Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

779 lines (659 sloc) 19.095 kB
#define IMAGER_NO_CONTEXT
#include "imager.h"
#include "imageri.h"
static int i_ppix_d(i_img *im, i_img_dim x, i_img_dim y, const i_color *val);
static int i_gpix_d(i_img *im, i_img_dim x, i_img_dim y, i_color *val);
static i_img_dim i_glin_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_color *vals);
static i_img_dim i_plin_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_color *vals);
static int i_ppixf_d(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *val);
static int i_gpixf_d(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *val);
static i_img_dim i_glinf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *vals);
static i_img_dim i_plinf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *vals);
static i_img_dim i_gsamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_sample_t *samps, const int *chans, int chan_count);
static i_img_dim i_gsampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samps, const int *chans, int chan_count);
static i_img_dim i_psamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_sample_t *samps, const int *chans, int chan_count);
static i_img_dim i_psampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fsample_t *samps, const int *chans, int chan_count);
/*
=item IIM_base_8bit_direct (static)
A static i_img object used to initialize direct 8-bit per sample images.
=cut
*/
static i_img IIM_base_8bit_direct =
{
0, /* channels set */
0, 0, 0, /* xsize, ysize, bytes */
~0U, /* ch_mask */
i_8_bits, /* bits */
i_direct_type, /* type */
0, /* virtual */
NULL, /* idata */
{ 0, 0, NULL }, /* tags */
NULL, /* ext_data */
i_ppix_d, /* i_f_ppix */
i_ppixf_d, /* i_f_ppixf */
i_plin_d, /* i_f_plin */
i_plinf_d, /* i_f_plinf */
i_gpix_d, /* i_f_gpix */
i_gpixf_d, /* i_f_gpixf */
i_glin_d, /* i_f_glin */
i_glinf_d, /* i_f_glinf */
i_gsamp_d, /* i_f_gsamp */
i_gsampf_d, /* i_f_gsampf */
NULL, /* i_f_gpal */
NULL, /* i_f_ppal */
NULL, /* i_f_addcolors */
NULL, /* i_f_getcolors */
NULL, /* i_f_colorcount */
NULL, /* i_f_maxcolors */
NULL, /* i_f_findcolor */
NULL, /* i_f_setcolors */
NULL, /* i_f_destroy */
i_gsamp_bits_fb,
NULL, /* i_f_psamp_bits */
i_psamp_d,
i_psampf_d
};
/*static void set_8bit_direct(i_img *im) {
im->i_f_ppix = i_ppix_d;
im->i_f_ppixf = i_ppixf_d;
im->i_f_plin = i_plin_d;
im->i_f_plinf = i_plinf_d;
im->i_f_gpix = i_gpix_d;
im->i_f_gpixf = i_gpixf_d;
im->i_f_glin = i_glin_d;
im->i_f_glinf = i_glinf_d;
im->i_f_gpal = NULL;
im->i_f_ppal = NULL;
im->i_f_addcolor = NULL;
im->i_f_getcolor = NULL;
im->i_f_colorcount = NULL;
im->i_f_findcolor = NULL;
}*/
/*
=item im_img_8_new(ctx, x, y, ch)
X<im_img_8_new API>X<i_img_8_new API>
=category Image creation/destruction
=synopsis i_img *img = im_img_8_new(aIMCTX, width, height, channels);
=synopsis i_img *img = i_img_8_new(width, height, channels);
Creates a new image object I<x> pixels wide, and I<y> pixels high with
I<ch> channels.
=cut
*/
i_img *
im_img_8_new(pIMCTX, i_img_dim x,i_img_dim y,int ch) {
i_img *im;
im_log((aIMCTX, 1,"im_img_8_new(x %" i_DF ", y %" i_DF ", ch %d)\n",
i_DFc(x), i_DFc(y), ch));
im = im_img_empty_ch(aIMCTX, NULL,x,y,ch);
im_log((aIMCTX, 1,"(%p) <- IIM_new\n",im));
return im;
}
/*
=item i_img_empty(im, x, y)
Re-new image reference (assumes 3 channels)
im - Image pointer
x - xsize of destination image
y - ysize of destination image
**FIXME** what happens if a live image is passed in here?
Should this just call i_img_empty_ch()?
