Robotic Manipulation Learning with Equivariant Descriptor Fields:

Generative Modeling, Bi-equivariance, Steerability, and Locality

Jiwoo Kim^{*1} Hyunwoo Ryu^{*1} Joohwan Seo² Nikhil Potu Surya Prakash² Jongeun Choi^{1,2} Ruolin Li² Roberto Horowitz²

¹Machine Learning and Control Systems, Yonsei University, ²University of California, Berkeley, (*Equal Contribution)

Abstract

VONSEI MLCS

- We examine the design principles of recently proposed *Equivariant Descriptor Fields* (EDFs), highlighting the importance of four key concepts:
 Generative Modeling, Bi-equivariance, Steerability, and Locality.
- Equivariant Descriptor Fields (EDFs) are fully SE(3)-equivariant visual robotic manipulation models that can be end-to-end trained from scratch with only 5~10 demos.

Generative Modeling

Expert demonstrations for manipulation are mostly multimodal.
e.g. humans can pick the mug by the rim or by the handle.

Equivariant Descriptor Fields

• An equivariant descriptor field $\varphi(\cdot | O)$ generated by an input point cloud O is an SE(3)-equivariant vector field on \mathbb{R}^3 such that

 $\varphi(\Delta g x | \Delta g O) = D(R)\varphi(x | O)$

x: position, O: point cloud, $\forall \Delta g = (p, R) \in SE(3)$

- By exploiting the steerability of the EDFs, the bi-equivariant energy function can be constructed as follows:
- Generative models are successful in learning the proper multimodalities.
- EDFs utilize energy-based model (EBM) approach to model the policy distribution, enabling both end-to-end training and sampling.

 $P(g|O^{scene}, O^{grasp}) = \frac{\exp[-E(g|O^{scene}, O^{grasp})]}{\int_{g \in SE(3)} dg \exp[-E(g|O^{scene}, O^{grasp})]}$

$$\mathbf{E}(g|O^{scene}, O^{grasp}) = \int_{\mathbb{R}^3} d^3x \rho(x|O^{grasp}) \left| |\varphi(gx|O^{scene}) - D(R)\psi(x|O^{grasp})| \right|$$

 $\psi_{\theta}(x|O^{grasp})$: Query-EDF, $\varphi_{\theta}(x|O^{scene})$: Key-EDF, $\rho_{\theta}(x|O^{grasp})$: Equivariant Query Density

• For the energy function to be **tractable**, the query density is modeled as weighted query points composed of weighted sum of 3D Dirac delta function:

$$\rho_{\theta}(x|O^{grasp}) = \sum_{i=1}^{N_q} w_{\theta}(q_{i;\theta}(O^{grasp})|O^{grasp})\delta^{(3)}(x - q_{i;\theta}(O^{grasp}))$$

A) The query EDF generated from grasp point cloud O^{grasp}, assigns the query descriptors to the query points.

- B) Similarly, the **key EDF** is generated from *O^{scene}*.
- For successful pick-and-place manipulation, the model needs to generalize to the unseen pose of the object within the scene and the grasp, which may significantly deviate from the trained demonstrations.
- The model should be able to utilize the "scene equivariance" or "left equivariance" to adapt to unseen configurations of the target object in the scene.
- To be able to generalize to out-of-distribution grasps, it is necessary for the model to compensate for changes of the grasped object's pose through "grasp equivariance" or "right equivariance".
- "**Bi-equivariance**" combines the principles of left and right equivariance, enhancing generalizability and robustness under diverse configuration.

Steerable Representation

- According to the representation theory of the SO(3)-group, every equivariant vectors can be decomposed and categorized into type-l (l = 0, 1, 2, ...) vectors.
- SE(3)-equivariant vector field of type-0 is rotationally invariant such that f(gx) = f(x). Type-1 or higher SE(3)-equivariant vector fields are rotationally equivariant such that $f(gx) = D_l(R)f(x)$ where $D_l(R)$ is the Wigner D-matrix of degree *l* that stoors type *l* feature vectors

C) The energy values are computed by matching the transformed query descriptors to the key descriptors. The **lower energy** case has a better **alignment of the query and the key descriptors**, meaning it has **higher probability**. MCMC methods are used to sample end-effector poses according to their energy.

Experiment Results

degree-*l* that steers type-*l* feature vectors.

 Steerable representations are highly effective at capturing the orientations of the local geometries, due to their orientational sensitivity.

Locality

- Locality enhances generalizability by learning the shared local geometric structure of the target object.
- Locality removes the need for object segmentation pipeline for the input.

Descriptor Type	Pick	Place	Total	Pick	Place	Total	Pick	Place	Total
NDF-like (Type-0 Only)									
Inference Time	5.7s	8.6s	14.3s	6.1s	9.9s	16.0s	5.8s	17.3s	23.0s
Success Rate	0.84	0.77	0.65	0.60	0.95	0.57	0.66	0.95	0.63
EDFs (Type- 0~3)									
Inference Time	5.1s	8.3s	13.4s	5.2s	10.4s	15.6s	5.2s	11.5s	16.7s
Success Rate	1.00	0.95	0.95	0.95	1.00	0.95	0.95	1.00	0.95

- EDFs evaluate the pick-and-place success rate for three different scenarios (mug hanging, bowl/bottle placing).
- EDFs are trained from scratch with only ten demonstrations for each scenario, using no pre-training or object segmentation pipelines.
- EDFs achieves >95% success rate even if previously unseen target object instance is provided in unseen pose with unseen distracting objects.
- EDFs outperform baselines (*SE*(2)-equivariant baseline [1], and type-0 only baseline [2]) by a significant margin in success rate.

[1] Andy Zeng et al., Transporter networks: Rearranging the visual world for robotic manipulation, CoRL 2020.

[2] Anthony Simeonov, Yilun Du et al., Neural descriptor fields: SE(3)-equivariant object representations for manipulation, ICRA 2022.

[3] Evangelos Chatzipantazis, Stefanos Pertigkiozoglou et al., SE(3)-Equivariant Attention Networks for Shape Reconstruction in Function Space, ICLR 2023

(ICLR 2023)

