend tasks”, to decide on
the contribution. Furthermore the open source officers of the
different units of a large organization need to have an overview of
the business strategies of the other units to be able to determine
whether a contributions conflicts with the business strategy of
another unit.

The procedure shown above is not suited for frequent contrib-
utors and/or contributors who are working “upstream” in their
daily work. For these developers, different procedures need to be
established in order to avoid loading them with “unproductive”
work. Different contribution models can be established in an orga-
nization to serve different needs.

Contributor

Source clean up:
code review, make ready

for the OSS project

A peer to review
the contribution

FRONT END

OSS Officer Legal
department

IP department

Budget owner

Approver

CLA/DCO
License
Technical manager
ECC
Budget owner
3rd party software expert
Code

ok
ok
permission
permission
permission
permission
okGO!

The name and URL of the
project

The license of the project

Information of the
contribution
policy of the project (text
of the CLA, DCO, or other
information)

Information about the
context in which
the software to contribute
was developed (the
development project)

Cleaned source code to be
contributed

BACK END

Involve
ECC

Technical manager Permission to
contribute?

CLA, DCO
Text of the license

https://developercertificate.org/

10THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Contribution models

The following approaches are suited for such developers:

•	 small contributions model

•	 major to major release model

•	 full trust model

•	 Approving projects for contributions

 Small contributions model or trivial contributions

A small or trivial contribution is a rather small and simple change
to already existing open source software. Typical cases found in
this category are bug fixes with no or low Intellectual Property
value.

A change is not trivial if:

•	 Functionality is added or changed.

•	 The interface of the open source software component is
changed.

•	 It is an optimization that more than insignificantly increases
performance.

•	 It contains a design or an algorithm that wouldn’t be obvious
to a software engineer.

It can be implemented for small or trivial contributions following
the initial contribution to a particular open source project or
component. The initial contribution has to undergo the entire
procedure described above because CLAs/DCOs etc. have to be
checked and signed in case the particular project requires them.
After the initial contribution, all subsequent small contributions
can be contributed directly to the open source project without the
need to follow the defined process no matter which version of the
open source project.

Companies can implement such a model if they want to ensure
that the number of private forks inside the organization is very
low and to ensure that the upstream projects remain the
reference source.

Major to major release model

This procedure scopes the release cycle of the open source project
to which contributions shall be made. It has the same “starting
point” as any other contribution - the initial contribution must
implement the entire procedure in order to check CLAs/DCOs and
to have the documented permission to contribute to a specific
project. After the initial contribution, all subsequent contributions
during the development of a new major release can be contrib-
uted to the open source project without the need to go through
the approval process. There is no size limitation for contribu-
tions. The contributions can range from a trivial bug fix to adding
new features, changing interfaces, refactoring, and so on. After the
release of a major version of the project, a new approval procedure
has to be kicked off for the first contribution after the major release.

This model can be applied to projects, which are of higher impor-
tance for the company. This might be the case for projects which
are either part of “core” products or of many products of the

Track the contributions

11THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

organization. On the one hand side it off loads developers from
repeatedly going through the approval process and on the other
hand there is still a certain level of control. Furthermore license
changes, if they happen, are often done with a new major release
(see OpenSSL for example), with this approach all stakeholders
(Legal department, IP, ECC, etc.) are involved and can decide on
whether the developer is still allowed to contribute or not.

Full trust model

The full trust model can be applied for developers who have
already successfully worked under the major to major release
model. It is an incentive for the employees and a sign of trust of
the employer towards the employees. Basically, it is the permis-
sion for the developers to work “upstream” without any approval
procedure. Since this model shall only be applied after the devel-
opers worked successfully under the major to major release
model, there is no need for an “initial” contribution with the entire
approval procedure, although it makes sense in order to have it
documented.

The major to major release model as well as the full trust model
shall only be executed by senior developers, who are specially
trained in copyright principles, have a good understanding of the
business interests of the company they are working for, practice
“an ownership culture” and have already deep experience in the
open source ecosystem.

In order to track all the contributions, the developers shall
contribute with their official email addresses.

Approving projects for contributions

Another model is to provide approval for specific projects. These
projects are checked, e.g. by the OSPO, and if everything is in
place to allow contributions, they are cleared for contributions by
employees. Then there is no individual approval for each specific

contribution required. But if the general conditions of the project
change, such as license or introduction of a CLA, etc. the project
needs to be cleared again by the OSPO.
This approach can be taken for example for projects, which are
necessary for the company to develop products but there is no
business interest of the company, like developement tools or other
software infrastructure.

A prerequisite for such a model is that contributors are qualified to
do contributions autonomously. This can be achieved by making
sure contributors have received training and/or tracking and
approving who can contribute to which repository.

Spare-time contributions - also known as “moonlighting”

What to do in case employees want to contribute to open source
projects in their spare time that does not fall under the corporate
context?

