

Title: SQL Database Performance Tuning
Author: Sravya
Track Category: Design
Subcategory: SQL script
Tags: SQL
Read Time: 5-8 min
Banner Image: https://lh3.googleusercontent.com/QGZ51tqWcbZCVtR1aoEZF-Ruc49RWB0CxvSX3GxI04Ef2tJ5ji8f7U86_0rBlAMN7V4C=s152

Introduction: Performance Tuning steps for SQL Database
To tune the performance of your SQL database, you should avoid unnecessarily loops in your SQL code
SQL database performance tuning is the process of ensuring that the SQL statements performed by an application run in the fastest route.
In medium and bigger companies, SQL database tuning usually handled by a Database Administrator (DBA), and many a time, developers also do the job of performance tuning in SQL Servers.
There are several ways to tune the performance of an SQL Server. Here, we will share a few tips and tricks to help you optimize the process of performance tuning in SQL Server.

1. Give prominence stage 1 over stage 2 predicates
2. Take out any/all scalar functions any/all mathematics coded on columns in predicates
3. Code only required columns needed in the select portion of the SQL statement
4. Stay away from distinct if possible
5. Always make sure the host variables are defined to match the column data types
6. Make sure that data distribution and other statistics are excellent and current in the tables processed
7. Use union all in steady of association where possible
8. Consider hardcoding versus using a host variable
9.Minimize db2's SQL requests
10. Try rewriting range predicates as between predicates
11. Consider using global temporary tables gtt
12. Remember that the order of using words equal range in the list like predicate
13.Implement good index design and specify the leading index columns in where clauses
14.Begin all filtering logic outside application code
15. Make use of dynamic SQL statement caching
[bookmark: _GoBack]16. Avoid using select *
17. Watch out for nullable or times columns when SQL statements could have nulls returned from the database manager
18.Reduce the number of times open and close cursors
19. Avoid not logic in SQL
20. Keep table and index files healthy and organized
21.Know more about locking isolation levels
22. Take advantage of materialized query tables to improve response time (dynamic SQL only)
23. Try using an insert with select
24. Take advantage of reopt once and reopt auto in dynamic SQL and reopt vars and reopt always in static SQL
Dynamic SQL
once - only one time in cache
auto - when values change
Static SQL
vars - same
always - same
25.Set your clustering index correctly
26. Watch out for tablespace scans
27. Use left outer joins over right outer joins
28. Take advantage of db2 v8 enhanced discard capabilities when it comes to mass deletes
29. Take advantage of the db2 load utility for mass inserts
30. Consider compressing data
31. Test your queries with realistic and a level of data to reflect performance issues
32. Use where instead of having for filtering whenever possible
33. Keep in mind index only processing whenever possible
34.Index on expression in db2 v9
35. Avoid sorts with an order by
36. Use joins instead of subqueries whenever possible
37.Know about skip locked data v9 for lock avoidance
38.Sort your input streams
39. Try index includes v10
40. Try using optimize for 1 row. It provides optimizer that the SQL intent may be to retrieve only a small amount of the whole result set and to give higher priority to the retrieval of the first row.

Sensitivity: Internal & Restricted

