Skip to content

Commit 28d818f

Browse files
committed
Lext 16 and 17 finish
1 parent 108c0be commit 28d818f

File tree

4 files changed

+29
-7
lines changed

4 files changed

+29
-7
lines changed
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
rsconnect

Lecture_Materials_2023/Lecture_16_OLS_Regression/lecture_16_ols_regression.html

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -445,7 +445,7 @@
445445

446446
<meta name="author" content="Tom Hanna">
447447
<meta name="dcterms.date" content="2023-11-14">
448-
<title>quarto-input3a4dad63</title>
448+
<title>quarto-inputa04e0acb</title>
449449
<meta name="apple-mobile-web-app-capable" content="yes">
450450
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
451451
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
@@ -1289,9 +1289,10 @@ <h3 id="the-assumptions-of-linear-regression">The Assumptions of Linear Regressi
12891289
<ol type="1">
12901290
<li><p>Linearity - X and Y have a linear relationship.</p></li>
12911291
<li><p>Normality - For any value of X, Y is normally distributed.</p>
1292-
<pre><code> + We&#39;re in a random world
1293-
+ So, X won&#39;t predict Y with precision
1294-
+ X should predict Y according to a random, normal distribution</code></pre></li>
1292+
<pre><code> - We&#39;re in a random world
1293+
- So, X won&#39;t predict Y with precision
1294+
- X should predict Y according to a random, normal distribution
1295+
- The residuals are normally distributed</code></pre></li>
12951296
</ol>
12961297
</section>
12971298
<section id="the-assumptions-of-linear-regression-1" class="slide level2">
@@ -1387,6 +1388,13 @@ <h2>Don’t Panic</h2>
13871388
<figcaption>correlation coefficient formula</figcaption>
13881389
</figure>
13891390
</div>
1391+
<p>## Authorship, License, Credits</p>
1392+
<ul>
1393+
<li><p>Author: Tom Hanna</p></li>
1394+
<li><p>Website: <a href="https://tom-hanna.org/">tomhanna.me</a></p></li>
1395+
<li><p>License: This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.</a></p></li>
1396+
</ul>
1397+
<p><a href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img data-src="" alt="Creative Commons License"></a></p>
13901398
<p><img src="" class="slide-logo"></p>
13911399
<div class="footer footer-default">
13921400
<p>POLS3316, Fall 2023, Instructor: Tom Hanna</p>
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
rsconnect

0 commit comments

Comments
 (0)