In this case, the copyright ownership stays with the developer
(assuming they are not developing for another entity). In order to
provide clarity the following procedure can be implemented:

The developers inform their managers about the intention to
contribute to a certain project (which is out of the scope of section
69b German Copyright Act). In case the manager has not objec-
tions they draft a small note with, at least, the following content:

•	 Date of the meeting

•	 Project(s) the employee wants to contribute to

•	 Estimated hours per week

•	 Approval by the manager

•	 Signature of the developer

•	 Signature of the manager

12THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

The note can be sent to the HR department to keep it in the
personnel record of the employees.

This procedure provides transparency especially in the context of large
enterprises, acting in many different software technology areas.

The example below shall illustrate why such a procedure makes sense:

A developer may, for example, implement Linux kernel drivers
according to their duties. Another area of interest of the developer
is for example AI and the developer wants to contribute to an AI
project during his spare time. Given that the AI project has nothing
to do with Linux kernel driver development, the developer holds
the copyright on his contributions, and the copyright ownership
is not transferred to the employer. The developer can contribute
code without the need for approval from their employer.

But what about when the developer decides to move to another
department inside the company, which develops AI. All of a sudden
the former “moonlighting” is now covered by section 69b of the
copyright act and the copyright owner now is the employer.

The above-described procedure provides transparency about the
copyright ownership and its change during the time.

Training

Contributors to open source projects will need to act with a certain
degree of autonomy to be effective. For some corporate software
developers, it will also be new to participate in open source
communities. For these reasons, it is important to support corpo-
rate contributors and provide them with training or similar means
to develop the understanding and skills to act as good citizens of
the open source world on behalf of your company.
This can be achieved with mentoring, good practice guides, or
training which cover the following topics:

•	 Essentials of legal implications of open source, such as
copyright, licensing, CLAs, DCOs, trademarks

•	 Awareness of your corporate rules and policies for
contributing to open source

•	 Open source community culture

•	 Typical open source development procedures

•	 Open source governance in its different forms such as
foundations or single-vendor projects

•	 Working in public

•	 Dealing with conflict of interests between open source
project and company

•	 Where to get internal support in case of doubt or questions

Starting open source projects

Motivation

There are many good reasons to start your own open source projects.
See the introduction for some of the motivations for doing this.

Launching a new Open source project is comparable to a product
introduction and it is, at first hand, a software development
project - there is no difference to an internal software develop-
ment project concerning planning, budget, staffing, testing, etc.

https://github.com/todogroup/outbound-oss/blob/main/content/01-introduction.md#motivation-for-open-source-contribution

13THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

- the only difference is that everything happens in the public area.
Be aware that publicly available source code is the “business card”
of the organization to the software ecosystem, and it is also the
“business card” of its maintainers.

When thinking about starting your own Open source project there
are several phases you should consider:

 Project life cycle

The life cycle of an open source project describes the stages in which
the project evolves, from its conception to its retirement or end of
life stage. Typically, a project originates to solve a specific problem.

It may become obsolete either because the problem does not exist
anymore or because other projects are better suited to solve the
problem. The figure below shows the different stages an open
source project may undergo.

Planning or Concept Phase

This is the starting point of every open source project. It can also
be referred to as the “initiation phase”. Normally, at this stage,
only an idea exists or a specific problem has been identified which
requires solution. In this phase, the open source project typically
has the following characteristics:

•	 The problem that the project intends to solve has been
clearly defined

•	 There is either no source code available yet or the source
code is only internally available. In the first case, the project
only exists as idea; in the second case, the project may have
been started as an company-internal project and has not
been published yet

•	 Popen sourceibly, the idea has been already shared with
the community to get feedback. However, note that sharing
such ideas that have only been discussed company-internally
requires approval in advance.

Before starting a project, it is reasonable to get answers to the
key questions:

•	 Is it possible to join efforts with an existing open source
project?

•	 Can we launch and maintain the project using the open
source model?

•	 What constitutes success? How do we measure it?

No new major features

Further functional
enhancement
necessary

Project becomes obsolete

Reactivation

Source code available
and published

Active development
(frequent functional
enhancements)

Project becomes
obsolete

Planning
(Concept

Phase)

Active
(Development

Phase)

Obsolete
(End of Life

Phase)

Mature
(Maintenance

Phase)

Bug fixes

14THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

•	 Can we financially sponsor the project? Do we have an
internal executive champion?

•	 Will the project be able to attract outside enterprise
participation (from the start)?

•	 Is there enough external interest to form and grow a
developer community?

(Source: Linux Foundation)

In addition, the following aspects should be considered in the
planning phase:

•	 What is the goal of the project and will it solve the problem?

•	 Are there enough resources not only to start, but to support
the project in the long-term? (You also need to obtain and
ensure sponsorship)

•	 An appropriate license must be selected. The license should
support the project goal.

•	 The legal requirements for contributions must be decided (if,
for example, contributors must sign a CLA or DCO). Maybe
your company has a standard approach for that.

•	 Execute additional checks. For example:

•	 Make sure that all license obligations are fulfilled

•	 Export control: Under certain circumstances it might be
required that the project must have an export control
classification number (ECCN), for example.

•	 Check that the publication is not in conflict with existing
trademarks.