=cut
*/
i_img *
im_img_empty(pIMCTX, i_img *im,i_img_dim x,i_img_dim y) {
im_log((aIMCTX, 1,"i_img_empty(*im %p, x %" i_DF ", y %" i_DF ")\n",
im, i_DFc(x), i_DFc(y)));
return im_img_empty_ch(aIMCTX, im, x, y, 3);
}
/*
=item i_img_empty_ch(im, x, y, ch)
Re-new image reference
im - Image pointer
x - xsize of destination image
y - ysize of destination image
ch - number of channels
=cut
*/
i_img *
im_img_empty_ch(pIMCTX, i_img *im,i_img_dim x,i_img_dim y,int ch) {
size_t bytes;
im_log((aIMCTX, 1,"i_img_empty_ch(*im %p, x %" i_DF ", y %" i_DF ", ch %d)\n",
im, i_DFc(x), i_DFc(y), ch));
if (x < 1 || y < 1) {
im_push_error(aIMCTX, 0, "Image sizes must be positive");
return NULL;
}
if (ch < 1 || ch > MAXCHANNELS) {
im_push_errorf(aIMCTX, 0, "channels must be between 1 and %d", MAXCHANNELS);
return NULL;
}
/* check this multiplication doesn't overflow */
bytes = x*y*ch;
if (bytes / y / ch != x) {
im_push_errorf(aIMCTX, 0, "integer overflow calculating image allocation");
return NULL;
}
if (im == NULL)
im = im_img_alloc(aIMCTX);
memcpy(im, &IIM_base_8bit_direct, sizeof(i_img));
i_tags_new(&im->tags);
im->xsize = x;
im->ysize = y;
im->channels = ch;
im->ch_mask = MAXINT;
im->bytes=bytes;
if ( (im->idata=mymalloc(im->bytes)) == NULL)
im_fatal(aIMCTX, 2,"malloc() error\n");
memset(im->idata,0,(size_t)im->bytes);
im->ext_data = NULL;
im_img_init(aIMCTX, im);
im_log((aIMCTX, 1,"(%p) <- i_img_empty_ch\n",im));
return im;
}
/*
=head2 8-bit per sample image internal functions
These are the functions installed in an 8-bit per sample image.
=over
=item i_ppix_d(im, x, y, col)
Internal function.
This is the function kept in the i_f_ppix member of an i_img object.
It does a normal store of a pixel into the image with range checking.
Returns 0 if the pixel could be set, -1 otherwise.
=cut
*/
static
int
i_ppix_d(i_img *im, i_img_dim x, i_img_dim y, const i_color *val) {
int ch;
if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
for(ch=0;ch<im->channels;ch++)
if (im->ch_mask&(1<<ch))
im->idata[(x+y*im->xsize)*im->channels+ch]=val->channel[ch];
return 0;
}
return -1; /* error was clipped */
}
/*
=item i_gpix_d(im, x, y, &col)
Internal function.
This is the function kept in the i_f_gpix member of an i_img object.
It does normal retrieval of a pixel from the image with range checking.
Returns 0 if the pixel could be set, -1 otherwise.
=cut
*/
static
int
i_gpix_d(i_img *im, i_img_dim x, i_img_dim y, i_color *val) {
int ch;
if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
for(ch=0;ch<im->channels;ch++)
val->channel[ch]=im->idata[(x+y*im->xsize)*im->channels+ch];
return 0;
}
for(ch=0;ch<im->channels;ch++) val->channel[ch] = 0;
return -1; /* error was cliped */
}
/*
=item i_glin_d(im, l, r, y, vals)
Reads a line of data from the image, storing the pixels at vals.
The line runs from (l,y) inclusive to (r,y) non-inclusive
vals should point at space for (r-l) pixels.
l should never be less than zero (to avoid confusion about where to
put the pixels in vals).
Returns the number of pixels copied (eg. if r, l or y is out of range)
=cut
*/
static
i_img_dim
i_glin_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_color *vals) {
int ch;
i_img_dim count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
count = r - l;
for (i = 0; i < count; ++i) {
for (ch = 0; ch < im->channels; ++ch)
vals[i].channel[ch] = *data++;
}
return count;
}
else {
return 0;
}
}
/*
=item i_plin_d(im, l, r, y, vals)
Writes a line of data into the image, using the pixels at vals.
The line runs from (l,y) inclusive to (r,y) non-inclusive
vals should point at (r-l) pixels.
l should never be less than zero (to avoid confusion about where to
get the pixels in vals).
