PV

Formal verification inside the

bigger picture

Prepared by Pruvendo at 05/23/23

The smart contract development teams often ask at what stage of development the formal
verification should be started, when it is assumed to be completed and what is the overall
overhead in terms of human efforts. The present document is intended to answer these

questions.

Workflow assumption

Throughout the present document it is assumed that the development team follows some

kind of development process. While the names and exact content of the stages are different

for various teams the it's expected the following diagram is mostly related to the reality:

Concept

Deployment

Y

Architecture

Development

Release testing

A
i
i
i
i
i
i

Y

So, the following six stages are recognized':

Debugging and
testing

' Again, they can be slightly different for the specific team

Concept - The basic paradigm, set of features and logic of execution
Architecture - the list of smart contracts, key methods and their interaction
Development - the main part of development
Debugging and testing - reaching the quality acceptable for production
Release testing - final pre-production procedures
Deployment - considered as a final point of the process. Post-production stages are
off the consideration

PV

Injection of the formal verification

Pruvendo suggests three approaches of the formal verification injection: ideal, good and
poor. Each of them is considered below. Please keep in mind the following terminology:
e High-level specification - halfly-independent from the implementation, should be
understandable by the development team and their technical leaders
Low-level specification - bound with the implementation and follows it
Verification preparation - converts Solidity implementation into some form
comfortable for the verification
e Quick Verification - the verification process based on the randomized testing (using
QuickChick tool) that allows to quickly validate the project.
e Full Verification - the most advanced “deductive” verification process with strict
mathematical proving

In some cases either Quick or Full verification can be justified to be skipped.

The efforts required for each of these five phases depends on the particular contract but
roughly can be distributed evenly.

Please note, the specification efforts often find bugs in the architecture, so it's advised to
start this activity as soon as possible. Also, it's useful to minimize the production delay due
to the ongoing formal verification.

The recommended (ideal), acceptable (good) and not-recommended approaches are
presented below.

https://github.com/QuickChick/QuickChick

Ideal approach

N High-level
"1 scpecification

v v i
o Low-level [7 |
Concept » Architecture » Development —_—) - '
Pa— specification |
Ao oA |
- 7 i l i
Deployment -« Release testing |« Debuggl_ngand - ‘u’errﬁcatl_on ;
_______ » testing preparation 1
A4 ! A l ; i
i Full verification | €————— Quick verification i i
; A A : i i

In this approach the formal verification starts immediately after the architectural stage that
allows to create high-level specification as well as to find potential critical architectural bugs
during the main development.

Generally speaking, this approach allows us to make all the preparations by the time of
release testing and minimize the shift of the deployment (to 1-2 weeks in some cases).

Good

Concept

h 4

vl

__

F Y

A A
1
'

approach
g :
! High-level :
v specification i
: ! :
i | 1 !
| | | T i
i]] "
¥ ¥ ¥ :

(€ Low-level B

Architecture » Development ! - R

PR specification |

]

A A a

] H i

i ! !

: ! !

! ! !

. b \ !

i - ; ; i

Ly . | o |

Release testing |« Debugging and L Verification |

____________ > testing preparation :

[A T i

y : .

s .

- H i

el : \

Full verification |«——— Quick verification : |

s e ———— —
|]
e e mmmmm e m e mm mmmm i mmm i mm e mm

In this approach the formal verification starts when the main development is completed. Its
usage can bring some problems in case of architectural bugs being found. Also the delay of
deployment will be large (~1 month for the medium-sized contract).

Poor approach

]
:]
: :
H High-level !
| specification ;
5t [E— 0
' 1 |
| ' ! ! |
o I S— |
¥ v ¥ i H
]
H P P E i
Concept » Architecture » Development i - LMTHEV'.B' —
P S b specification E
A . |
! P i
: P :
| L |
; - !
T T T T T | | i E i
vy v ! P :
i H ' '
i 1 i
! S Debuggingand | ! | Verification !
i - P e et it e P S '
| Deployment - Release testing '« s =3 E e i
! o J |
] :
i A F Y ry |
! : b i) : i
: | i i i
N : ! : |
["]
| b < ! :
\ Verification «——— Quick verification i i
| <) | |
i]
| i

At this approach the formal verification starts when almost everything is ready. While
Pruvendo believes it is a bad idea to start so late, many customers prefer this approach. In
this case bugs can be especially painful and the customer is expected to wait for the whole
verification process (can be up to a few months). Pruvendo does not recommend this
approach.

Human efforts

The human efforts required for the verification depend on many factors so please just see a
few of examples:

e Elector - 5 man-months
e SafeMultisig2 - 1.5 man-month
ERC20 (Ethereum) - 6 man-days

Constantly working on technology improvement Pruvendo strongly believes it should be able
to dramatically decrease these numbers in the foreseeable future.