•	 The checklist of the Linux Foundation contains a
comprehensive set of topics you might want to consider

•	 Does it make sense to donate the code to a vendor-neutral,
non-profit organization (that is, an open source foundation),

or retain some control by owning and running the project
under the responsibility of your company? Note that this
decision depends on the project and may also be taken
later in the life cycle. Typically, a project first needs to be
published and generate interest in the community before it
is handed over to a third-party organization.

•	 Set up an open source project governance. It establishes
how to contribute to or maintain a project.

•	 Determine the tools and infrastructure the project members
will use

•	 Carry out a technical review

•	 Ensure that all critical content is removed from the project
before publishing it. For example:

•	 Dependencies to non-public components

•	 Internal comments, references to other internal code,
and the like

•	 Access tokens and the like

•	 Ensure that the coding style is consistent

•	 Where will the code be published? Typically, it will be in a
company-owned organization on a code hosting platform
such as GitHub.com or GitLab.com but, depending on the
technology, other potential publishing channels exist (for
example, NPM, Maven central, PyPI)

•	 Does it make sense to publish binaries? If yes, where?

•	 Define your web site and communication: What can you do
to make your project known? Does it make sense to create a
web site for the project? Are there working groups?

•	 Plan your project life cycle

https://www.linuxfoundation.org/en/resources/open-source-guides/starting-an-open-source-project/
https://en.wikipedia.org/wiki/Export_control
https://en.wikipedia.org/wiki/Export_control
https://www.linuxfoundation.org/en/resources/open-source-guides/starting-an-open-source-project/#checklist

15THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Active or Development Phase

Once the project has got an approval for open sourcing and the
code is available and published, the project has entered the active
development phase. In this phase, the open source project typi-
cally has the following characteristics:

•	 The source code is publicly visible

•	 The project community is actively managed

•	 The project can receive contributions from the community

•	 Further development is ongoing, based on incoming
requirements

•	 A dedicated team is working on the project and provides
support

•	 Potentially, to make the project better known and to attract
more users and contributors, the project is being promoted
in talks at open source events, conferences, and so on.

•	 During the active phase, the following aspects should be
considered:

•	 Do marketing: Make the project better known (for example
through blog posts, reaching out to potentially interesting
parties/companies, talks at conferences)

•	 Invest in building and managing the community

•	 Care for full transparency, every decision shall be made in
the public, even if there is no external community yet. This is
very important because interested organizations are able to
follow all decisions and to build up trust in the project

•	 Carry out a health check of the project and its community
(that is, perform a review of the defined KPI’s and goals)

•	 Check 3rd party contributions

•	 Plan further developments

•	 Support by fixing bugs and security issue

Mature or Maintenance Phase

At a certain point in time, an open source project becomes
mature. This can also be referred to as the “maintenance phase”,
meaning that only error corrections are made and normally no
new functionality is developed. The following aspects charac-
terize this phase:

•	 The project is being used actively, but from a functional
perspective it can be considered as complete or at least no
major functional enhancements are necessary

•	 Contributions mainly focus on bug fixes. Functional
enhancements are only minor and are done rarely

•	 A dedicated team still provides support for the project, but
with relatively low efforts

•	 The team still has to take care of the community, but
normally less effort is required compared to projects that
are in active development.

•	 It is good practice to clearly communicate that the project
is in the maintenance phase and no or only limited further
development can be expected

•	 The team should perform regular health checks of the open
source project and the external community

•	 Bug fixes and security fixes are still required

Obsolete or End of Life Phase

An open source project in this phase is characterized by the
following properties:

•	 There is no or only very minor interest in the project

•	 No further contributions take place

•	 There are no further developments and no incoming
requirements

16THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

•	 No further support takes place

•	 Popen sourceibly, there is no project team available anymore

During this phase, it is important to consider the legal implications
and come up with the appropriate documentation and communi-
cation with the community. Since the project has been published,
it might be in use. Therefore, the community needs to be informed
that the project is no longer maintained. Furthermore, once in this
phase, the decision must be made whether to archive the project
or remove it completely.

Legal and governance considerations

Which license to select

Choosing the license for a new open source project is an important
decision. Without a license, the code can’t be used by anybody,
even if the code is publicly available, for example in a public repos-
itory at a code hosting platform. Choosing a license that is not
approved by the Open Source Initiative as an open source license
also effectively makes the code proprietary. This will make it
harder to get adoption, especially in most corporate setups, where
processes are usually built around the well-known standard open
source licenses.

Open source licenses vary in the rights and the obligations they
give to users. All open source licenses approved by OSI give users
the right to use the software without restriction to specific users
or use cases. When distributing open source software, and espe-
cially when distributing it with modifications, the obligation vary.
The spectrum goes from the so-called copyleft licenses such as the
GPL, which require to pass on rights given by the license to users,
to permissive licenses, such as the Apache or the MIT license,
which allow incorporation in proprietary systems.