Returns the number of pixels copied (eg. if r, l or y is out of range)
=cut
*/
static
i_img_dim
i_plin_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_color *vals) {
int ch;
i_img_dim count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
count = r - l;
for (i = 0; i < count; ++i) {
for (ch = 0; ch < im->channels; ++ch) {
if (im->ch_mask & (1 << ch))
*data = vals[i].channel[ch];
++data;
}
}
return count;
}
else {
return 0;
}
}
/*
=item i_ppixf_d(im, x, y, val)
=cut
*/
static
int
i_ppixf_d(i_img *im, i_img_dim x, i_img_dim y, const i_fcolor *val) {
int ch;
if ( x>-1 && x<im->xsize && y>-1 && y<im->ysize ) {
for(ch=0;ch<im->channels;ch++)
if (im->ch_mask&(1<<ch)) {
im->idata[(x+y*im->xsize)*im->channels+ch] =
SampleFTo8(val->channel[ch]);
}
return 0;
}
return -1; /* error was clipped */
}
/*
=item i_gpixf_d(im, x, y, val)
=cut
*/
static
int
i_gpixf_d(i_img *im, i_img_dim x, i_img_dim y, i_fcolor *val) {
int ch;
if (x>-1 && x<im->xsize && y>-1 && y<im->ysize) {
for(ch=0;ch<im->channels;ch++) {
val->channel[ch] =
Sample8ToF(im->idata[(x+y*im->xsize)*im->channels+ch]);
}
return 0;
}
return -1; /* error was cliped */
}
/*
=item i_glinf_d(im, l, r, y, vals)
Reads a line of data from the image, storing the pixels at vals.
The line runs from (l,y) inclusive to (r,y) non-inclusive
vals should point at space for (r-l) pixels.
l should never be less than zero (to avoid confusion about where to
put the pixels in vals).
Returns the number of pixels copied (eg. if r, l or y is out of range)
=cut
*/
static
i_img_dim
i_glinf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fcolor *vals) {
int ch;
i_img_dim count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
count = r - l;
for (i = 0; i < count; ++i) {
for (ch = 0; ch < im->channels; ++ch)
vals[i].channel[ch] = Sample8ToF(*data++);
}
return count;
}
else {
return 0;
}
}
/*
=item i_plinf_d(im, l, r, y, vals)
Writes a line of data into the image, using the pixels at vals.
The line runs from (l,y) inclusive to (r,y) non-inclusive
vals should point at (r-l) pixels.
l should never be less than zero (to avoid confusion about where to
get the pixels in vals).
Returns the number of pixels copied (eg. if r, l or y is out of range)
=cut
*/
static
i_img_dim
i_plinf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fcolor *vals) {
int ch;
i_img_dim count, i;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
count = r - l;
for (i = 0; i < count; ++i) {
for (ch = 0; ch < im->channels; ++ch) {
if (im->ch_mask & (1 << ch))
*data = SampleFTo8(vals[i].channel[ch]);
++data;
}
}
return count;
}
else {
return 0;
}
}
/*
=item i_gsamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_sample_t *samps, int *chans, int chan_count)
Reads sample values from im for the horizontal line (l, y) to (r-1,y)
for the channels specified by chans, an array of int with chan_count
elements.
Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
=cut
*/
static
i_img_dim
i_gsamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_sample_t *samps,
const int *chans, int chan_count) {
int ch;
i_img_dim count, i, w;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
w = r - l;
count = 0;
if (chans) {
/* make sure we have good channel numbers */
for (ch = 0; ch < chan_count; ++ch) {
if (chans[ch] < 0 || chans[ch] >= im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]);
return 0;
}
}
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = data[chans[ch]];
++count;
}
data += im->channels;
}
}
else {
if (chan_count <= 0 || chan_count > im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "chan_count %d out of range, must be >0, <= channels",
chan_count);
return 0;
}
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = data[ch];
++count;
}
data += im->channels;
}
}
return count;
}
else {
return 0;
}
}
/*
=item i_gsampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samps, int *chans, int chan_count)
Reads sample values from im for the horizontal line (l, y) to (r-1,y)
for the channels specified by chan_mask, where bit 0 is the first
channel.
Returns the number of samples read (which should be (r-l) * bits_set(chan_mask)
=cut
*/
static
i_img_dim
i_gsampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_fsample_t *samps,
const int *chans, int chan_count) {
int ch;
i_img_dim count, i, w;
unsigned char *data;
for (ch = 0; ch < chan_count; ++ch) {
if (chans[ch] < 0 || chans[ch] >= im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]);
}
}
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
w = r - l;
count = 0;
if (chans) {
/* make sure we have good channel numbers */
for (ch = 0; ch < chan_count; ++ch) {
if (chans[ch] < 0 || chans[ch] >= im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]);
return 0;
}
}
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = Sample8ToF(data[chans[ch]]);
++count;
}
data += im->channels;
}
}
else {
if (chan_count <= 0 || chan_count > im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "chan_count %d out of range, must be >0, <= channels",
chan_count);
return 0;
}
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
*samps++ = Sample8ToF(data[ch]);
++count;
}
data += im->channels;
}
}
return count;
}
else {
return 0;
}
}
/*
=item i_psamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, i_sample_t *samps, int *chans, int chan_count)
Writes sample values to im for the horizontal line (l, y) to (r-1,y)
for the channels specified by chans, an array of int with chan_count
elements.