When choosing a license the following questions have to be
considered:

•	 What’s the goal of the open source project? When
broad adoption is a priority, a permissive license might be
a good choice, when the focus is on building a contributor
community, more reciprocal licenses might have advantages.

•	 Is there a license suggested or required by the
ecosystem where the project is positioned? If it is meant
to become part of a foundation or an umbrella project then
there might be a strong preference for a license, e.g. the
Apache license for Apache projects, or the GPL for Linux
kernel drivers.

•	 How does the license interact with your business
model? When the software you are going to open source is
supporting other parts of your business, a permissive license
might accelerate adoption. If you are also selling proprietary
version of your software, a copyleft license might be a
stronger differentiator.

•	 Are there dependencies or other incorporated code
which limit the choice of licenses? For example, when
incorporating GPL code, the resulting project has to be GPL
as well.

Answering these questions can be challenging and opinions will
vary. A simple starting point can be the choosealicense.com.
There is a lot of comprehensive material available from various
sources, e.g. Open source licenses: What, which, and why.

It is advisable to set up policies for license selection so that the
decision process is simplified when starting new projects.

Contributor License Agreement (CLA), Developer
Certificate of Origin (DCO)

•	 When running an open source project you need to decide
how you are going to check code provenance and if you need
additional rights from contributors which are not given by
the license. There are mainly three ways how to handle that:

https://choosealicense.com/
https://arstechnica.com/gadgets/2020/02/how-to-choose-an-open-source-license/

17THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

•	 “Inbound=Outbound” - Contributions are accepted under
the same license as the project distributes its code. There
is no additional paperwork. This is a symmetric setup,
where contributors, maintainers, and users have the same
rights under the chosen license. It has the lowest barrier for
contributors. Some things such as changing the license of
the projects become difficult because that need approval by
every contributor.

•	 Developer Certificate of Origin (DCO) - The DCO was
introduced in Linux kernel development and has been
adopted by many other projects. It is a statement developers
give with each commit by including a “Signed-off-by”
statement in the commit message. With this statement
developers explicitly declare that they have the rights
they need to do the contribution and that they agree
that the project is using it. This is still a low barrier, but it
gives projects more confidence that code was rightfully
contributed. It does not help in cases where the license of
the code needs to be changed.

•	 Contributor License Agreement (CLA) - A CLA is an
additional agreement between the contributor and the
project which gives the project additional rights on top
of the rights given by the license. If people contribute on
behalf of a company, where the company holds the rights
to the work of the contributor, the company has to sign
the CLA. There is a variety of different CLAs in use, some
mostly confirm the rights already given by the license, and
some give additional rights such as being able to release
the code under a different license, for example when the
code is also released under a proprietary license as part of
a commercial offering. With a CLA, rights are collected at a
central place, so changing the license, or rereleasing the code
as part of a product with a different license, is possible. The
asymmetry of the agreement, which gives the project more
rights than its contributors, can impose a bigger barrier to
contributions. Requiring a corporate CLA can also be an
insurmountable barrier, especially for large corporations,
because the effort and legal implications of checking and
signing a CLA might outweigh the benefits of contributing.

You should have a policy for which of these ways you use when.
“Inbound=Outbound” is a pragmatic way that can work for most
projects. The DCO is a good way to make the contribution process
more explicit, especially for larger projects with diverse contrib-
utors. The CLA makes contributions more difficult and requires
additional administrational work and tooling. To get an impression
of the additional effort and difficulties especially large corporations
face you can check contributions-to-existing-projects

Project governance

An important factor for the success of an open source project is
its governance. That comprises the rules, policies, conventions,
and culture of the collaboration. It determines factors such as how
decisions are taken, who is in control, or who can join a project.

In existing projects governance often has emerged over time, and
has gone from informal procedures driven by the practices of
the project founders to more formally defined governance docu-
mented in contribution guides or ultimately instituted through a
foundation as a formal organization hosting the project.
When starting a new open source project you have to decide about
what its governance will look like. This goes beyond deciding on
a license. You will also have to decide about ownership of assets
such as trademarks or domains and the rules on how they can be
used. And you will have to decide about policies of how people can
become committers or maintainers, how releases and roadmaps
are made, or how transparent the decision-making process is.

For a project which is meant to attract a broad set of contribu-
tors, it is important to set up governance that provides a neutral
ground, is open to participation by diverse participants, and is
transparent about its decision-making. This can be called open
governance. One way to achieve this is to join one of the existing
open source foundations. Prominent examples of this are

https://developercertificate.org/
https://github.com/todogroup/outbound-oss/blob/main/content/02-contributions-to-existing-projects.md#process-for-expressing-company-approval-for-contributions
https://opengovernance.dev/
https://opengovernance.dev/

18THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Kubernetes which is hosted by the CNCF or the Eclipse IDE which
is part of the Eclipse Foundation.

In other cases, a company might want to retain more control
over the project. This will limit contributions from others but give
more freedom in how to steer a project. It requires that there
are enough resources allocated to maintain the project. It still
is helpful to implement elements of open governance, such as
transparency about planning or a permissive trademark policy to
increase the adoption of the project. Examples of this would be
TensorFlow which is run by Google or Visual Studio Code which is
run by Microsoft.

For smaller projects, for example, technical tools which emerge
from work on other projects, a simple and less formal approach
to governance can also work. Here the goal is not primarily broad
adoption or building a large community, but transparency and
ad-hoc collaboration with interested individuals. Often this kind
of project is more driven by technical needs and motivation of
developers than by overarching business needs. If such a project is
growing its governance can be evolved. This can for example result
in a project being transferred to a foundation. Countless examples
can be found on GitHub.

More detailed information and possible starting points for
open source governance can be found in the Minimum Viable
Governance framework or A Legal Issues Primer for Open Source
and Free Software Projects.

Different Project Levels

It can make sense to have different levels for new open source
projects (“sandbox”, “incubator”, “graduated” - these are the
different project levels of CNCF, for example). This is a way to
classify your open source projects wrt. adoption, maturity and
quality criteria that they have to fulfill. The basic idea is that new
projects start in a dedicated space (CNCF calls that “sandbox” - at
Meta, that’s the “Incubator”). In this space, projects can evolve and

check if they reach the goals that have been defined in terms of
adoption and quality. If they do, they can be promoted to the next
level. If they don’t, it might be decided to sunset them.

Community management

For the majority of open source projects, starting a commu-
nity around that project and receiving contributions is important
if not the primary goal (however, there are also projects where
the primary goal for open sourcing is not the creation of a vivid
community - for example building trust by making the source code
visible, in this case receiving contributions might have a lower
priority). Such a community does not take off by itself. Starting
it and keeping it alive requires planning as well as budget and
resources. Initial and ongoing activities comprise:

•	 Promote the project
Which includes presenting at conferences, hosting or
sponsoring key events, and building new initiatives and
programs in your community

•	 Create a welcoming environment
This includes creating open-source project policies,
guidelines (basic instructions for maintainers, installation
process, instructions for end users) or improve main project
communication channels (forums, chat discussions, etc)

•	 Facilitate collaboration
Building mentoring programs, adding project documentation
(such as how to contribute, how to write and run tests, how
the governing board is elected, etc)

It’s advisable to assign a community manager to the project who
takes care of these tasks. The TODO Group Guide Starting an open
source project contains more information in its chapter “Build the
community”. For further reading, we recommend the TODO Group
Guides Building an inclusive open source community and Building
leadership in an open source community.

https://kubernetes.io/
https://www.cncf.io/
https://www.eclipse.org/ide/
https://www.eclipse.org/org/foundation/
https://www.tensorflow.org/
https://code.visualstudio.com/
https://github.com/explore
https://github.com/github/MVG
https://github.com/github/MVG
https://softwarefreedom.org/resources/2008/foss-primer.html
https://softwarefreedom.org/resources/2008/foss-primer.html
https://www.cncf.io/projects/
https://github.com/facebookincubator
https://todogroup.org/guides/starting/
https://todogroup.org/guides/starting/
https://todogroup.org/guides/diversity-inclusion/
https://todogroup.org/guides/building-leadership/
https://todogroup.org/guides/building-leadership/

19THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Code of conduct

Creating a welcoming environment where people are safe from
harmful behavior by others is an important part of maintaining a
healthy community. It is especially important to support a diverse
community, where there is no discrimination of under-represented
groups, and explicit or implicit bias gets addressed.

A common element in maintaining a healthy community envi-
ronment is a code of conduct which makes rules for accepted
and unaccepted behavior explicit and defines how unacceptable
behavior is dealt with. There are examples and templates which
can be used as a base for your code of conduct. One popular
reusable code of conduct is the Contributor Covenant which is
used by projects such as Kubernetes, git, Node.js, and many more.

As a company, you need to provide a contact email which can be
used to report code of conduct violations. You need to make sure
that this address is monitored by people who can react in a timely
manner and have the competence and ability to initiate adequate
actions to address these issues.

Technical considerations, tooling,
and best practices

Appropriate tooling can save a lot of time and help to automate
processes significantly. Curated list of awesome tools to manage
open source contains a comprehensive list of proven and recom-
mendable tools.

User management

Normally, Git providers (GitHub, GitLab, Bitbucket, etc.) offer
means to define teams of individual users and to define (access)
rights on the team and on an individual level. To be able to use the
service of a Git provider, engineers have to create a corresponding

account. This account has nothing to do with the company-in-
ternal account of an engineer. This imposes some challenges
since the access rights of an engineer for an external repository
might depend on their role in the company or whether they are
still working for the company (let’s assume that an engineer got
comprehensive rights for external repositories when they were
working for your company and that they now left the company
- you might want to adjust the access rights). But how to do that
since the external account of an engineer at a Git provider is inde-
pendent from his company-internal user account? Somehow a
mapping between both accounts is needed. For GitHub there’s
the open source tool opensource-portal available that can help to
create such a mapping. It can also be used to implement a self-ser-
vice for joining GitHub organizations. As part of the process, the
tool creates the mapping between the GitHub.com account and
the corresponding company-internal user account. The mapping
is stored in a database. Based on this, it is easy to create some
tooling that regularly checks if all users that are contained in that
database are still employed by your company and trigger some
activity if that’s not the case.