Returns the number of samples written (which should be (r-l) *
bits_set(chan_mask)
=cut
*/
static
i_img_dim
i_psamp_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y,
const i_sample_t *samps, const int *chans, int chan_count) {
int ch;
i_img_dim count, i, w;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
w = r - l;
count = 0;
if (chans) {
/* make sure we have good channel numbers */
/* and test if all channels specified are in the mask */
int all_in_mask = 1;
for (ch = 0; ch < chan_count; ++ch) {
if (chans[ch] < 0 || chans[ch] >= im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]);
return -1;
}
if (!((1 << chans[ch]) & im->ch_mask))
all_in_mask = 0;
}
if (all_in_mask) {
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
data[chans[ch]] = *samps++;
++count;
}
data += im->channels;
}
}
else {
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
if (im->ch_mask & (1 << (chans[ch])))
data[chans[ch]] = *samps;
++samps;
++count;
}
data += im->channels;
}
}
}
else {
if (chan_count <= 0 || chan_count > im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "chan_count %d out of range, must be >0, <= channels",
chan_count);
return -1;
}
for (i = 0; i < w; ++i) {
unsigned mask = 1;
for (ch = 0; ch < chan_count; ++ch) {
if (im->ch_mask & mask)
data[ch] = *samps;
++samps;
++count;
mask <<= 1;
}
data += im->channels;
}
}
return count;
}
else {
dIMCTXim(im);
i_push_error(0, "Image position outside of image");
return -1;
}
}
/*
=item i_psampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_fsample_t *samps, int *chans, int chan_count)
Writes sample values to im for the horizontal line (l, y) to (r-1,y)
for the channels specified by chans, an array of int with chan_count
elements.
Returns the number of samples written (which should be (r-l) *
bits_set(chan_mask)
=cut
*/
static
i_img_dim
i_psampf_d(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y,
const i_fsample_t *samps, const int *chans, int chan_count) {
int ch;
i_img_dim count, i, w;
unsigned char *data;
if (y >=0 && y < im->ysize && l < im->xsize && l >= 0) {
if (r > im->xsize)
r = im->xsize;
data = im->idata + (l+y*im->xsize) * im->channels;
w = r - l;
count = 0;
if (chans) {
/* make sure we have good channel numbers */
/* and test if all channels specified are in the mask */
int all_in_mask = 1;
for (ch = 0; ch < chan_count; ++ch) {
if (chans[ch] < 0 || chans[ch] >= im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "No channel %d in this image", chans[ch]);
return -1;
}
if (!((1 << chans[ch]) & im->ch_mask))
all_in_mask = 0;
}
if (all_in_mask) {
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
data[chans[ch]] = SampleFTo8(*samps);
++samps;
++count;
}
data += im->channels;
}
}
else {
for (i = 0; i < w; ++i) {
for (ch = 0; ch < chan_count; ++ch) {
if (im->ch_mask & (1 << (chans[ch])))
data[chans[ch]] = SampleFTo8(*samps);
++samps;
++count;
}
data += im->channels;
}
}
}
else {
if (chan_count <= 0 || chan_count > im->channels) {
dIMCTXim(im);
im_push_errorf(aIMCTX, 0, "chan_count %d out of range, must be >0, <= channels",
chan_count);
return -1;
}
for (i = 0; i < w; ++i) {
unsigned mask = 1;
for (ch = 0; ch < chan_count; ++ch) {
if (im->ch_mask & mask)
data[ch] = SampleFTo8(*samps);
++samps;
++count;
mask <<= 1;
}
data += im->channels;
}
}
return count;
}
else {
dIMCTXim(im);
i_push_error(0, "Image position outside of image");
return -1;
}
}
/*
=back
=head1 AUTHOR
Arnar M. Hrafnkelsson <addi@umich.edu>
Tony Cook <tony@develop-help.com>
=head1 SEE ALSO
L<Imager>
=cut
*/
Jump to Line
Something went wrong with that request. Please try again.