Setting up a repository

It is good practice that a repository contains a certain set of files
(the health files). These files contain the basic information about
the repository such as description, code of conduct, license, contri-
bution guidelines etc. These files are often provided in markdown
format, but could - depending on the Git provider - be provided in
different formats such as AsciiDoc. Here, we assume the default
format (which is markdown) and thus use the file suffix .md.

•	 README.md
This file is displayed as the homepage of the repository. It
typically contains information such as repository description,
dependencies as well as download, installation and
configuration instructions.

https://www.contributor-covenant.org/
https://github.com/todogroup/awesome-ospo
https://github.com/todogroup/awesome-ospo
https://github.com/microsoft/opensource-portal
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/AsciiDoc

20THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

•	 LICENSE or LICENSE.txt
Contains the license text for the repository.

•	 CONTRIBUTING.md
Contains information and instruction about how
contributions can be made.

•	 CODE-OF-CONDUCT.md
Contains the code of conduct for the repository.

•	 GOVERNANCE.md
Contains information about project governance.

•	 SECURITY.md
Contains instructions about how to report security
vulnerabilities for the repository.

•	 SUPPORT.md
Contains information about how to receive support in case of
problems.

The README.md and the license text file should be there for all
repositories. The other files can be considered optional and only
be created if they are required (if, for example, no contributions
are accepted, this information could be put into the README.md
and a CONTRIBUTING.md is not necessary). To make sure that
a certain set of health files is always created, there are different
popen sourceibilities:

•	 One possibility is to use template repositories. These are
repositories that contain the required set of initial health
files. A new repository can be created/copied from this
template repository and thus it contains already the required
set of health files. Some code hosting platform (GitHub,
for example) provide specific means to create the required
health files per default.

•	 Another popen sourceibility is to create repositories with
a tool. Such tools create repositories based on some input
data via the APIs that code hosting platforms typically

offer. (GitHub.com, GitLab.com, Bitbucket.org etc.). Thus,
they can help that repositories are compliant with the
company guidelines (contain the required health files and
team structure, for example). Based on such tools self-
services for repository creation could be offered that allow
development teams to create repositories themselves.
Often, companies develop such tools for their specific
needs. We (the authors of this document) do not know
generic repository creation tools.

Providing license and copyright information

License and copyright information must be declared properly for
an open source project. This is important for consumers of the
project as well as for contributors. Furthermore, source code often
gets copied from one project to another, this makes it mandatory
that all files carry license and copyright information

•	 for the parts of the project that you / your company
developed

•	 but also for external components (i.e. code developed by
external parties) that are part of your repositories

Note that a statement like For license conditions please check
LICENSE.txt is not suited.

The REUSE tool from the Free Software Foundation Europe
supports the proper declaration of license and copyright informa-
tion for your project:

•	 It provides a machine-readable file format for license and
copyright information and thus makes it easy for others
(scanning tools, for example) to consume that information

•	 It provides tooling to:
•	 add license and copyright information to source code files
•	 download and store license texts
•	 to lint your repositories to make sure that license and

copyright information is available for all files

https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/creating-a-default-community-health-file
https://reuse.software/
https://fsfe.org/

21THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

CLA/DCO Management

If contributors must accept an CLA or DCO before they can submit
their contributions, it is beneficial to automate that process as
much as possible. The TODO Group provides a list of tools
that support the management and the sign-off of DCOs or CLA
documents. As an example, we describe the CLA Assistant in
more detail.

The CLA Assistant implements a workflow that asks contribu-
tors to accept/sign off a document when a contributor submits
the first pull request to a certain repository on GitHub.com.
Despite the name of the tool (“CLA Assistant”), it can be used for
any type of document that companies require contributors to
accept before a pull request can be submitted, including CLAs and
DCOs. The document text must be provided as gist on GitHub.
com. Which document/gist to be used can be configured on the
organization and on repository level. The CLA Assistant uses a
default logic: If for a certain repository no specific document
is configured, the document that is configured on the organi-
zation level is used. When a contributor submits a pull request
for a repository for the first time, the CLA Assistant displays the
document text and the contributor can only submit the request
if they accept the document. The next time, the same contributor
submits a pull request, they can do so without having to accept the
document again. The information that the contributor accepted
the document for that repository is stored in the database of the
CLA Assistant and can be retrieved later on. The CLA Assistant is
available as hosted offering on https://cla-assistant.io/ or can be
self-hosted.

Credential scanning

Even if open source policies and guidelines explicitly require that
credentials such as passwords, access tokens, or other secrets
have to be removed from code before it is published, it happens

from time to time that unintentionally such important and sensi-
tive data is pushed to public repositories. To detect such situations
as quickly as possible (and thus to be able to revoke the published
secret and remove that data from public repositories), it is advis-
able to regularly execute credential scans for such repositories.
Luckily, all well-known code hosting platforms (GitHub.com,
GitLab.com etc.) provide such scanning services as part of their
offering. We strongly recommend to use them.

Quality criteria / CII Best Practices Badge Program

The Core Infrastructure Initiative (CII) created the CII Best
Practices Badge Program. It is now continued by the Open Source
Security Foundation. As part of the program, best practices for
open source software is defined and a badge system is imple-
mented. Via a web app, projects can self-certify that they meet the
criteria and show a corresponding badge on their website. As of
today (May 2022), more than 4724 projects did the assessment.

The CII system consists of three levels (Passing, Silver and Gold).
They are building on each other (i.e. the Silver level contains all
criteria of the Passing level plus additional ones). The criteria are
structured in clusters such as Basics, Change Control, Reporting,
Quality, Security and Analytics.

The CII Best Practices Badge community is open for contributions
(additional criteria, for example).

Overall, the CII Best Practices Badge Program is a good means to
verify own projects against commonly accepted best practices. Via
the badge, projects can document that they meet these criteria.

Repository Linting

Repository linters are tools that check in an automated way if
repositories adhere to the guidelines that a company has defined
for its public open source repositories. The TODO Group provides

https://todogroup.org/
https://github.com/todogroup/awesome-ospo#contributor-license-agreements--developer-certificate-of-originis
https://github.com/cla-assistant/cla-assistant
https://cla-assistant.io/
https://www.coreinfrastructure.org/
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://openssf.org/
https://openssf.org/
https://bestpractices.coreinfrastructure.org/en/projects
https://github.com/coreinfrastructure/best-practices-badge/blob/main/CONTRIBUTING.md
https://todogroup.org/

22THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

a list of tools that can be used for this purpose. Typically, reposi-
tory linters check criteria such as:

•	 Do the required files exist in the repository (license file
README.md, CONTRIBUTING.md, for example)?

•	 Do these files contain the required sections?
•	 Does the repository have a license that is compliant to the

company guidelines?

•	 Does the repository contain the required badges (the REUSE
badge or the CII badge, for example)?

•	 Repository team structure (a certain team structure might
be required - at least two administrators, for example)

•	 Configuration of the repository (are vulnerability alerts
activated?, for example)

However, which criteria they check is company-specific and thus,
they normally provide the popen sourceibility to configure rules
(as JSON file, for example, as the repolinter of the TODO Group
does). To retrieve the necessary data to execute these checks, the
APIs are used that are typically provided by code hosting platforms.
The result of the check is typically provided in a UI. Another option
is to automatically create issues in the corresponding repository if
checks fail. Typical usage scenarios for such a linter include:

•	 Check for guideline compliance before a repository is
published

•	 Regular checks after publication

Build an open source metrics strategy
when releasing to open source projects

Once you have established the goals, procedures, and tools for
your company’s outbound open source plan, it is always useful to
monitor and track the overall health of open source projects the
company engages with as they grow and mature.
Before thinking about which tool should be used to track project
health, a good alternative on how to do this is to establish a full

metrics strategy following the goal-question-metrics approach. This
approach is used in communities focused on community health
analytics metrics standards and software, such as CHAOSS, one of
the projects under the Linux Foundation umbrella.

Defining community health goals

Sometimes it is better to start small and define two or three main
goals first before getting overwhelmed by metrics. If you don’t
know where to start, CHAOSS offers a set of metrics based on
different focus-areas and goals when measuring project health
that can help you get started in measuring the health of the open-
source projects that matter to your organization:

•	 Common Metrics
•	 Diversity and Inclusion
•	 Evolution
•	 Risk
•	 Value
•	 App Ecosystem

Creating questions and building metrics around

Metrics should be answering specific questions that are aligned
with the previous goals established.

For instance, if one of your company’s goals is to understand the
community footprint within a project, one good question can be
“What’s the presence and influence of organizations within the
open source ecosystem?”. In order to solve this, one useful metric
can be the Elephant Factor (the minimum number of organizations
whose employees perform 50% of the total contributions).
There are great tools to help you measure different community
health analytics metrics, for instance, GrimoireLab, LFX, or Augur.

For further information about tools for tracking project health,
check this dedicated section from one of the TODO guides.

https://github.com/todogroup/awesome-ospo#project-quality
https://github.com/todogroup/repolinterhttp://
https://chaoss.community
https://todogroup.org/guides/management-tools/#tools-for-tracking-project-health

23THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Acknowledgments
Thanks to all the participants in this study who generously spent
time working on this guide and shared their expertise in outbound
open source: Michael Picht, Cornelius Schumacher, Oliver Fendt,
Ana Jiménez, Josep Prat and Justin Abrahms

Abbreviations

•	 AI = Artificial Intelligence

•	 API = Application Programming Interface

•	 CII = Core Infrastructure Initiative

•	 CLA = Contributor License Agreement

•	 CCLA = Corporate Contributor License Agreement

•	 CHAOSS = Community Health Analytics Open Source
Software

•	 CNCF = Cloud Native Computing Foundation

•	 DCO = Developers Certificate of Origin

•	 ECC = Export Control and Customs

•	 ECCN = Export Control Classification Number

•	 GPL = GNU General Public License

•	 ICLA = Individual Contributor License Agreement

•	 IDE = Integrated Development Environment

•	 IP = Intellectual Property

•	 JSON = Java Script Object Notation

•	 KPI = Key Performance Indicator

•	 LFX = Linux Foundation Collaboration Metrics

•	 MIT = Massachusetts Institute of Technology

•	 NPM = Node Package Manager

•	 OSI = Open Source Initiative

•	 OSPO = Open Source Program Office

•	 PyPI = Python Package Index

Our ~/.gitconfig file might look like this:

[user]

	 name = Simba Lion

	 email = simba@personal-email.example.org

[includeIf “gitdir:~/my-company/”]

 path = ~/my-company/.gitconfig

24THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

References
References

•	 Open Source Archetypes: A Framework for Purposeful Open Source (Mozilla)

•	 Starting an open source project (LF TODO Group)

•	 Shutting down an open source project (LF TODO Group)

•	 Marketing open source projects (LF TODO Group)

•	 Building leadership in an open source community (LF TODO Group)

•	 Community Health Analytics Open Source Software (LF CHAOSS)

•	 How to measure the health of an open source community

•	 Community health files (GitHub.com)

•	 CII Best Practices Badge (LF Core Infrastructure Initiative)

•	 DCO version 1.1

•	 Apache’s ICLA

•	 Apache’s CCLA

•	 German Copyright Act

https://blog.mozilla.org/wp-content/uploads/2018/05/MZOTS_OS_Archetypes_report_ext_scr.pdf
https://todogroup.org/guides/starting/
https://todogroup.org/guides/shutting-down/
https://todogroup.org/guides/marketing-open-source-projects/
https://todogroup.org/guides/building-leadership/
https://chaoss.community/
https://opensource.com/article/19/8/measure-project
https://opensource.com/article/19/8/measure-project
https://docs.github.com/en/github/building-a-strong-community/creating-a-default-community-health-file#about-default-community-health-files
https://bestpractices.coreinfrastructure.org/en
https://developercertificate.org/
https://www.apache.org/licenses/icla.pdf
https://www.apache.org/licenses/cla-corporate.pdf
https://dejure.org/gesetze/UrhG/69b.html

25THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Appendix

Managing work vs personal emails in git

In the world of open source, folks may have an online identity
that pre-dates their employment with our current organization.
Simultaneously, the organization may want contributions done on
their behalf to happen with corporate emails.

One way that folks can solve this is by encoding their commit email
on a per-repository basis, like:

git config user.email “simba@special-email.example.com”

If you work with several repositories, this will become difficult
to manage and easy to forget. Instead, we can use a feature of
git which allows different configurations based on our directory
structures.

Our ~/.gitconfig file might look like this:

[user]

	 name = Simba Lion

	 email = simba@personal-email.example.org

[includeIf “gitdir:~/my-company/”]

 path = ~/my-company/.gitconfig

This sets our default email (which, in this case, is for a personal
account). If we have repositories in the ~/my-company directory,
we’ll load an additional git config file which is located at ~/my-com-
pany/.gitconfig. That file might look like:

[user]

	 email = simba@very-corporate-email.example.com

Now when our user commits changes, it will use their personal
email by default, or their corporate email for any repositories
within the ~/my-company folder. Note that the name attribute is
inherited from the base configuration, so we don’t need to double
specify it.

26THE EVOLUTION OF THE OPEN SOURCE PROGRAM OFFICE (OSPO)

Feedback
The TODO Community is grateful to receive corrections and
suggestions for improvements via this repo, which contains TODO
guide’s updated documentation with the most recent version.

https://github.com/todogroup/outbound-oss

27

 twitter.com/linuxfoundation

 facebook.com/TheLinuxFoundation

 linkedin.com/company/the-linux-foundation

 youtube.com/user/TheLinuxFoundation

 twitter.com/todogroup

 youtube.com/channel/UCiELHAwzoYZvAs4FH-ShaA

 linkedin.com/company/todo-group

TODO is an open group of 70+ organizations with years of experience running open source programs that

want to collaborate on practices, tools, and other ways to run successful and effective open source projects

and programs. It is a place to share experiences, develop best practices and guidance as well as work on

common tooling to improve OSPO adoption and education worldwide across sectors. Discover more about

all the ongoing TODO Initiatives here and check out the OSPO landscape: https://landscape.todogroup.org

Copyright © 2022 TODO Group

This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public

License. This material may be copied and distributed under the terms of the Creative Commons license. To

reference the work, please cite as follows: “TODO Group, A Guide to Outbound Open Source”, September 2022.

https://twitter.com/linuxfoundation
youtube.com/user/TheLinuxFoundation
https://inkedin.com/
youtube.com/user/TheLinuxFoundation
https://twitter.com/todogroup
https://www.linkedin.com/company/todo-group
https://todogroup.org/
https://github.com/todogroup
https://landscape.todogroup.org
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

